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Center-of-Mass Motion in Many-Particle Systems*f
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An explicit construction is found for a unitary operator which insures the free motion of the center of mass
of any many-particle wave function on which it is allowed to act. The transformation is used to calculate
recoil correction terms for the internal energy and external interactions of nuclei, and some numerical evalu-
ations are given for cases of interest. The many-body harmonic-oscillator problem is exactly soluble when one
uses the transformation, and one is thus enabled to give a more general discussion of the spurious states.

I. INTRODUCTION

" 'T is a first law of physics' that in the dynamical
description of any isolated system of particles the

total linear momentum is a constant of the motion.
Despite this knowledge, one frequently disregards this
principle in the construction of approximate wave
functions (an independent-particle model for example)
to describe a given state. Generally, there is good reason
for this neglect, since if one extracts the proper center-
of-mass (c.m. ) motion for a system of A particles, the
A —1 sets of spatial coordinates which remain to de-
scribe the internal motions do not treat the particles in
a symmetric manner. Thus, for example, it may become
very dificult' to satisfy the Pauli principle for such an
internal wave function.

Neglect of the c.m. motion for a system of A equally
massive particles will result in errors of order 1/A in
calculations of binding energies, energy-level spectra,
electromagnetic moments and transition rates, P-decay
matrix elements, etc. These corrections may be im-
portant for very light nuclei, provided of course one
can calculate these properties to at least 1/A accuracy.
Furthermore, the inclusion of c.m. motion has led to
some very important qualitative revisions as, for
example, the X/A factor in the dipole sum rule and
the T=0~0 forbiddenness for Ei transitions. Another
more recent development is the recognition of the
spurious states. '

One approach to the general c.m. problem which has
been developed recently' ' consists of introducing three
extra degrees of freedom into the A-body Hamiltonian
so that one has 3 c.m. coordinates in addition to 3A
internal coordinates. However, in this approach one
must carry along a condition of constraint which
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reduces the 32+3 coordinates to 3A independent ones.
This technique is rather cumbersome and has not
contributed to an understanding of such problems as
the spurious states.

In the present work we construct a unitary operator
which, in a certain limit, imposes the correct c.m.
motion on any many-particle wave function without
changing any other over-all symmetry property, such
as spin and parity. In order to achieve this, the trans-
formation projects out of any state its translationally
invariant part by referring all particle coordinates to
the center of mass. Such a transformation, if carried
out explicitly, would evidently be very singular since
it reduces the number of degrees of freedom by three
and may in this sense be thought of as being equivalent
to the method of superRuous coordinates referred to
above. Nevertheless, by appropriate limiting procedures
the transformation can be handled and gives meaningful
answers with a minimum of mathematical labor.

Rules for obtaining recoil corrections appropriate for
all calculations are given in Eq. (15).

II. UNITARY TRANSFORMATION

The description of an isolated many-particle system
is governed by a Hamiltonian of the form

H=Q;(p's/2m;)+V,

where p; is the momentum of the ith particle of mass
m;; and V is an interaction which for the present
purpose may depend only on the relative particle
coordinates (r;—r;), the relative velocities, the spins,
and the isotopic spins. Since the total momentum of
the system must be conserved, the eigenfunctions of IX
must be translationally invariant except possibly for a
trivial phase factor. More formally, one says that
P=P;p; commutes with H, and one can select the
eigenfunctions of H to be simultaneously eigenfunctions
of P (which is the generator of infinitesimal trans-
lations). Even though in practice one cannot hope to
find the exact eigenfunctions of H, one would frequently
like to impose the translational invariance symmetry
on any approximate wave functions. The common
practice of using independent-particle wave functions,
referred to some particular origin (vaguely thought to
be the center of mass), is clearly incompatible with this
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principle. In the present study we propose to 6nd a
transformation which makes any approximate wave
function translationally invariant.

In order to obtain such a transformation, consider
that we are given a many-particle function

C (ri,r2, .
,r~) =—C (r;),

which depends' on the particle coordinates x;. Out of
this function, we wish to construct a new one,

In general, one expects the functions 0 to be struc-
turally much more complicated than the C and thus
one may fear that subsequent computations using the
+ will be too heavy a price to pay for the added sym-
metry. However, in practice one need never compute
with N but can still work with C which is frequently
selected for simplicities in subsequent computations.
To see how this comes about, let us consider the matrix
element of an operator 0,

+(r;)= U(r~)C (r;), (3) (%&,c%;),
where U is some operator such that + has the property

which because of 3 can be written in the form
4(r;+4) =4 (r;) (4)

for arbitrary displacements of all the particle coordi-
nates by an amount A. In terms of C, Eq. (4) reads

U(r~+a)C (r;+a) = U(r;)4(r, ).
A solution of (5) which is valid for arbitrary functions
4 ls

(6)

where R is the c.m. operator for the system, i.e.,

R=Q;(m;/M)r, ; M=+; m;,

and A. is a constant which is eventually allowed to
become infinite. To show that this is the desired
operator, we use Eqs. (3)—(6) as given above to obtain

e(r;+a) = U(r;+a)C (r;+a)
=exp( —-', iA(R P+P R)

—isa P}C(r,+a), (8)

which, upon using an operator identity derived io
Appendix A, becomes

O'= U~OU= U 'OU,

where the second equality follows from the unitarity
of U according to (6).

The problem of calculating matrix elements with +
is thus reduced to finding the transformed operators.
Since spin and isotopic spin are invariant under U, the
only operators we need consider are the particle coordi-
nates and momenta. Straightforward computation using
the well-known rule

yields

esOe s=0+LS,Oj+—LS,LS,O]j+
2I

(13)

(UC„OUC;) = (C&, UtOUC, ).

Inspection of (11) shows that one can calculate matrix
elements with translationally invariant wave functions
by using the given functions and using operators
transformed according to the rule,

+(r+~) —e—2iA(R P+P R)

Xexp( —icL.P (1—e—i)}4(r;+4). (9)
p =U 'p, U=p;+—P(e ~—1)

3f
(14a)

Finally, using Taylor's theorem, we have

4'(r;+a) = U(r~)4 (r;+(Le ~), (10)
r =U 'r;U=r;+R(e~ —1). (14b)

which clearly satisfies (4) if we take the limit A~~.
It is thus established that a function 4 which is con-
structed from an arbitrary function C in accordance
with Eqs. (3) and (6), is translationally invariant.

We note that the operator R.P is a scalar, and in
addition for identical particles is symmetric under any
permutation of the particle coordinates. Thus, sym-
metries under rotation, inversion, and particle exchange
which are contained in 4 are also present in O'. The
operator U, therefore, adds new symmetries to a given
function without destroying any already present.

~ We suppress all spin and isotopic-spin variables since they are
clearly irrelevant for our purposes.

It should be kept in mind that in writing R and I' we always
mean the explicit functions of the r; and p; and not any new
variables.

In particular, we note from (14a) that P is transformed
into Pe ~ which vanishes in the limit A.—&~ as we would
expect from (4). It should not be surprising that, as
follows from (14b), R gets transformed into Re~ which
becomes infinite in the limit. Since the commutator of
P and R is invariant under U (which is unitary), the
fact that R~~ as P—4 is merely the statement of the
uncertainty principle. The reason that this in6nity is
not troublesome in practice follows from the observation
that in any measurement which refers only to the
internal dynamics, the operators of interest can involve
only the relative positions of the particles, which, as
can be seen from (14b), bring in no infinities. In
cases of doubt, one should always hold off the limit on
A until the end of any calculation. On the basis of this
discussion then, we can expect to require only the
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following transformation: A and thus
U-'(A) U( )C(r')~C(r')

p,—&p;—(m;/M) P

p,/m, p—~/m, ~p;/m; p—~/m, ,

for any h. Nevertheless, one can get useful results out
of the transformation by never tampering with the
wave functions but equivalently transforming all
operators according to (15). In this way, no new
difhculties are encountered.

Matrix elements computed by using these transformed
operators with arbitrary wave functions are then equal
to those computed by using translationally invariant
wave functions.

As an example of the use of the transformation, let
us transform the Harniltonian given by (1). On the
basis of the assumptions made about II, we see that V
commutes with R and P and hence with U, and thus
only the kinetic-energy part of H gets transformed.
Using (15), we find that under U, the Hamiltonian
transforms according to

H~H' =H (P'/2M) . — (16)

Thus, in this Rayleigh-Ritz sense, + is a better approxi-
mation to the correct wave function than C is; and
further only if C is already translationally invariant
does the equality in (17) hold. In Appendix 8, a
particular example' of an energy calculation is con-
sidered, where the c.m. motion exerts a dominating
inhuence.

It should be emphasized that the operator U is
singular and frequently care must be exercised in its
use. As has been pointed out above, in all cases of
doubt, one should keep A Gnite until the end. For
example, let us consider a function UC(r;) appearing
on the right-hand side of a matrix element. Using
properties of U discussed above, we have

UC (r,) = LUC (r~) U '$U1 =e '"4(r;—R(1—e s) )) (18)

and we cannot take the limit on A directly. The factor
of e *'s in (18) can be absorbed into the integration over
R and is a reQection of the facts that the volume of
normalization of the c.m. coordinate has been expanded
by U, and also that we are left with 3 less degrees of
freedom in C (r,—R). With this renormalization under-

standing, we could write

UC (r;) =C (r;—R).

However, once we have taken the limit on A, we can
never undo it, since r;—R is invariant under U for all

' C. Schwarts, Bull. Am. Phys. Soc. Ser. II, 2, 228 (1957).

Now we note that P'/2M is a positive-definite operator,
and hence, the expectation value of the energy in the
state 4' is lower than it is with C; i.e., using (3) and

(16), we have

(%,H%') = (C,[H—P'/2M jC) & (C,HC). (17)

0,= UC;,

and the final state with some linear momentum K is

e,=e~ UC

The interaction Hamiltonian,

H =s Z'{e'j'(p')e' '"+e' '"e'3'(p')) (19)

represents the coupling of the appropriate nuclear
currents' j; with the external Geld ze'""' carrying a
momentum k. The transition matrix is then

(+r H'+*) =(C'f U ' '-' Z'{ j*(p') ""
+e'" "e j (p;)) UC, ) (20)

which can be written in the form

( U—lei(k—K) R& M. ik (ri—R)
f~

X{'j;(p,+1)+'j;(p,))UC;). (»)
Now we carry out the transformations U ', U (for
finite A) on each part of this operator to obtain

C f, exp{i(k—K) Res@is g e'"

m,
X e j;~ p~+Ir ——P(1—e s)

~

M

( res,.

+e j'I p'—P(1—e ')
I C; l. (22)) ')

' In the case of velocity-dependent or exchange forces, j may
depend on (r; rj), (p~/ng; —p;/m;), e;, s; as well a—s on y;, but
these will not be affected by the recoil.

III. ELECTROMAGNETIC MOMENTS

%ith the cautions of the preceding paragraphs in
mind, one can apply the U transformation to the
operators for the electric and magnetic multipole
interactions. However, since these operators, as usually
derived, involve the particle coordinates ri referred to
some fixed origin, direct application of the trans-
formation would yield infinite results. In order to
avoid this difficulty we must rederive the interaction
operators by studying the interaction with the external
Geld involving a Gnite momentum transfer, and allowing
the nucleus as a whole to recoil.

The initial nuclear state, chosen to be at rest, is
written in accordance with (3) as
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The limit A~~ may now be taken and, except for the
factor exp{i(k—K).Res), everything is obviously well

defined. It is clear that as A—+~ this questionable factor
oscillates infinitely rapidly and will make the entire
matrix element zero when we integrate over any of the
coordinates [we recall that R= Q;(rN, /M)r;g. The only
way to avoid this calamity is to put K=k, which
eliminates this factor for all A. This is of course just the
statement of momentum conservation which in usual
treatments comes out in the form of a delta function,
resulting from an integration over the coordinate R.
We do not wish to treat R as an independent coordinate
in order to retain 3A degrees of freedom for the function

4; yet we have been able to obtain the desired results

by careful use of the c.m. transformation U.
Now the remaining factors in (22) have just their

customary form except for the replacements,

The electric quadrupole (Z2) operator has exactly the
same form as the Mj. operator except that ri)&y; is
replaced by the electric quadrupole tensor (r,r,
—('s)r,"rf). The modi6cations of the M1 and E2 matrix
elements due to recoil effects are of two kinds; first, a
sort of reduced-charge correction to the usual term;
and second, exchange matrix elements involving two
particles in orbits differing by one unit of l. For matrix
elements between states each having no more than one
incomplete shell (shell here means any groups of orbits
having the same parity, as for example, in the harmonic
oscillator), the recoil corrections can be summarized
by giving to each particle in an l-orbit an effective
orbital g-factor gg with the usual magnetic-moment
operator, and an effective charge e@ with the usual
quadrupole operator. A straightforward calculation
using (25) yields [in units of 1/(2mc))

p,—+y, —(re;/M) P, r,—+r,—R. (23) M1=+, gt;r;Xp, ;

In the simple case of no velocity-dependent forces and
low-energy processes, " the usual electric and magnetic
multipole operators are given just by the solid har™
monies"

X,„(r;)=r,'Y( (e,, q,),

2e, Zcq 1
e'=c'+I — — +—

I
1—Z —«lrlf'&

A A'/ ~ (2l+1)

X (l+l'+1) l —t' +(i'—f) l —l'
r dr

and the orbital angular momentum

r;Xp, .
+ (l—i') l' —l, (26)

dr

%e now include the recoil corrections by using
X~ (r,—R) and [(r;—R) X(p,—(m, /M)Pj instead.

Let us now set m;/M=1/A, and consider a few
examples. The electric dipole (E1) operator becomes

P, e;(r,—R) =P, r,$e; (Ze/A)] — (24&

where the matrix elements are integrals over radial
functions only and the sum extends over all filled shells
for which l'=l&i. If the states l, t,

' are given as the
eigenfunctions of a common static potential with
eigenvalues E~ and E~, the term in square brackets can
be more conveniently written in the form

which is already familiar in the literature. " The mag-
netic dipole (M1) operator becomes (aside from spin-
dependent parts which are unaffected by recoil)

2m (i—t')
(@—@)I «lr If'& I'

2l+1
(27)

1 r;Xp; ( 2e, Ze)'
(r;—R)x(y;—P)=E

I
s' — +—

I

2ssc A ' 2mc ( A A')

r;Xp;+r;Xp, ( e; e; Ze )
+-' Z I + I (25)

i4i A A A'i

"We consider here the forms correct only to lowest order in k'
for each multipole.

"In constructing the electric multipole operators, one normally
eliminates p; by using the relation p;= (im~/fr)[H, r;j or an ap-
propriate generalization for the case of velocity-dependent forces,
In our approach the replacement of p; —( /bfm)P by (im/b)
XPU 'HU, r; —Rg is not unique since PU 'HU, R)=0. We do
introduce only r;—R in this manner because it is the only trans-
lationally invariant form; i.e., it is not affected by repeated
applications of the U transformation. Furthermore there is the
point that for any approximate wave functions, Io), the replace-
ment of (hip~a) by (im/ft)(Es Eo)(b[ir~u) is—not exactly correct
even aside from center-of-mass problems.

'3 See for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Nuclear Physics (John Wiley and Sons, Inc. , ¹wYork, 1952),
p. 641.

Within a shell one may have E2 matrix elements which
change l by 0 or ~2. For these two cases we get two
effective quadrupole charges.

E2=+; cog;sI's (0,),

( 2e, Zeq
«leo'r" li)&=e'«lr'lf&+I — +—

I (ilr'I»
A A')

(2i—1)(2f+3) (f I» I»'
(28)

21+1 2l'+1

( 2e; Ze~
«~2 I eo ~'I» =e'«~2 I"I»+ I

— +—
I [«~2 I"I»

—»~ «~2lrli'&(i'Irl»3, (»)
where again all matrix elements mean integrals over
radial functions only and the states /' which contribute
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2e; Zeq
gi; ——e;+

~

— +—
~
$0.032j

A A'I
(30a)

28' Z8 $
(Efeo;fl)=e;+/ — +—IL

—0.25];
A A')

(30b)

and for a particle in the first d-shell, the numbers in
square brackets in Eqs. (30) are replaced by 0.029 and
—0.19, respectively.

The magnetic moments of the double magic &1
nuclei )II'" and 0"both depart from the Schmidt values

by about 0.02 nuclear magneton, but the recoil cor-
rections as calculated with these numbers is only one-
tenth of this (although in the right direction). It is

'4 H. A. Bethe and M. E. Rose, Phys. Rev. SI, 283 (1937). See
also H. R. Post, Proc. Phys. Soc. (London) A66, 649 (1953).

' See reference 3 and also J. P. Elliott and T. H. R. Skyrme,
Nuovo cimento 4, 164 (1956).

in any matrix elements (l'~ r
~
1) are the closed shells for

which l' —l=&1. It should be repeated that these
formulas for the recoil-corrected g~ and e@ are correct
only for matrix elements involving states in which the
orbits of all l-shells which have at least one but less than
2)&2)& (21+1) particles have a common parity.

The recoil corrections for 3f1 and E2 matrix elements
involving ground or low states in the harmonic-oscil-
lator shell model may be readily evaluated, using Kqs.
(27), (28), and (29); and one gets exactly zero in all
cases as a result of a cancellation between the direct
and exchange terms. This result is at first sight sur-

prising and somewhat disappointing too, since one
might have hoped to explain by this eBect at least part
of the small magnetic-moment deviation from the
Schmidt value for N" and 0". Now, however, the
vanishing of recoil corrections to all multipole moments
can be seen as a general property of the harmonic-
oscillator model within the limitations specified in
reference ].2. The result follows from the fact, first
noted by Bethe and Rose," that the antisymmetrized
wave function for the lowest states in the harmonic-
oscillator shell model are automatically translationally
invariant except for a factor exp[ —(Av/2)R'j. Thus,
if one carried out a coordinate transformation which

separated internal coordinates from the c.m. coordi-
nates, one would have a wave function which contained
only s-state components in the coordinate R. All the
recoil-correction terms we have derived for the multi-

pole operators involve R and P in some vector, or higher
rank tensor form; thus, these correction terms all

average to zero under integration over R."
For a shell model with other than harmonic-oscillator

radial wave functions the recoil corrections to M1, E2,
etc. , moments will not vanish, but for any reasonably
shaped central potential they are expected to remain
quite small. These terms have been evaluated for the
infinite square-well wave functions with the following
results: a particle in the first p-shell has

conceivable that with wave functions given by a
"wine-bottle-shaped" central potential, as could be
given in a Hartree-Fock calculation by exchange forces,
these corrections might increase to a signihcant fraction
of the 0.02-nm discrepancy; but at this time they are
too small to consider. For the Li isotopes the quadrupole
recoil correction is, using the numbers given above, only
about 5%, and thus negligible. Similarly, only about

6% of the small quadrupole moment of the odd-
neutron nucleus 0' is given by the preceding calcu-
lation. "

The sole exception to the rule that recoil corrections
vanish in the harmonic-oscillator model, and are thus
very small in similar models, is the electric monopole
operator,

2e' Ze e; e, ZePr' e,— — +—+ g r; r; +, (31)
A A" '+~' A A A'. '

in which the recoil terms are scalar in R. This operator
enters in to the description of elastic electron scattering
at not too high energies and also governs zero —+zero
transitions. The interpretation of the nuclear mean-
square radius given by electron scattering according to
the shell model will involve recoil corrections of magni-
tude 1/A. The recoil terms may be of some importance
in an analysis of the monopole transition in 0" (it
allows a "two-particle jump"), but we have carried out
no such calculation. For the monopole transition in C"
the recoil terms, just as the usual operator, "give zero
matrix element as long as one allows no particles to
move out of the 1p-shell.

The scattering of high-energy p rays on electrons is
governed, in the Born approximation, by operators of
the form e'~"'. For calculations with a shell model or
any other nontranslationally invariant approximate
wave function this operator is replaced by e'& (" R&

which in general involves the coordinates of all A
particles at once. A few such terms have been calculated
for some simple nuclei and the results yield simple 1/A
corrections which are of interest in further studies. "

In conclusion, we may state that we have studied
the recoil corrections to operators describing various
interactions of the nucleus with external fields, but
that within the framework of the existing shell-model

theory, we have found no numerically important
corrections.

IV. SPURIOUS STATES

Elliott and Skyrme' erst noted the existence of
spurious states for Fermi-Dirac particles coupled
together in pairs by harmonic-oscillator potentials and

"One knows anyway from the strong E2 transition of the 872-
kev level of 0'~ that some collective excitations (or configuration
mixing) is important here."B.F. Sherman and D. G. Ravenhall, Phys. Rev. 1N, 949
(1956)."S.D. Drell and C. Schwartz (to be published}.
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gave a prescription for removing them. They showed
that some states did not correspond to excitation of the
internal coordinates but represented merely motion of
the center of mass. This particular case of harmonic
oscillator potentials will be discussed further in the
next section. The existence of spurious states is not
con6ned to the harmonic oscillator for which the
analysis is reasonably simp1e, but may arise, for ex-
ample, whenever one uses any sort of independent-
particle description and thus some care may be required
in interpretations of results. As has been pointed out, '
one may deduce qualitatively as well as quantitatively
incorrect results by neglecting c.m. motion.

The basic problem of the spurious states lies in the
fact that for purposes of describing internal dynamics
one would like to use eigenfunctions of H, Eq. (1),
which involve 3A coordinates (for reasons of simplicity
in including antisymmetrization, etc.), while in actu-
ality one should really use solutions involving 3A —3
degrees of freedom. Now, following the customary
procedure one writes down a set of functions C „which
are approximate eigenfunctions of (1) belonging to the
eigenvalue E„and which are constructed without
regard for c.m. motions. However, using our prescrip-
tion one would take the functions +„=UC to be the
eigenfunctions of H with eigenvalues E„; that is, we
have

(32)

which implies directly the equation,

levels where none might exist. In calculating matrix
elements, one can completely rely on the operator V
to remove spurious states without taking the trouble
to recognize them explicitly.

A p2
H= g +- P (r;—r.)'

~=& 28$ 2 s&~
(35)

where we have set all masses and spring constants equal
for the situation of interest. We describe the trans-
lationally invariant solution N of B via our unitary
c.m. transformation, 4= UC, and C satisfies IJ'4 =BC,
where

H' =H (P'/2A tis)—.
It is now convenient to break up H' into two parts:

H'=Ho+Hi,

V. HARMONIC OSCILLATOR

The quantum-mechanical problem of many particles
bound by Hooke's law forces between all pairs can be
solved exactly by going to the normal modes. However,
it is in general difhcult to pick the individual particle
coordinate out of the normal coordinates in order to
apply antisymmetrization according to the Pauli
principle. ' Use of the transformation for the c.m.
motion yields a very convenient solution to this
problem.

The Hamiltonian for this sytem of A particles is

(II—P'/2M)O„=E„% „, (34)

(H —P'/2M)C „=E„C„. (33)

It follows that the functions C „are really eigenfunctions
of H I"/2M rather —than of H. Also, using (4), we see
that (32) can be rewritten into the form

A

Hi= ——Q g
A ~=»=j

p;p; Ak
+ 1',"r~

2m 2

p~ kA
Hs ——P + rs;

2m 2

(36)

which is formally the same equation as (33). Now 4'
involves only 3A —3 degrees of freedom since it is
independent of R, while C „which formally satisfies the
same equation, has its full 3A degrees of freedom.
Hence, it seems reasonable to conclude that there may
exist more states C than O'„. We conclude thus that
the operator U has the potentiality of taking several
states C„&'& into a single state 4„.Following Elliott and
Skyrme, of the several states C &'~ one would keep one,
call the remainder spurious and ignore them, in con-
structing a complete set of internal states. That is, one
must first recognize that several C '~ correspond to the
same 0'„and then count all of these C " only once.
Further, since V is unitary, a collection of C ~' which
belong to the same 0'„must have the same energy.

Thus, we see that it is vital for the description of the
internal dynamics of a system of particles to confine
oneself to translationally invariant functions. Other-
wise, spurious states enter and one might, for example,
assign incorrect weights to levels or possibly (as first
pointed out hy Elliott and Skyrme) predict energy

The exact solution of this transformed harmonic
oscillator problem can be found once one notices the
important fact that H~ commutes with IIo. For then,
the functions which diagonalize the matrix of Ho also
diagonalize the total II', and the eigenfunctions of Bo
are exactly the shell-model wave functions describing
A particles moving in a common oscillator potential.
We have thus proved that the exact solution 0 for the
many-body oscillator problem is just the shell-model
wave function C, corrected for center-of-mass motion. "

Special attention must be given to the case of
degenerate states C, for then one will have to diago-
nalize the (finite) matrix of Hi, in all nondegenerate
states one need only take the expectation value of H&
as an energy shift. The e6ect of H& on certain groups of
degenerate solutions will lead to the identification of
spurious states, and this problem will now be studied in
detail.

'9 It is interesting to note that one could add a two-body spin-
orbit force, (e;+ ).Ptr(r, r;)X(p;—p—;)j to (35) and still have
the exact solution in shell-model form since this interaction a/so
commutes with Ho+H».
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First note that H» can be written

H, = —(P2/2A222) —(A2k/2)R2, (37)

and if one took the (improper) liberty of speaking of
R as a new coordinate, independent of the r;, one would

say that the c.m. moved in an h-o potential with the
same frequency id=(Ak/2N)'* as each individual par-
ticle."The diagonalization of LI» would then correspond
to separating the eigenstates of the c.m. motion. If any
group of states differs only in the state of the c.m.
motion, only one—say the is state —need be retained
to describe the internal energy state of the system; the
others would be called spurious states which have
appeared because of the excessive degrees of freedom
employed. This freehand description may be of use in
discussing the rigorous analysis to follow.

Let us rewrite H» once again:

where

Aco

Hi = Ho —2—{a' t—' a,+a,' a;t },
2A s~~

a,= (2mA01) 0(p, 221u0r—;)

(38)

and a;, its Hermitian conjugate, are the familiar
lowering and raising operators. The erst term in this
expression for H» is handled in the obvious way. Matrix
elements of the second term, which we shall call 0', , have
the following selection rules: 8 is diagonal in the total
orbital angular momentum and all spins; only two
individual particles may change their states, with one

jumping up one oscillator quantum and the other
jumping down by one shell, each changing its orbital
quantum number 1 by &1 unit.

For states in which there is only one shell incom-
pletely filled and any number of other filled shells, (Hi)
is diagonal in the orbital classiication of states C of
IIO and there are no spurious states. This results from
the fact that 8 will have only exchange matrix elements
involving particles in the other closed shells. Because
of the spherical symmetry of the closed shells the matrix
of 6 is electively a scalar quantity in the coordinates
of the particles in the unhlled shells and cannot mix
any states. For such cases the energy shift due to the
diagonal matrix element of H» works out to be H»
= —~~. One is drawn to interpret this as a subtraction
of the energy of the c.m. moving in a is orbit. "When
there are two or more unfilled shells, there may be
exchange matrix elements of Q, between particles in
these two shells which can mix up the orbital occupa-
tions. We shall look at the excited states of closed-shell
nuclei as examples.

Consider a nucleus whose ground state has all shells
closed and the last closed shell has total quantum
number X; this state, which we shall call Co, has
L=S=T=O and its energy is shifted —20501 by (C0,
H]C 0) . The individual particle orbits are described by
the total quantum number E;, where the 'energy of the
orbit is given by E,= (»,+20)Al0 and the orbital angular-

momentum quantum numbers allowed within any shell
are I=X, E—2, S—4, . The first excited states, 4»,
arise from moving one particle out of the E shell and
putting it into the»+1 shell. There are several orbits
l», l»' in the shell S from which to take this particle
and several orbits E2, E2' in the shell »+1 into which
to put it. Each C» will thus be labeled by the orbital
quantum numbers I», l2 describing the hole and particle
orbits, respectively, and the total quantum numbers
I., 5, T as well as M values for the latter. We have of
course

AM
—2 (»+1,E2ll~'ll»E")(»E" ll oil»+1E2&

A 2E2+1 1"

4Acv

+»~s0»1(»+1,E2llo'll»E1)
3A

X(»E1'll.ll»+1,E2g. (40)

The double-barred matrices are the reduced-matrix
elements as dered by Racah, " and the only non-
vanishing reduced-matrix elements of a, a~ are the
following:

(»+»E+1lls'll», E) =2I(Ey 1)(»+E+3j' (41a)

(»+1,E—1lllitll», E) = if E(»—E+2)]'*, (41b)
and

(»'*E'lloll», E)= (—1)' '(»Ell~'ll»', E')*

(42)

It is seen from (40) that only in the states for which
T=S=O, L=1 (i.e., "P states) can Hi mix orbits. For
all other states, H» is diagonal and we have

»+ 1 i(H,)= —
l

-', + li210—
A ) (2E2+1)A

XL
—E2 (»+E2+ 2) —(E2+ 1)(»—E2/1) j

= —3AM2

which is the same shift suGered by the ground state Co.
The matrix of H» in the "P states will have a diagonal
element of ——,'Ace and also the contribution from the
second term in (40) which we now evaluate for the
general case.

First note that this matrix can be written in product

~ G. Racah, Phys. Rev. 62, 438 (1942).

(41(E1E2TSL)&HQC 1(E1 E2 T S L )
5 (@0&HO@0)+f2103E11111'5l2!2'~TT'ASS'EALL') (39)

and the matrix of H» in the states 4», is also diagonal
in the quantum numbers TSI., but H» is not in general
diagonal in /», l2. We then calculate by standard
techniques

»+1 ~
(E1E2ISL

l
Hi

l
Ei'E2 TSL) I5llll'Bl2l2' l 2+ i&01

A ]
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form
4Aco

«~f2I &~+V I~~'~2') = «~llollf2&{f~'lt~ltf~')
3A

and for any matrix A p which can be written A p

=A Bp, one can find the eigenvalues directly. There
exists a unitary matrix T which can diagonalize A p.

Ee.v ~e~ ~ 8m Tv~ o~~~& i

but since A p factors, we have

and since the two factors on the left are independent,
we must have Pe AeTe *——0 except for one particular
value of a, which we call no,' or g~ B~T„'q=0 except for
one particular value of 6, which we call 6p. In either case
the eigenvalues of a of A p are thus all zero except for
one of them, ap, which may be nonzero and is just equal
to the trace of A p. For our problem, the desired tra, ce
IS

Z t (~~+1)(&+~x+3)+~i(&—4+2)j,
3A

which works out to be exactly —Ace. It also follows that
the relative probabilities of the orbital components of
this one state are proportional to the corresponding
diagonal matrix elements.

Thus, we see that out of the many degenerate excited
states at energy Lo above the singly degenerate "5
ground state, one particular state of character "I' has
been separated out and moved down to exactly the
energy level of the ground state. This special "I' state,
which will be recognized as a spurious state, has the
orbital composition

1
C.p= Q C(cVlg ',X+1l2f'F), (lg+l2+1)

ll, l2 (3&

4'; are called spurious. Ke have remarked before that
since U is a unitary operator, the states C; which are
spurious with respect to some 4 p must have exactly the
same energy as C p in the model.

For higher excited states one expects to find several
spurious states. Among the second excited states of a
closed shell there should be two spurious states —"S
and "D—corresponding to the physical ground state
with 2Aar of excitation in the c.m. coordinate R. There
would also be a number of spurious states found by
adding one fuv of c.m. excitation (i.e. , a p-state) to each
of the proper states at one Ace excitation.

The detailed workirig out of all these results is simple
only for the harmonic oscillator, and it is fortunate that
this model does appear to be a good starting point for
the description of light nuclei. For any other shell model
the spurious states do exist although one will not be
able to display them so neatly. However, as long as one
uses the formalism of the U transformation and works
only with translationally invariant operators, no errors
will be made. Thus, for example, if one sets out to
diagonalize an energy matrix in some representation
not free of spurious states, the labor might be increased
by the superfIuous degree of freedom, but consistent
use of the U operator would prevent the spurious com-
ponents from coupling with the proper ones under any
measurement referring to the internal dynamics.
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APPENDIX A

In order to prove the' identity, Eq. (8)=—Eq. (9), we
sha, ll prove the following operator identity. If A, 8 are
arbitrary operators which obey

)A,B]=nB,
X t 2h~+4+l2(la+1) —lx(i&+1)$ . (45)

where o. is a constant c number, then

(A1)

Following Klliott and Skyrme, it will then be found
that one can write C„=RC o (within a constant). When
we now apply the U operator to get the physical states,
we have 4'p=UCp for the ground state; and for the
aforementioned spurious state we obtain UC,p
= URU 'UCO ——lim(A~~)e "RUCO, which becomes a
null state. The more general statement is that whenever
some model states 4; can be written in terms of another
(apparently independent) model state C 0 as C,
=F;(R)CO, then, when the U operator is applied, we
have

1—e
e~+~=e~ exp B

To prove this we write

~X(A+0) —g) AgBO(X)
) (A3)

where X is a parameter which we eventually set equal
to 1 and O(X) is a c-number function of X, and O(0) =0.
We differentiate (A3) with respect to X, and on suitable
rearrangement we obtain

0'p= UCp,

+;=UF, (R)CO ——F(0)UCo. (46)

dO
B e Boe AABexAeeo— —

Thus, the states %p, 4; are not linearly independent and
which upon application of j13j and (',Aij reduces tocorrespond to only a single eigenstate; one can then

work with only one of the states, say Np, and the other dO/dk=e " .
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This equation has as its solution (subject to the above equally massive particles) as
boundary conditions) O(X) = (1/n) (1—e " ), and sub-
stituting this into (A3) and setting X=1 we obtain the
desired result (A2).

The identity Eq. (8)—=Eq. (9) now follows if we take

A= —-', ZA(R P+P R); 8= —pA.L P,

in which case o.=A.
In passing we may also point out that, if one uses

techniques similar to those above, the unitary trans-
formation

e's =exp —p a "(r; p+p" r;)
2i, j

where a;; is a real matrix, induces a linear transforma-
tion among the coordinates and momenta. Straight-
forward calculation shows that C= Pr,

i(j'
exp —n P rP

i&j

Aviles and Jastrow" have recently reported results
of a Hartree-Fock calculation (ignoring the c.m.
motion) for He'. With a two-body force

V(r) =VpI', e &"/pr,

where p, '=1.17)&10 '3 cm, Vo= —67.3 Mev, and I',
(as averaged in He') =0.845, they find a binding energy
of only 10 Mev. This result is very much less than the
binding energy of 55 Mev obtained by Irving" for the
same problem by the use of the trial function

where
(e ),;=3;,+a;;+ (1/2.)Pa a;I aa,+.

Using this, we can induce some linear transformations
among coordinates and momenta of wave functions and
operators. It is not clear that all linear transformations
can easily be written in this form, but on occasion it
may be useful to have the foregoing formal techniques
available.

APPENDIX 8

Since the usual Hartree-Fock approximation (anti-
symmetrized-product wave function) is not trans-
lationally invariant, one can improve this wave function

by using the c.m. operator U. Instead of the original
Hamiltonian II, one now seeks Hartree-Fock solutions
for the transformed Hamiltonian

U 'HU=H P'/2M, —
which would generally appear (for a system of A

Since for He4 one has all particles in an s-state, the
terms p; p, (iW j) do not contribute; and so the c.m.
corrected Hamiltonian divers from the original one
only by a factor ~ in the kinetic-energy term.

Using, as an approximation to the Hartree-Fock
solution, the trial 1s orbital C =e "(1+mr) with this
simply modihed Hamiltonian, we have obtained a
binding energy of 44 Mev at p/a=0. 33. The complete
Hartree-Fock solution should come even closer to
Irving's result.

The recoil correction for He~taking the Hartree-
Fock result from 18% to 80% of Irving's answer —is
so very large because the kinetic and potential energies
are both very large (200 Mev) in this particular prob-
lem. Thus, a 25% decrease in the kinetic energy gives
a much larger percent-wise increase in the diQ'erence

between kinetic and potential energies.

' J. Aviles and R. Jastrow, Bull. Am. Phys. Soc. Ser. II, 2, 25
(1957}.

~ J. Irving, Phil. Mag. 42, 338 (1951}.


