STATISTICAL TENSORS FOR ORIENTED NUCLEI

If the term in o? (or 1/7?) is considered, the necessary
condition that it shall not vanish is that a triangular
relation exist between v, L and L’ where L and L’ are
tensor indices appearing in (22). Thus |L—L'| <»
SL+L'. If we consider L=L'=1 (dipole coupling),
then the triangular condition is fulfilled for »=2 but
not for »>2. The cross terms L=1, L'’=2 and L=2,
L’'=1 (dipole-quadrupole cross terms) permit » <3 and
in alignment (or in « or v emission) contribute only to
the »=2 term in the angular distribution. The pure
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quadrupole term (L=L’'=2) permits » {4 and so may
contribute to all terms of practical interest.??
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2Tn terms of specific calculations of G; and Gz most of these
results were already familiar (see reference 5, for example). How-
ever, the general principles which are operative in producing these
results had not been explicitly stated.
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Cross sections are derived for the one-quantum annihilation of longitudinally-polarized positrons and for
the photoelectric effect with longitudinally-polarized photons. Simple expressions, quantitatively reliable
for light elements, are obtained by considering only K-shell electrons and describing the outgoing electron
(incoming positron) by plane waves. In both cases, the incoming and outgoing particles have predominantly
the same helicity if the free Dirac particle is relativistic.

In a note added in proof, these calculations are extended to the case of elliptically polarized radiation.
For linearly polarized photons, the results are compared with those obtained by including lowest-order
Coulomb corrections to the continuum wave function of the electron, as given by Sauter in 1931. The differ-
ence in the angular distribution is very marked, and indicates a sensitive dependence on the degree of screen-

ing of the Coulomb field.

INTRODUCTION

OSITRONS passing through matter emit radiation
in flight through the processes of bremsstrahlung,
two-quantum annihilation, and one-quantum annihila-
tion with tightly-bound electrons. If the positrons are
longitudinally polarized, the emitted photons will be as
well, and in all three cases the higher-energy photon (if
there is a choice) has predominantly the same helicity
as the incoming positron; the degree of circular po-
larization of the radiation approaches 1009, rapidly as
the positron becomes relativistic.

The polarization of bremsstrahlung and two-quantum
annihilation-radiation has been discussed previously!?;
we wish to present a simplified discussion of one-
quantum annihilation and the related process, the
photoelectric effect. In order to avoid such complica-
tions as those introduced by Coulomb wave functions,
we shall base the derivation on the following simplify-
ing assumptions:

(1) We assume that the outgoing electron (photo-

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1L. A. Page, Phys. Rev. 106, 394 (1957).

2 K. W. McVoy, Phys. Rev. 106, 828 (1957). Note that reference
2 should read “Heitler, second edition’’ rather than “Heitler,
third edition.”

effect) and incoming positron (annihilation) can be
described with sufficient accuracy by plane waves.

(2) Since the cross sections are by far the largest
for the most tightly bound electrons, we shall calculate
them only for K-shell electrons. Screening is neglected,
but otherwise we employ the correct relativistic wave
functions for the bound electrons, in order to treat the
spin effects properly.

In other words, we shall calculate the cross sections
only to lowest order; this is valid for high-energy par-
ticles striking low-Z atoms, and will be at least qualita-
tively correct for heavier elements. (“High energy”
merely means large compared to the K-shell binding
energy.) We consider first the more straightforward
photoelectric effect.

I. Photoelectric Effect

For the (free) outgoing electron, we define the spinors
which describe states of complete longitudinal polariza-
tion by (A=c=1)

((!' p+6m)u=Eu,
(o-p/p)ur=-+ur, (e-p/p)ur=—ur.

We call the electron described by #g a “right-
electron,” since its spin and momentum define a right-
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hand screw. For consistency, we shall use the same
convention for longitudinally (circularly) polarized
photons: we call a forward-spin photon a right-photon.
Although this is a left-circularly polarized photon
according to the optical convention, this should cause
no confusion, for the present discussion is restricted to
photon energies larger than (roughly) the electron
rest-mass, where the polarization effects become
significant.

If the usual representation of the Dirac matrices is
used, with 8 (and ¢,) diagonal, a convenient choice of
phases gives the spinors as
((E+m)(p+p.)
(E+m)p,
p(p+p.) ’

\pp"'

(—(E+m)p_
(E+m)(p+p.)
-
(—2(p+22)

The two bound-state wave functions, corresponding
to j,=1, are

ur(p)=[4pE(p+p:) (E+m) ]

ur(p)=[4pE(p+p.) (E+m) ] (2)

KIRK W. McVOY

where
U(r)=N(1+a)treleomr
V(r)=N1—a)trelgomr
a=1—ad)}, a=2/131,
N= (2am)*H[ 8T (142a) ]

and a nonessential normalization factor has again been
neglected.

In terms of these wave functions, we can take the
matrix element for the process to be

M= f dPre? O ¢*(x) (a- e¥)u(p)], 4)

with q=p—k.* We shall choose k in the Z direction
throughout, and take the polarization vector as, e.g.,
e=(e,+17e,)/V2 for right-photons as defined above.
The exact expressions for the matrix elements are
given in the appendix. However, since our approach
has already neglected o? corrections, we shall retain
only terms of lowest (first) order in «; where the ex-

—iu 0 pression (a?m?4-¢%) occurs, though, we shall not set
-9 —| U 3 o’m?=0, since small momentum transfers can be sig-
o Vieoss |7 % 0=\ V sinfe=¢ | ®) nificant, especially in the forward direction. The matrix
V sinfe® V cosf elements for states of complete polarization are then:
draiN
Magm by yora TN Etmtpp
[oE(E+m) T (mi+¢) (p+p.)} (5)
drai, _
My ®m gy @ TN L2mpt (Btm) (e — ko) s
[PEE+mT (@m+g)(p+p.)}
M= M= e Lo = (B ) (0= k) Y4 1)
[PE(E+m) ] (@) (p+p2)} 6)
dmailV (E4-m) (p_)?

Mpr®=—Mppg®*=—

CPE(E+m) T (a2m+¢) (p+ o)t

where the first subscript refers to photon and the second
to outgoing electron, and the superscript specifies the
initial electron state as ¢; or ¢s. (In our coordinate
system, k,=£k, but using the component notation is
necessary for the transformation to the annihilation
matrix element.) The simple phase relations between
matrix elements with opposite spins is a special case of
Lenard’s theorem.*

Remembering the random relative phase between ¢,

3To conform with the conventions of references 1 and 2, we
are employing the notation of the second edition of Tke Quantum
Theory of Radiation by W. Heitler. That is, the initial state is
written on the left, and &+ A* is the absor ption operator for photons.
Heitler’s third edition agrees with other modern field-theory texts

in reversing these conventions.
4 Andrew Lenard, Phys. Rev. 107, 1712 (1957).

and ¢p, which eliminates 1-2 cross terms in the cross
section, we may define

| Map|?=|Ma® >+ | M4p® |,
and we note from (5) and (6) that
|Mpr|*=|Mrz|?,  |Meo|?=|Mwr|, ()

ie., that there are only two rather than four distinct
cross sections, one in which photon and electron spins
are “like” and one in which they are “unlike.” Conse-
quently we shall restrict further discussion to RR (= LL)
and RL (=LR) cross sections.

The differential cross sections, including a factor 2
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for the two K electrons, are
dogr C
aQ N (1—5 cosh)*
X[Bs++ (B+—D,) cosf— D cos?d],

dory, C
i (1—0 cosh)*
X[B_— (B_—D_) cos— D_ cos¥ ],

where 6 is the angle between k and p, and the coeffi-
cients are given by

475 ¢ mb

B0 Bt m) Pt

b=2kp/ (P+E+om?) ~8,
By=p(40)*+p*(E+m),
Dy=2p(E+m)Asy, ©)

We note that the cross section for unlike spins is zero
for electrons emitted directly forward, and that for like
spins is zero for backward electrons. Since almost all
electrons are emitted forward if the photon energy is
larger than the electron’s rest-mass, the electron in this
case will have predominantly the same helicity as the
photon.
The total cross sections are

Ay=2mpk(E+m),

ro=¢€2/m.

‘ 2C
TRR=—"""
3(1— )8
XL(B+6")B1+4b(B.—Dy)— (1430) D, ], 10)
2C
RL=—"""""
3(1—p)

[(348)B_—4b(B_—D_)— (14+30)D_].

These cross sections depend on Z in two essential
ways. They contain o?#? in b, and the ionization poten-
tial 7 in the relation between % and p,

k=E—m-1.

In neither case is the Z dependence significant for
photon energies above a few hundred kev, so to indicate
roughly the trend of the polarization in a Z-independent
fashion, we have plotted in Fig. 1 the asymmetry ratio
(err—0rL)/(0RR+0RL), setting both am and I equal
to zero. Although the validity of the curve for small % is
questionable, it reliably predicts the rapid rise toward
1009, polarization as the outgoing electron becomes
relativistic.

PHENOMENA 367

10

08

06

rt
(Y

£ /

04

Q2

o

o 05 1.0

PHOTON ENERGY (Mev)

L5

F16. 1. Asymmetry ratio of the total cross sections for the
photoelectric effect from K-shell electrons.

II. One-Quantum Annihilation of Positrons

The matrix element for one-quantum annihilation is
related to that for the photoeffect by the substitution
law ; an outgoing electron becomes an incoming positron,
and the photon changes from incoming to outgoing.
An incoming positron can be described as an outgoing
negative-energy electron, and the wave function which
describes a right-positron of energy and momentum E
and pis just e **ur(—E, —p), from Eq. (2). Remem-
bering that the photon is now outgoing, we get for the
matrix element in this case

a4 = e L) Qu(—p, —B)) (1)
That for the photoeffect was

MP= f Preie0 [ (1) (- eDu(p,E)],  (4)

so M4 is evidently obtainable from M? by the
substitutions

k-')—k, pP——p, E— -—E:

and right-photon — left-photon (but right-electron —
right-positron). It is worth remarking that, in spite of
this formal substitution, the photon still travels along
the positive Z axis. Thus pz — — pz, so cosf — — cosf
in the numerator of Eq. (8), but since ¢* — ¢%, the de-
nominator remains unchanged.

Explicitly, the changes in the cross sections are as
follows:

b— b (but now k=E+m—1I)

A:l: — Fd: =2m1§:|:k(E~—m),
By — Gy =p(Fy)*+p(E—m)?,
D:l: g Hiz ——2172(E—m)Fd:.

The differential cross sections for the two K-shell elec-

(12)
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Fi1c. 2. Asymmetry ratio of the total cross sections for
one-quantum annihilation with K-shell electrons.

trons are
dorr  C(R*/1%)
aQ B (1—5 cosh)*
X[G_+(G_—H_) cosf— H_ cos?h),
dorr  C(RY/pY)
aQ - (1—5 cosh)*
X[G+— (Gy—H,) cosf— H cos®d],

13)

where the subscripts refer to photon and positron, and
their order is immaterial. The total cross sections are

2C(#/p)
RR=—""
31—y
X[@+0)G_+4b(G-—H-)— (143 H_], 14)
=2C(k2/172)
30—y

X[@+)G_—4b(G—Hy)— (1+36) H, ]

Again these expressions have the same Z dependence
as Eq. (10); it is insignificant for energies above a few
hundred kev for the same reason, and Fig. 2 gives the
asymmetry ratio for the annihilation-radiation from
polarized positrons, with a?m?=1I1=0. The asymptotic
form of this ratio, for high-energy positrons, is given by

(crr—0orL)/(crr+0oRL) =1—(11/6) (m/P)>.

In the same way as before, the photons have pre-
dominantly the same helicity as the positrons when the
positrons are relativistic.

If the positrons are themselves not completely polar-
ized, they will be described by a spinor which we may
write as

u=aug+beur, (15)
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with @ and b real. Instead of the simple matrix elements
given above, we would then get, e.g., for the emission
of right-photons,

M=dMRR+b6i¢MLR. (16)

If the beam of positrons is such that ¢ (which is actually
the azimuthal angle of the plane defined by p and {e))
is fixed, the cross section will contain a cross-term pro-
portional to e, but if ¢ is random, this cross-term
averages to zero. This latter situation describes the
positrons coming from B decay, if no other direction
(i.e., recoil momentum or spin direction of the parent
nucleus) is measured. Consequently for this case the

expression
M |= | Ma |8 Mzt (D)

gives the cross section for right-photons from positrons
in an arbitrary state of longitudinal polarization.
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APPENDIX
The exact matrix elements, defined by Eq. (4), can

be expressed as follows. Let am=I, and define the
functions

S(adg)= 47T (a+1) (1+-a)?
q(B+ ) @tDre
Xsin[ (14a) tan~(¢/7) ], (A1)
47T (a)(1—a)?
T(at,g)=— {alg cos[a tan™"(¢/1)]

FB+g) @Dl
—[*+(1+a)¢* ] sin[a tan~(¢/]) 1},
v=N/[pE(p+p:) (E+m) ],

where N is given in Eq. (3). The r integration then gives
the matrix elements as

Mpp® =M ®*=ivT (E+m) (p+p.)q-/q,

Mo =Mas®*=inp,Lp5+E+mTasg], O
Mp® =—Mpp®*=—iv(p+p.)
X[pS— (E+m)Tq./q], (A-3)
Mp®=—=Mpg®*=—0T(E+m)p_q_/q.
To first order in e,
S=[4VZra/ (2m*+¢%)*2m, (Ad)

T=[4V2ra/ (2m*+¢*)*]q.

Using these approximations, and remembering that
¢+=p+ in the coordinate system being used, we get the
approximate expressions given in Egs. (5) and (6).
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NOTE ADDED IN PROOF.—ELLIPTICALLY POLARIZED
RADIATION AND UNPOLARIZED ELECTRONS
(POSITRONS)

The above cross sections were calculated for circularly-polarized
photons. It was subsequently suggested® that there might be
considerable interest in the form they would take for elliptically
polarized photons. In the case of linearly polarized photons the
differential cross sections given by this “plane wave approxima-
tion” are found to differ quite markedly from the results given by
Sauter,® who included lowest order corrections from the con-
tinuum Coulomb function. Since the actual physical situation lies
somewhere between the extremes represented by these two ap-
proaches, it seemed worthwhile to include a brief description of
the ways in which they differ.

In order to generalize our expressions to the case of photons of
an arbitrary degree of elliptical polarization, we shall describe
the photon’s polarization by the three real and positive numbers
@R, a1, and §, by writing the polarization vector as

e=ape*Pertazer, (B-1)

with eg, = (e,==ie,)/VZ if the photon travels up the z axis. The
photon’s polarization state is described by only two independent
constants because of the normalization, ag?+aer2=1; in terms of
the polarization ellipse, they are (e¢z?—a1?), the eccentricity, and
3, its orientation angle about the propagation direction.

A. Photoelectric Effect

Since it is most convenient experimentally not to distinguish
between R and L electrons, we shall sum the cross section over
electron spin states. For circularly-polarized photons, as we saw

above,
do/dQ=dorr/dQ+dorL/d2=doLr/d2+dorL/dQ, (B-2)

and the result is independent of the sense of the photon’s polariza-
tion. In the general case, keeping only the lowest order in (Z/137),
the cross section for the two K-shell electrons is (setting k=E—m,

pa=7 sinf cosp)

dog_ o, 2°_ ﬁfi’) _ -
a0 e \E) 18 cosd)

X{2(1—2agrar)m(E+m) sin20+E(E—m)(1—p cos)
+8ararm(E-+m) sin® cos?(¢—38)}. (B-3)

Two interesting conclusions can be drawn from this expression.
- (1) As in the case of pure circular polarization, the cross section is
independent of the sense of polarization. From a measurement of
the symmetric product (erer) we can determine only |ar?—az?|,
i.e., the degree of circular polarization, but not its sign. (2) Even
the measurement of (arer) depends on the existence of the
azimuthal term. If the beam comes from an unpolarized source
so that §, the orientation of the polarization ellipse, is averaged
over, the (aray) terms disappear, and we are left with just
Eq. (B-2), which contains no information about the photon
polarization. If, however, 6 7s a constant of the beam (meaning
that a plane of polarization exists, in the limiting case of plane
polarization), a measurement of the azimuthal asymmetry of the
photoelectron intensity enables one to determine it. This could
conceivably be of some use in experiments involving polarized
v emitters (e.g., a B-decay daughter nucleus if the parent was
polarized), for it provides a method of measuring the degree of
polarization of the source.

For the special case ar=ar=1/V2, we get the cross section for
plane polarized photons:

dok__, Z° (m_5p) -
@ "\ g) 16 cos)
X{E(E—m)(1—8 cosb) +4m (E-+m) sin’f cos?(¢—38)}. (B-4)
51 am indebted to Professor V. L. Telegdi for a stimulating

discussion on this point.
6 F. Sauter, Ann. Physik 11, 454 (1931).
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Although Archibald” has apparently discussed Eq. (B-4) pre-
viously, it appears that the only other published calculation of the
relativistic photoeffect is that given by Sauter.® As Sommerfeld®
showed explicitly, Sauter’s calculation differs from our “plane
wave approximation” by assuming that the outgoing electron
sees a pure Coulomb field and including to first order in (Z/137)
the corresponding correction to its wave function. It should be
noted that this modifies our calculation by terms of the same order
in (Z/137) as we have already kept, so that, insofar as the electron
sees a pure Coulomb field, Sauter’s calculation provides the more
consistent expansion in (Z/137). Since the actual field seen how-
ever, is a screened Coulomb field, it is not clear offhand whether
the plane wave approximation or the Sauter approximation is the
more realistic one. Although they agree in the low-energy limit,
the differential cross sections are very different at high energies.
In particular, Sauter’s is zero at =0 and 6=, while the plane
wave approximation is not, and Sauter’s predicts that at high
energies the maximum photoelectron intensity is normal to the
photon polarization plane, while the plane wave approximation
predicts it to be 7z the polarization plane at all energies. These
differences have been noticed by other workers, and although
recent experiments seem to indicate that the electron intensity is
not zero in the forward and backward directions,® they give con-
flicting results on the azimuthal distribution.?®

The total cross section is

A, 28 (mp
T @\
Peculiarly enough, this agrees with Sauter in botk the low and

high-energy limits, but is larger at intermediate energies;!lits
maximum ratio to Sauter’s cross section is 1.5 at k=m.

) QEH-mE+4m?). (B-5)

B. One-Quantum Annihilation of Positrons

An exactly analogous argument gives the annihilation cross.
section for an unpolarized positron beam

dog

VA mb
o =r°2m(ETk’}) (1—8 cost)~*{ E(E+m) (1—p8 cosh)

—8ararm(E—m) sin% cos?(¢—0)

—2(1—2arar)m(E—m) sin®}. (B-6)
For linearly-polarized light, (¢—3) is the angle between the
polarization vector and the (pk) plane; because of the negative
coefficient of cos?(¢—34), the cross section is largest when the
polarization vector is normal to the (pk) plane. In both the high-
and low-energy limits the dominating term is E (E+m) (1—8 cosb),
so that there is no ¢ dependence in either limit.
The total cross section is

4r 275 (m

?rozm %) (3E2 bl mE +4m2) .

B-7)

OR=

Again this is in disagreement with Heitler’s!! nonrelativistic ex-
pression, and Bhabha and Hulme’s®? relativistic one, which was
based on Sauter’s calculation.

It is clear from these comparisons that screening may have a
very marked effect on these calculations, and would seem to be
worthy of a more detailed investigation.

7W. J. Archibald (unpublished) ; see reference in W. McMaster
and F. Hereford, Phys. Rev. 95, 723 (1954).

8 A. Sommerfeld, Atombau und Spekirallinien (Friedrich Vieweg
& Sohn, Braunschweig, 1939), Vol. II, p. 482.

¢ S. Hultberg and T. Novakov, Nuclear Phys. 4, 120 (1957), and
references contained therein.

10 W. McMaster and F. Hereford, Phys. Rev. 95, 723 (1954);
D. Brini et al., Nuovo cimento 1, 98 (1957).

' W, Heitler, Quantum Theory of Radiation (Oxford University
Press, New York, 1954), second edition, p. 273, Eq. (16).

2H. R. Hulme and H. J. Bhabha, Proc. Roy. Soc. (London)
146, 723 (1934).



