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High-Energy Potential Scattering
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Asymptotically in. the limit of high energies, successive approximations are obtained for the problem of
potential. scattering where the total phase shift through the potential is not small. Only the Schrodinger
wave equation is treated. The method consists of first applying the stationary-phase approximation to the
integral equation and then solving the resulting equation by iteration to derive the asymptotic behavior
of the field. In particular, some information about the radiation field is obtained.

1. INTRODUCTION

' 'N order to apply the Born approximation to problems
~- of potential scattering, it is necessary that the
velocity of the incident particle be very high. That is,
if V and R are rough measures of the depth and range
of the potential, and e is the velocity of the incident
particle, it is required that

l
vz/kv l«1,

in addition to the condition that V be small compared
with the kinetic energy of the incident particle. In the
study of the scattering of fast electrons by heavy
nuclei, for example, Eq. (1.1) is often found to be too
restrictive. The situation where V is small compared
with the kinetic energy, but where (1.1) is violated,
has been studied by Moliere, Glauber, SchiG, ' and
others. (SchiG's paper may be referred to for a fuller
introduction to this subject and a bibliography of
earlier work. ) Their results take the form of the first
Born approximation with an appropriate phase factor.
It is therefore natural to try to determine the next-order
approximation. It is the purpose of this paper to give a
method of finding all higher order approximations in

the simplest case of a smooth potential, and in particular
an explicit computation for the second-order approxima-
tion in this case. For simplicity the work is limited to
the Schrodinger equation.

Certain problems in other branches of physics are
mathematically similar to the quantum-mechanical
problem of high-energy potential scattering. An example
is the scattering at high frequencies of an electromag-
netic wave by an obstacle whose relative dielectric
constant is close to unity. In such problems the function
corresponding to the potential often has finite discon™
tinuities, which greatly complicate the treatment. It is

hoped that this will be discussed in a later paper.
A generalized Born series appropriate for the present

situation is given in the appendix. This is not believed

to be of great theoretical value but may be useful for
practical purposes.
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(6+k' —V'gi =0, (2.1)

where k is the wave number at infinity. This equation
has been reduced so that A'k'/2m is the energy of the
incident particle, and k'V'/2m is the actual potential
energy. Thus (1.1) becomes

l
V'E/kl((1. Therefore, for

the present purpose, let the high-energy approximation
be de6ned through the requirements

lvl«k -d lvzl-k. (2.2)

Accordingly, let

so that (2.1) becomes

V'=AU, (2.3)

(6+k' kU)$=0. — (2.4)

This equation is to be solved asymptotically for k—+~.
The problem is now well defined.

It should be noted in particular that as yet no condi-
tion has been imposed on the function U. In this paper
U is assumed to possess as many derivatives as needed,
but this is by no means necessary. For example, U may
be discontinuous as mentioned earlier, or it may have a
singularity as in the case of a Vukawa well. This resolves
the dilemma which arises when U is required to vary
slowly over one wavelength and yet may be discon™
tinuous or singular. Certainly, such a discontinuity or
singularity requires special attention; it causes a
number of complications that are not considered in this
paper.

I,et the incident 6eld

y inc
&
—eke (2.5)

represent particles moving in the negative x direction.
If 6 is the free-space Green's function with a coordinate
representation given by

G(r —r') =
4 lr —r'l

(2.6)

2. FORMULATION OF THE PROBLEM

In order to study the problem at hand, it is necessary
to formulate it asymptotically (in Poincare's sense),
i.e., in a manner such that a parameter, in this case the
wave number, approaches indnity. I et the Schrodinger
equation be written as
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then it follows from (2.4-2.5) that

f=e "* kG—UQ
or

UP+kUGUQ= Ue ~*.

It is covenient to introduce the quantity

J(r) = U(r)4 (r)e'"*, (2 9)

which is not expected to vary too rapidly. With (2.6),
the function J satisfies

&ik(( r—r']+x—x')

J(r)+kU(r) — J(r')dr'= U(r), (2.10)

where E is the entire space. This is the integral equation
to be solved asymptotically for k—&~.

If (2.10) is solved by iteration, the resulting Born
series may be integrated by the stationary-phase
method term by term and then summed as was carried
out by Schi6'. Alternatively, it is possible to use the
stationary phase method in (2.10) to perform the
integration over E, provided J(r') is a slowly varying
function of position. If this is done, the result is an
integro-differential equation which may be solved by
iteration. Eventually, it is verified directly from the
solution (4.12) that J(r') is indeed slowly varying. This
program is carried out in the next sections.

3. STATIONARY-PHASE INTEGRATION

If J(r') is slowly varying, then the integral,

natural to split the integration with respect to x' into
two parts, Jp" and J'„'.Let the two parts be called
I~ and I, respectively. The part I+ is to be considered
first.

For I+, let the variable &'=r' x' b—e used instead of
E'. Thus

I+= 2 dX
J~

d&'e "&'J (x' R'). (3.5)

J,= (x',0).
B(R")'

(3.7)

Note that J(x',R') is an even function of R'. With an
interpretation according to Abel summability, the sub-
stitution of (3.6) into (3.5) gives

1(11 t" 1 t"
I,= —-~ —

~
dx'Jp(x')+, dx'x'Ji(x')

2 (ik & ~ p (ik)' ~ p

dx'[Ji(x')+2x"Jp(x') j+ . (3.8)
(ik)P "p

Within the order of approximation of (3.8), it is
sufhcient to use

Since k~~, the presence of the exponential factor
suggests the expansion of J(x',R') into a power series
in $'. The first three terms are

J(x',R')=Jp+2x'Ji)'+(Ji+2x'sjs)$"+, (3.6)
I

where

&
ik (t r—r'1+x—x')

I= " — J(r')dr',
4~fr —r'f

J(x',R') =' Jp(0)+x'Jp'(0)+ (3.9)
(3 1) for the evaluation of I With (3..9), I is given by

p ~i,k(r' —x')

I= J'(r')dr'.
4 r'

(3 2)

may be expanded as a power series in 1/k by the method
of stationary phase. Even in the Born approximation,
there is little occasion to go beyond the third approxi-
mation. Therefore, no attempt is made here to write
down the general terms, even though this is not difficult.

I et the coordinate system be translated such that the
new origin is at r. In this coordinate system, and without
changing the notation, it follows from (3.1) that

dx2
R'dR' —e'"&"'+*'&J(—x', R')

I

Jp(0) —— Jp'(0)+ . (3.10)
4 (ik)' 8 (ik)'

It only remains to perform a translation of the coor-
dinate system. Note that the functions J; as defined in
(3.7) are really functions of the position coordinate.
Therefore, it follows from (3.8) and (3.10) that, in a
rectangular coordinate system.

Let (x',R',p') be the ~yli~drical coordinates abo ut the
x axis. Then & k) ~,

00 oo
8,i,k

(r'—x')

I= -', t dx' ~ R'dR'- j(x',R'), (3-.3)
y' dx'(x' —x)Ji(x',y,s)+-,'J(x,y, s)+

(ik)' ~,
00

dx'[J, (x',y,s)+2(x' —x)Pj,(x',y, s)3
where J is an average given by

7I

J(x',R') =— J(x',R',g') dp'.
2x ~

(3 4)
+——J(x,y,s),+ . . (3.11)

88x
For the integral in (3.3), the points of stationary phase
lie on the positive half of the x axis. Therefore it is This is the desired formula for I as defined in (3.1).
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4. SOLUTION OF THE INTEGRAL EQUATION

When (3.11) is substituted into (2.10), the following integral equation is obtained:

1 I" 1 1~
U(x,y,s) =J(x,y,s) ——U(x,y,s) dx'J(x', y,s)+—U(x,y, s)— ' dx'(x' —x)J&(x',y,s)+-,'J(x,y,s)

2t ~k ~

——U(x,y,s) dx'[Ji(x', y,s)+2(x' —x)'J2(x', y, z)j+——J(x,y,s) + . . (4.1)
i (ik)' ~. 88x

Since k~~, a 6rst approximation to the function J This 6rst approximation of f can now be substituted
may be obtained from (4.1) by neglecting all terms in (4.1) in order to obtain a second approximation to J.
involving a negative power of k. The result is simply It follows from (4.8) that

F00

U(x,y, z) =J(x,y, s) ——U(x,y,s) dx'J(x', y,s). (4.2)
2i

U U' - oo

f'+ f+ — —dx'D, fi(x',y,z) f,' =0, —(4.11)
2i 4k'i &,.

1 1
J(x,y,s) = U(x,y,s)e«" i 1——-U(x,y, s)

k 2
/1 r"

J(x,y,.)= U(x,y,.) exp~ — U(*,y,.)dx' ~.E2i, )

This is essentially a diBerential equation in x for each

y and s. In particular, therefore, the deviation of the and that the boundary condition is f(~,y,s) =1. The
direction of motion of the particles from the x axis is solution of (4.11) is
at most of the order of 1/k. The exact solution of (4.2) is

This justices the use of a phase correction in solving
problems of high-energy scattering.

Next, Eq. (4.1) may be iterated with (4.3) as the first
approximation. It follows from (3.7) that

J,(x,y,s) =-', A,J(x,y,z), (4 4)

00

~{*,y, )=- I U(",y, )d",
2i J. (4.6)

J2(x,y, s) = +APJ(x,y,z),

where 6&= B'/By'+B'/Bz' is the transverse Laplacian.
I.et

goo 1 poQ

+— U'(x', y,s)dx'+ — dx'e v&" " '&

8i.,

Ixl +
(By' Bz')

The third approximation may be found by another
iteration.

Since J does not have an exponential factor involving

k, the stationary phase argument used in the last section
is justified. With J determined, the total field P at any
finite point of the space may be found directly from

(2 9).
so that

8V
V'= = U(x,y,s).

ax 2i
(4 7)

5. RADIATION FIELD

Asymptotically, as r—+~ for 6xed k, the total field is

Also let

1
f(x,y,s) =1+—

~ dx'J(x', y,s), (4.8)

P(r) f(r j)~e—ill+ —frad(r)
r

(5.1)

so that

8f'= = J(x,y,z). ——
8$2z

k r

f"e(F)= —— J(r') exp( ikx'+ikr' P)dr'. —(5.2)
kr ~~ev (4.10)

where P is the unit vector in the direction of r, and
when f' ~(r) is the radiation Geld. This can be easily
obtained from (2.7) and (4.12). The reason that (2.9)
cannot be used is that in general the two limiting

operators r—+~ and k—+~ do not commute. The result

In particular, if (4.3) is used in (4.8) in order to obtain
a 6rst approximation fi, the result is
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In particular, the forward radiation 6eld is

fo ~= —J(r)dr
4n- &g

ik r" t'" ( 1 t'" q t
1

dyds 1—expl — U(xys)dx II 1 ' U'(xys)dx
I

&2i~„)(
g2 g2 ~ p 1 ao

dx 1—expl — U(x'y, s)dx'
I l

+ I expl —
~ U(*',y, s)dx' I+'. 1, (5 3)

2ik & (2i ~ & E By' cjs') (2i ~,

From this the total scattering cross section may be
found.

Let 8 be the angular deviation of the direction of ob-
servation from the forward direction. If 0 is of the
order of 1/k, then (5.2) gives the radiation field in that
direction. On the other hand, if 8 is much larger than

1/k, the right hand side of (5.2) is again an integral
involving a rapidly varying phase, and, to be consistent
with the previous development, it should again be
evaluated by the method of stationary phase. For 6xed
0 ='0, therefore, the radiation field can at most be of the
order of k &~+'), where E is the number of continuous
derivatives that U(r) possesses. This result is indeed

physically obvious from a consideration of the mo-

mentum transfer.
The present theory is unable to give information

about large-angle sca,ttering, which arises principally
from irregularities of the potential, such as discontinu-
ities and singularities. Therefore, attempts to get de-

tailed information about the nuclei from data on
large-angle scattering at high energies are justified. It
is then necessary to treat the more dificult Dirac equa-
tion with singularities and discontinuities in the
potential.

It is interesting to note that the present treatment,
while starting with assumptions that are similar to
those used by Schiff, leads to results that are diferent
in form. It is evidently desirable to study this difference
before attempting to apply the present method to the
Dirac equation.
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APPENDIX. GENERALIZED BORN SERIES

Although the Born series is useful only for the situ-
ation k))

I
V'R I, it is not a power series in 1/k. For the

case k
I
V'Rl, an analogous rapidly convergent series

may be obtained by writing (2.10) in the form

J(x,y,s) U(x,y,s)——dx'J(x', y, s)
2j

= U(x,y,s) 1+— e"'~*—"&J(x',y, s)dx'
2jd „

~
&ik()r—r')+s—x')

)J(x',y', s') —J(x',y,s))dr' .
& s 4s. lr-r'I

(A.1)

A generalized Born series may be obtained from (A.1)
by using the iterative procedure given in Sec. 4. The
resulting series is rapidly convergent if the function

U(x,y,z) satisfies a Holder's condition.


