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Nuclear binding energies of heavy nuclei are calculated from a general two-body interaction by using
j-j coupling shell-model wave functions for the nucleons. The formula obtained can be made to fit experi-
mental data with a high accuracy.

EVENT calculations by Talmi and co-workers''
have revealed a very good agreement between

shell-model predictions and experimental data concern-
ing binding energies of light nuclei. As neither the
interaction between nucleons nor their radial wave
functions are known, a procedure was adopted which
did not involve the detailed knowledge of these quan-
tities. Only the following assumptions were made:

I. The wave function describing the nucleus is a
shell-model wave function, the single-particle wave
functions entering the complete wave function being
independent of the number of nucleons in the shell.

II. The residual interaction between nucleons is a
two-body charge-independent interaction (this may
include central forces, any mutual spin-orbit interaction,
tensor forces, etc.).

Thus, the states were characterized by the con-
figuration, the total angular momentum (sometimes
briefly referred to as total spin) J, the total isotopic
spin T, and by additional quantum numbers of the
generalized seniority. ' 4

The application of the shell model requires the calcu-
tion of the expectation value of the two-body inter-
action among nucleons in one shell. This expectation
value can be expressed as a linear combination of the
energies in a two-nucleon configuration, using a method
due to Racah. ' Thus, consider any two-body operator
t;, . In a configuration of e equivalent nucleons in the
state j, coupled to total angular momentum J, the
expectation value will be:

(j"JINNI

j"J)= srs(ss —1)(j"Jli»lj"J) (1)

where the equality holds because of the equivalence of
the nucleons. This expectation value can be further
simpli6ed by noting that $12 operates on particles 1
and 2 only and that therefore

where the positive coeKcients a(Jis,J) depend only on
the nature of the state

I
j"J) and not on the operators

3;;, and are simply related to the fractional parentage
coefficients.

Since the number E of states in a configuration j' is
finite, it is possible to 6nd E independent operators
t;;0), t;j&'), ~ t;;(N& such that for a given j and every
J12 one will have

N

(j'J»
I
J'12I j'Jts) =2 ~s(j'Jis I&is'"'

I j'J12), (3)

where V12 is the two-body interaction and the n's are
constants which depend on V, j, and the special choice
of 1,;t"&. Using (1), (2), and (3), one now finds

N(ss —1)
p a(J12J)(j'Jisl Jrisl j'J12)

Thus if the arbitrary operators t;j(~) could be chosen
simple enough so that their expectation values could be
easily evaluated, formula (4) will yield the expectation
values for the interaction V;; for any number of particles
in any state expressed in terms of at most E parameters
o,~. These parameters then fully represent the inter-
action V;, for the specific shell. The number of such
known simple operators is not too big, though. One
such operator is, for instance, i,s (j; ji,) which satisfies——

Another operator is the "Majorana-operator, " &12,
which has the eigenvalue 1 for space symmetrical states
and the eigenvalue —1 for space antisymmetrical states.
The eigenvalue 3f, of the Majorana operator P,&&M,&

can be calculated, and has the expression'

M= rss(16—s)—-,'I P(P+4)+P(P+2)+P'"]. (4a)' I. Talmi and R. Thieberger, Phys. Rev. 103, 718 (1956).' S. Goldstein and I. Talmi, Phys. Rev. 105, 995 (1957).' G. Racah, "Group Theory and Spectroscopy, "mimoegraphed
lecture notes, Princeton, 1951 (unpublished).

4 B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).
s G. Racah, Farkas Memorial Uolume (Research Council o

israel, Jerusalem, 1952).

To illustrate the method we take here an example in
I.S coupling. If two nucleons belonging to a p shell

f L. Rosenfeld, ENclear Forces (North-Holland Publishing
Company, Amsterdam, 1948), (10.36-6).
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interact by spin-independent forces, their interaction
energy can assume only three values, according to the
three possible values of their resultant momentum.
Therefore, by a convenient choice of the three con-
stants a, b, and c, it is possible to express their inter-
action energy by the formula

{V)= {a+bM«s+c(li ls)).

Here %12 is the Majorana-operator mentioned above
and (li ls) is the scalar product of the angular momenta
of the two nucleons. In this case one obtains for the
interaction energy of n p-shell nucleons

(V)=(g~a+bMij+c(1; lp) ~)i(j'
= -', n (n —1)a+ bM+-', cP.(I.+1)—nl (/+1) 3,

where M is the expression (4a).
As long as the number of levels in the configuration

j' does not exceed the number of known simple opera-
tors, this method can be used directly. However, the
method described above cannot be applied directly to
those cases where the number of levels exceeds the
number of operators available. The method has then
to be modified and we have to consider the average
energies of groups of states which belong to the same
eigenvalues of the known operators. It can be shown"
by group-theoretical methods that, upon taking these
averages, the same procedure as before can be used.

Fortunately, inasmuch as ground states are char-
acterized by seniority 1, they are the only members of
their group (i.e., the only state which belongs to the
same eigenvalues of the known operators) and therefore
the energies of ground states can be obtained directly
with Racah's method. Thus for the configuration j"
hey were given bye, 5

E(j "J)= nA'+-', n(n 1)a'+LT(—T+1)—sn)b'

+kg(IV) —2nU+1) jc' (5)

Here A is the single nucleon energy (its kinetic energy
and its interaction. with the closed shells), while the
other terms express the mutual interaction. T is the
isotopic spin and the quantity g (W) is the eigenvalue of
Casimir's operator". This last term essentially repre-
sents the pairing energy in even-even and odd-even
nuclei; its meaning for odd-odd nuclei is less simple.

A slightly different approach is needed in order to
get an equation similar to (5) for the heavy nuclei. In
this case the protons and neutrons fill in different shells
and the isotopic spin formalism loses its value. There-
fore it is better to consider proton shells and neutron
shells separately. If one of the shells is closed, the
handling of the second shell is simple. It is really a
special case of Eq. (5), when one has nucleons of one
kind only (2'=-', n). If neither the proton nor the neu-
tron shells are closed, the situation is not so clear, since
there is the question of the coupling scheme.

' G. Racah, Phys. Rev. 76, 1352 (1949).

E(j„"J„)=nA '+ ten(n —1)a+Lg(W') —2n(j+1)jc', (7)

where a=a'+-', b'. The last term in (6) can also be easily
evaluated. If p is even, then, for the lowest state, J„=0
and hence' '

V «(j,";j "J;J)=pnVo,

where Vs is independent of J(=J„),p or n.
Summing up these elements, we obtain for the bind-

ing energies of a set of isotopes of even Z as a function
of the number of neutrons in the unfilled shell an ex-

pression of the form

E= nA "+-',n(n 1)a+ Lg(—W) —2n(j+1)]c, (9)

where A"=A'+ p Ve. This expression can be still

simplified if we note the simple structure of g(B') for
states of lowest seniority (zero or one for even or odd n. ,

respectively). Thus

g(IV) =
for n even (seniority equals zero)

2(j+1)for n odd (seniority equals one).

' A. de Shalit-Phys. ,Rev. 105, 1528 (1957).' N. Zeldes, Nuclear Phys. 2, 1 (1956).

It is customary to assume in these cases that the
neutrons and the protons should be coupled to their
lowest state each and the two groups then coupled to
each other. This treatment may be justified by noting
that the excitation of either protons alone or neutrons
alone (for instance in even-even nuclei) requires con.-
siderably more energy than that required for a change
in the relative orientation of the protons as a whole
with respect to the neutrons as a whole (for instance in
odd-odd nuclei).

If there are now p protons and n neutrons in the
unfilled shells of protons (j~) and neutrons (j„)re-
spectively, we can decompose the energy of this system
in the following way

E=E(j 'J )+E(j "J )+V*- (j 'J,j-"J-J) (6)

Here E(j„i'J„)is the zeroth-order energy of p protons
in the shell j„plus the interaction energy of these
protons with each other when coupled to a total angular
momentum J„;E(j„"J„)has a similar meaning; and
V;„«(j„"J„,j "J,J) is the interaction energy between
the protons coupled to J„and the neutrons coupled toJ„in a state of total angular momentum J.

Suppose now we consider a set of isotopes of the same
element and let us first choose an element with even Z,
so that p is even and fixed. By shifting the zero point
of the energy, we can get rid of the first term in (6).
For the second term, we can use the same method which
was used to derive (5), except that the isotopic spin in
this case does not add any new information since all
nucleons in the state j„areof the same type. We then
obtain
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Introducing the notation

0 for e even
y(n) =

1 for n odd,

we finally find for the energies of the isotopes of an
even-Z element as a function of n the expression

Z= nA+ ,'rt(-n 1—)a+y(n)D, (10)

where e has the same sign as Vo, and although it may de-
pend on n and p, Way's" rule shows that such a de-
pendence is very weak. Thus the expression (10) holds
true also for isotopes of an odd-Z element except that
in such cases D should be interpreted as

D(for odd Z) =2(j+1)c'+e.

In some cases two subshells j& and j2 are being filled
simultaneously: j& 6lls in with pairs and the odd nu-
cleon ills in j2. Such an effect, mentioned by Mayer
and Jensen, " is explained by big differences in pairing
energy for j& and j2. For example, in Sn we have for
the even isotopes pairs of neutrons in h~~~2 whereas for
the odd isotopes the odd neutron is in the d; state. "In
such a case we would have for the energies of an even
number of neutrons the expression

E(even) =nA+ ,'n(n 1)a-—
as before, and for the energies of an odd number (n+1)
of neutrons

E(odd) =nA+ ,'n(n 1)—a+B—+nc,

where 8 is the interaction of the odd nucleon with the
core plus its kinetic energy, and c is its interaction with
the even nucleons (for instance in the case of Sn, the
hiits nucleons). These formulas can still be written in
the form of the formula (10), provided D is interpreted
as 8—2, and c is equal to a.

»e K. Way, in Proceed»ngs of the Conference held at the hoax Planch
Institute Mains, edited by H. Hintenberger {Pergamon Press,
London, 1956).

"M. G. Mayer and J. H. D. Jensen, E/ementary Theory of
Nstclear Shell Str»tct»»re (John Wiley and Sons, Inc., ¹w York,
1955), p. 69.

with the following relation between the coeScients
)compare with Kq. (5)):
A =A'+PVs 2(j—+1)c', a= a'+ sib', D= 2(j+1)c'.

If we consider the isotopes of an odd-Z element we
can no longer replace V;„»by the simple expression (8),
this expression being correct only if e happens to be
even. However, if e is odd one knows' that the average
of V;„»(j„s'Jo,j„"J„,J) over all Possible J's (with fixed
J„andJ„)is again equal to pnVs, since the ground
state of such an odd-odd nucleus necessarily lies below
this average, we can write generally

It is experimentally known that for a given number
of odd neutrons and for states j& and j2 of the type
discussed above, the energies corresponding to the
configuration jis +' and jis j& (for example in Sn the
configuration hiits' +' and hiits2™d;) differ by a very
small amount compared to the binding energies we are
discussing. This would mean that the value of D,
according to its usual definition, would be close to
8—A and the value of c close to the value of a for

(n+1)A+-', n(n+1) a+D =nA+ ,'n(n —-1)a+B+nc.
This implies that

A+D=B, a=c.

The results of the calculations show that the value of
D obtained in such cases does not dier from the D's
obtained in ordinary cases, thus bringing out the con-
sistency between our assumptions and our results.

Instead of considering a set of isotopes, one could of
course consider a set of isotones (fixed n and varying Z).
Similar considerations will yield in these cases also an
expression of the type (10). This is true even if we add
the Coulomb correction, because this interaction can be
represented, too, by three parameters~:

PZ+,'Z(Z 1)a+-$,'Z—fb. —

Here P represents the Coulomb interaction with the
closed shells, u is the Coulomb interaction between Z
equivalent protons, and L-', Z$=-', Z or —,'(Z—1), which-
ever is integral. The last term represents the pairing
energy resulting from the fact that two protons have a
larger probability of being found close together if their
spins are oppositely directed. The Coulomb forces
between protons oppose this tendency (but, of course,
are too weak to prevent pairing). We can combine the
Coulomb equation with Kq. (10) and obtain again an
expression of the same form with a new meaning for the
coe%cients.

If we specify the interaction, the coefficients A, a,
and D can be calculated in terms of radial integrals of
the potentials' (the Slater integrals). However, in
order not to introduce special assumptions about the
form of the potentials involved we keep these coeffi-
cients as free parameters, and check the consistency of
experimental data with a three-term expression of the
type (10). This may perhaps give bet. ter agreement
than any conventional first order perturbation calcula-
tion, as contributions from higher order may enter.
We shall return to this point later.

To check the agreement of our assumptions with the
data, we take all available binding energies of ground
states where the number of one type of nucleons is
held fixed and the other allowed to change (a set of
isotopes or isotones). We then fit the data to the linear
combination (10), determining the coeKcients by a
least-squares fit.

»» B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
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TABLE I. Example of experimental and calculated
binding energies (B.E.) (in Mev).

Nucleus
B.E.

Exl . Calc. Nucleus
B.E.

Exp. Calc.

I124
I125
I126
I127
Il28
I129
I130
I131
I132
I133
I134
I136

53I relative
17.1
26.8
33.6
43.0
49.6
58.8
65.3
73.8
80.1
88.7
95.5

107.0

to I122

17.0
26.5
33.6
42.9
49.7
58.7
65.3
74.1
80.4
88.9
95.0

109.2

82Pb relative to Pb20

Pbbs 3.87 3.86
Pb2M 9.11 9.10

Pb211
Pb212
Pb214

6pSn
Snlls
Sn"'
Snll7
Sn"'
Sn'"
Sn120
Sn"'
Sn'~
Sn123
Sn124

Sn 125

12.89 12.90
18.08 18.09
26.98 26.98

relative
7.9

17.2
24.4
33.6
40.4
49.7
55.8
64.5
70.5
79.0
84.6

to Sn"4
7.5

17.2
24.4
33.7
40.5
49.5
55.9
64.5
70.6
78.9
84.6

' A. H. Wapstra, Physica 21) 385 {1955).
'4 J. R. Huizenga, Pbysica 21, 410 (1955).
'5 Nuclear Level Schemes, 2=40—2=92, compiled by Way,

King, McGinnis, and van Lieshout, U. S. Energy Commission
Report TID-5300 {U. S. Government Printing Of6ce, %'ashing-
ton, D. C., 1955).

The experimental values of the binding energies were
taken from several review articles. "" In order to
obtain the energy associated with the nucleons in the
unfilled shell, we subtracted from the binding energy of
every nucleus the binding energy of the nucleus in which
the un6lled shell is empty. The comparison with the
experimental data was done separately for neutron
configurations and proton configurations. Each of
these groups was then divided according to the shell
being 611ed, and for each of these subgroups a different
set of parameters was determined by the least-squares
Gt. We disregarded cases in which the experimental
material was scarce or where the experimental errors
were large.

The agreement is in many cases excellent; the root-
mean-square deviation is always less than 1% of the
width of the energy range considered. The rms devia-
tion is defined in the usual way as Lg,=r"h,si (1V—k) ji,
where the 6; are differences between the experimental
and calculated energies, X is the number of data
appearing in the least-squares fit, and k is the number
of parameters. This agreement actually means that the
rrns deviation is almost always within the experimental
errors.

We have thus demonstrated the success of a formula
which is based on the shell model. The shell model
allows for a change in the parameters whenever one
passes from one subshell to another; however, our
results show that the parameters do not change appreci-
ably, i.e., within the experimental errors they remain
the same. A change in the parameters enters only when

we pass from one major shell to the other, i.e., when

we pass the magic numbers: 50, 82, 126. Even such

TABr.z II. Energy parameters of the present model
(in Mev) for isotopes.

The binding energies of the isotopes of each element are calcu-
lated with respect to the isotope with lowest neutron number as
speci6ed in each group of elements. Thus the binding energies of
the Ge isotopes with 30=E'=40 are calculated with respect to
32Ge3Q whereas those of the Ge isotopes with 40 =N= 50 are
calculated with respect to»Ge4072.

30&%&40
"sNi
sgCU
30Zn
s1Ga
ssGe

40& %&50
ssGe
ss«s
s4Se
seBr
ssKr
syRb
ssSr

N& 50
ssSr
sg Y
40Zr
41Nb
42Mo

11.05
11.40
11.41
12.04
12.85

8.35
9.14
9.56

10.11
10.60
10.91
10.96

7.17
2.80
8.06
8.59
8.89

-0.42—0.55-0.43—0.43—0.43

—0.15—0.25—0.22—0.24—0.26-0.21—0.15

—0.24—0.36—0.23-0.28—0.29

—1.46—1.41-1.68
1.17—1.74

—1.84—1.16—1.46—0.98—1.67—0.90—1.57

—0.78—0.56—0.77-0.52—1.00

Rms deviation
in B.E.

Mev

0.21 0.35
0.30 0.56
0.13 0.21
0.15 0.22
0.32 0.63

0.12 0.38
0.11 0.26
0.20 0.26
0.18 0.22
0.15 0.21
0.14 0.29
0.22 0.56

0.18 0.87
0.14 0.51
0.15 0.40
0.29 0.74
0.10 0.24

N) 64
4sCd
4gln
epSn
e1Sb
e2Te
esr
e4Xe

7.84
8.31
8.69
9.00
9.11
9.27
9.72

—0.22—0.23—0.18—0.17—0.14-0.13—0.15

—1.34—1.34
1 ~ 15—1.21—0.92
1.37—1.16

~ ~ ~

0.18
0.23
0.42

~ ~ ~

0.18

~ 0 0

0.23
0.40
0.51

~ ~ ~

0.23

120&N& 126
s1Tl 8.44
ssPb 8.27

—0.42—0.28
—0.57—0.67

0.21 0.76
0.12 0.30

N& 126
sgPb 4.561 +0.008
ssBi 4.955 +0,044
s4Po 5.306+0.018
seAt 5.528 +0.066

—0.026 &0.004 —0.70 &0.02 0.018 0.08—0.092 &0.025 —0.368 &0,077 0.093 0.50—0.075+0,008 —0.817&0.045 0.058 0.16—0.049 &0.030 —0,562 &0.145 0.15 0.70

"submagic" numbers as 38 or 40 do not show up by
causing a marked change in the parameters.

In Table I are given some cases of calculated results,
which are of special interest. For the Pb isotopes with
$&126, the experimental errors are especially small,
and one can see in this table, that the rms deviation was
especially small too. Another example given in Table I
is iodine, which illustrates the good agreement so long
as one stays within a major shell despite the fact that
a number of diferent subshells are involved in these
nuclei; when one passes the major shell (see the example
of I"' in Table I) the agreement deteriorates.

In the case of the Sn isotopes the formula we used is
strictly valid only if all the neutrons fill successively
the h11~2 subshell and the odd nucleon goes into the d~
subshell. However, the experimental ground-state spins
show that for Sn"' and Sn"' the odd nucleon goes into
the s; state. This would suggest that our treatment is
not justified; however, one knows that the d~ level in
these nuclei lies fairly close to the ground state, " (0.3
Mev for Sn"' and 0.2 Mev for Sn"r), and since the rms
deviation is &0.2 Mev one sees that it does not make

any difference whether one compares the theory with
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the exact state to which it should be applied or to the
actual ground state. Of course in cases like the Sn iso-
topes, for every one of which the d; level is known, there
is no point in comparing the calculations with the
ground state instead of doing so with the actual d;
state to which they refer. However, in other cases, the
position of the level to which the calculation refers
may not be known exactly, but nevertheless it can be
assumed with great confidence that it lies close enough
to the ground state, and the binding energy of the
ground state can be used for comparison with the
theory so long as one is satisfied with an agreement to
within 200—300 kev.

In Table II are summarized the results concerning
the neutron configurations. As was mentioned before,
when for a fixed number of protons, the number of
neutrons changes within a shell, the parameters are left
practically unaffected. We have therefore grouped
together all isotopes of the same element which had
their neutrons in one of the following ranges: 28&'V
&40, 40&S &50, 50&xV&82, 82&E &126, .V&126,
and fitted a set of parameters for each such group. Thus,
for instance, the parameters of Pb PV& 126) appearing
in Table II were obtained by a least-squares fit of Eq.
(10) using the experimental binding energies quoted
in Table I.

The situation with regard to the proton configurations
is quite similar; the main differences are that the num-
ber of experimental data is smaller and the agreement
between the experimental binding energies and the
calculated ones is, on the whole, poorer. But the over-all
picture remains the same, and so are the conclusions
which may be drawn from the results; the best values
of the coefficients for the various shells and the rms
deviation in the B.E. are given in Table III.

Since the parameters which have been determined are
relatively simple functionals of the wave functions be-

TABLE III. Energy parameters of the present model
(jn Mev) for isotones.

The binding energies of the isotones, for each N, are calculated
with respect to the isotone with lowest proton number as specihed
in each group of elements.

longing to the diferent shells, it is interesting to see
whether they exhibit. any regularities. To do so we have
first to determine the standard errors on the param-
eters."we can see from this that, even in cases of small
experimental and theoretical errors, some of the pa-
rameters are not determined to a very high accuracy.
However, it is still possible to obtain a general picture.
In particular, the different values of A can be better
understood. A, by its definition, represents the inter-
action energy of, say, a neutron in the shell considered
with all the closed shells of both protons and neutrons,
as well as with the Z protons in the last shell which is
not necessarily filled. It is thus very reasonable to
assume that as a function of Z, A is given to a good
approximation by

A =Ar+AsZ.

a, D, and e are smaller corrections to the energy and
thus their dependence on Z can be neglected. With
these approximations, one is now led to an expression
for the binding energies of nuclei with both Z and n
variable, of the form

AE= n (A, +A sZ)+-,'ss(n 1)a-
+ t ssjD+3'(ss)X(Z) ' (ll)

where hE stands for the binding energy of the nucleus
(Zp+Z, A p+B) relative to that of (Zp+Z, Vp) (and
hence the asymmetry between Z and e).

Table IV contains the results of applying Eq. (11)
to nuclei with Z&82, &V&126. The good agreement
justifies our assumption on A.

It is also gratifying to observe that the values of
~
Dt

obtained for odd Z (Table II) are systematically lower
than those of even Z. Since we have taken the binding
energy to be positive, D, representing the amount by
which odd-A nuclei are less stable than even-A nuclei,
is negative, and e is positive. Since, as was shown,
D(for odd Z)=D(for even Z)+e, the observed sys-
tematics in the values of D are explained, at least
qualitatively.

TABLE IV. Example of experimental and calculated B.E. (in
Mev), using Eq. (11).(esPb relative to Pb"', sp Bi relative to Bi"',
84Po relative to Po'", 8gAt relative to At"'.)

Rms deviation in B.E.
Mev

Nucleus
B.E.

Exp. Calc. Nucleus Exp,
B.E.

Calc.
44&Z&50

N =60
N =61
N =62

Z) 50
N=72
N= 73
N =74

Z&82
%=130
N =131
N =132
N=133
N =134

8.44
8.84
8.83

7.94
8.10
8.25

6.01
6.06
6.45
6.85
7.12

—0.61—0.65—0.51

—0.61—0.52—0.44

—0.45—0.35—0.37
. —0.40—0.39

—1.68 0.19—0.99 0.33—1.31 0.19

—1.22 0.02—1.20 0.13
0 94 e ~ ~

—1.09 0.09—0.78 0.10—1.05 0.05—0.71 0.24—0.89 0.08

0.68
0.94
0.50

0.09
0.38

&0.1

0.46
0.52
0.22
0.96
0.42

Pb209
Pb210
Pb211
Pb212
Pb214

g j210

g j211

g j212

+1213
'gj214

3.87 3.88
9.11 9.20

12.89 12.97
18.08 18.16
16.98 16.90
4.67 4.41
9.78 9.82

14.16 14.11
19.34 19.40
23.47 23.58

~0=3.88

Po"'
Pp212
Pp213
Pp214
Po'"
Po"'
Pp218
At214
At215
At"'
At"'

—006 D=

4.55
10.57
14.89
20.80
24.89
30.69
40.39
15.98
21.89
26.48
32.46
1.48

4.50
10.43
14.82
20.64
24.91
30.61
40.36
15.97
21.88
26.68
32.4/

a =0.22

'e H. Cramhr, The E/ements of Probability Theory (John Wiley
agd Sons, Inc., New York, 1955), p. 239.
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We have shown above that a formula of the form
(10) or even (11), with properly chosen parameters,
can be made to 6t experimental data over a wide range
with a high accuracy. Similar results' ' were previously
obtained for the light elements with an even more
detailed expression which exhibited the dependence of
binding energies on isotopic spin.

Although these expressions were derived for the shell
model, their simplicity does not allow one to believe
that they are peculiar to the shell model alone. Also,

the fact that only relatively small changes in the pa-
rameters occur as long as one remains within a major
shell, may indicate that the expression obtained is a
result of the observed grouping of nucleons into shells,
rather than being due to the detailed structure of the
shell model. To investigate this point further, it is
necessary to see to what extent can the parameters be
derived from the shell-model wave functions and a
given two-body interaction. Further work along these
lines is being done here.
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~--p Elastic Scattering at 1.44 Bev*

M. CHRETIENf, J. LEITIIER$) N. P. SAMIos, M. SCHwARTz)$ AND J. STEINBERGER
3 evis Cyclotron Laboratories, I'hysics Department, ColumNu University, Irvington-on-Hudson, Sm York

(Received June 17, 1957)

An investigation of 7f- +p elastic scattering, made in a liquid propane bubble chamber, is reported.
Identification of events is made on the basis of kinematics. The problem of contamination by pion scattering
from protons bound in carbon is considered in some detail; it is shown that the latter requires a correction
of only 4&2.5% of the total number of events. The angular distribution is presented. It shows a large dif-
fraction peak at small angles and an approximately isotropic plateau over the backward hemisphere. The
forward peak is fitted to a black-sphere diffraction pattern with a radius of (1.08&0.06) X10 "cm. The total
elastic cross section is found to be 0.,=10.1~0.80 mb.

INTRODUCTION

E report here some results of the elastic scattering

~ ~

~of 1.3-Bev (kinetic energy) negative pions ob-
tained in an exposure of a propane bubble chamber,
previously analyzed to study strange particle pro-
duction. '

The study of s.p scattering in the Bev range has been
in progress for some years now, using the hydrogen
diffusion cloud chamber. ' 4 Our results are not quali-
tatively dif'ferent, but are more extensive. From an
experimental point of view, perhaps of greatest interest
is the demonstration made in some detail in this paper,
that the elastic hydrogen events may be differentiated
quite clearly from other events found in the chamber.
The pion beam is collimated, shielded, and magnetically
analyzed as shown in Fig. 1. The resulting spread in
beam energy deduced from trajectories plotted through
the collimation system, ' is &1'Po. The absolute value of
the pion beam momentum is 1.433&0.015 Bev/c. This

*This research was supported by the Atomic Energy Commis-
sion and the Ofhce of Naval Research.

$ Now at Brandeis University, Boston, Massachusetts
f Now at Duke University, Durham, North Carolina.
$ Now at Brookhaven National Laboratory, Upton, Long

Island, New York.' Budde, Chretien, Leitner, Samios, Schwartz, and Steinberger,
Phys. Rev. 103, 1827 (1956).' Eisberg, Fowler, Lea, Shephard, Shutt, Thorndike, and
Whittemore, Phys. Rev. 97, 797 (1955).' W. D. Walker and J. Crussard, Phys. Rev. 98, 1416 (1955).

4 W. D. Walker (to be published).
~ We would like to thank R, Sternheimt;r for calculating these

trajectories for gs,

is determined, as explained in (1), from a study of two
unstable-particle production events which were ob-
tained in the same exposure.

The liquid propane bubble chamber has previously
been described' '; it is 6-, in. in diameter and 4 in. in
depth. The density of expanded propane is 0.429
g/cm'; the partial density of hydrogen is 0.078 g/cms.
There is no magnetic field.

TAR

I

FIG. 1.Experimental setup showing ~-beam trajectory collimators,
bending magnet, and position of chamber.

' Leitner, Samios, Schwartz, and Steinberger, Nevis Cyclotron
Report No. R-105, Nevis No. 10 (unpublished).' J. Leitner, Nevis Cyclotron Report No. R-140, Nevis No. 28
(unpublished) .


