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Statistical Tensors for Oriented Nuclei
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Some properties of the statistical tensors, which govern the angular distribution of radiation emitted by
oriented nuclei, are discussed. The discussion is limited to the case of axial symmetry in the spin-Hamiltonian
which produces the orientation. An identification of the irreducible tensors, which define the statistical
tensors, with those familiar in spin coupling is made. This also permits the matrix elements of the former
tensors to be obtained quite easily. The temperature dependence of the statistical tensors for the case of
small spin coupling is discussed.

I. INTRODUCTION
''T is well known that the angular distribution of
~ - radiation emitted by oriented nuclei is governed by
a set of quantities which provide a description of the
orientation process in terms of tensor moments. ' These
quantities were called statistical tensors by Fano' who
introduced them. For the case of axial symmetry Fano's
definition of these statistical tensors becomes

G.=Q P(m)( —)&
—"C(jjv; m, —m); v&2j, (1)

where m is the projection quantum number for one of
the 2j+1 emitting substates, P(m) is the corresponding
population and C(jjv; m, —m) is a vector addition
coefficient. As emphasized by Fano, the factor

(—)
&' "C(jjv; m, —m)

=L(2 +1)/(2j+1)3'C(j j;m, 0) (2)

gives the m dependence of the diagonal elements of the
density matrix characterizing the emitting state. '

The role played by these statistical tensors G, in
the angular distribution of radiations emitted by
oriented nuclei may be seen from the explicit form of
the distribution function. It is sufhcient, for our
purposes, to consider emission of unpolarized, pure
radiation of angular momentum I in a transition j~j'.
Then the intensity in a directj. on making an angle 8
with the direction of orientation is, apart from a nor-
malization factor,

I(8)=Q„G„c„(L)W(jjLL; vj')P„(cosg), (3)

and for emission of gamma rays"

c.(L)=C(LLv; 1, —1). (3b)

In these parity-preserving transitions, v is an even

integer and its maximum value is the smaller of 2j and

2J. Of course, in these cases only the "effective align-
ment" of the emitting nucleus is instrumental in giving

rise to an anisotropy. That is, the 6„for v even depend
on deviations of (m")A, from the isotropic value. ' Thus,
a weak polarization of the emitting state, which

involves G~ (m)A„gives isotropy. On the other hand,
in the parity nonpreserving P transition from a polarized

nucleus, v is odd and an isotropy in the angular dis-

tribution of P particles is observed.
In the following we wish to discuss some of the

properties of the statistical tensors and, in particular,
a connection will be established between them and the
irreducible tensors characteristic of spin interactions. '
Finally, some comments on the temperature dependence

of these parameters will be made.

II. PROPERTIES OF THE STATISTICAL TENSORS

First of all, in the interest of accuracy, it should be
noted that the definition given in (1) is not complete

when the nuclear orientation arises from a coupling of

the nuclear spin to another spin system. For example,

when the nucleus is polarized or aligned by dipole

(hyperfine) coupling with the electron spins, Eq. (1)
should be replaced by4

G„= P p(m, m,)( )' C(jjv; m—, —m),where W is a Racah coefficient and the c,(L) are a set
of parameters characterizing the radiation. For ex-
ample, for emission of n particles4

c.(L)=C(LLv; 00), (3a)
' S. R. deGroot and H. A. Tolhoek, in Beta- and Gamma-Ray

Spectroscopy, edited by K. Siegbahn (North-Holland Publishing
Company, Amsterdam, 1955), Chap. 19, Part 3.

2 U. Fano, National Bureau of Standards Report No. 1214
(unpublished).' More generally, the nondiagonal elements involve

C(jvj'; m, m' —m)

and an element of the representation of the rotation group in
2v+1 dimensions. See, for example, Eq. (13) of L. C. Biedenharn
and M. E. Rose, Revs. Modern Phys. 25, 729 (1953).

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley and Sons, Inc. , New York, 1957), p. 176. See also reference
3.

where p(m, m, ) refers to the population of the combined

substate described by nuclear and electronic projection
quantum numbers, m and m, . The definition (4) is

~ Simon, Rose, and Jauch, Phys. Rev. 84, 1155 (1951).
We make no attempt at completeness. In addition to the

discussion given by Pano (reference 2), attention may be called
to certain properties discussed in reference 4. I'or instance,
suppose that p(m) =p0+q'(m), where p0 is independent of m and,
therefore, contributes only to G0 (or to the total intensity and
not to the anisotropy) and consider q(m) = —q( —m), as in the
polarization produced by capture of slow polarized neutrons.
Then the term g(m) contributes only if v is odd. Hence, gamma
rays emitted subsequent to the capture are isotropic but are
circularly polarized. See Biedenharn, Rose, and Arfken, Phys.
Rev. 83, 683 (1951).
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cogent even though the z components of nuclear and
electronic angular momenta are not separately diagonal
because (4) can be written in a form which explicitly
recognize the independence of G„on the representation.
We use the fact that the diagonal matrix elements of
any irreducible tensor of rank v is

(jml T„,
I jm) =C(pj; mo) (jll T„llj), (5)

where (jllT„ll j) is an (irrelevant) reduced matrix
element and the tensor component T,p is entirely in the
nuclear space, so that its matrix elements in the electron
space are diagonal. It follows then that we can write

Tr T„e exp( —II/kT)
G„=

Tr exp( —B/kT)
(6)

where H is the spin Hamiltonian responsible for the
orientation. ' ' The traces in. (6) are over the combined
nuclear-electron space and using the decoupled repre-
sentation, one sees that the definition (1) is restored if
we make the identification

p(m) =+(mm, l exp( —B/kT) l mm, )/

P (mm, lexp( —H/kT) lmm, ). (7)
mme

The problem to which we now turn our attention is the
identification of the tensors T„p.

We can enumerate specific cases. Usually J &4 is not
important in actual experimental cases. For u=o we
6nd immediately that

Of course, J'" can be replaced by j"(j+1)".For com-
pleteness we also give some results for odd v.

-3(2q —1)! —:

Tlp= 2 ~zr
- (2j+2)'-
7(2j—3)! —:

Tap=4 J,(5J,2—3J'+1).
— (2j+4)

One may verify quite easily that, in all cases given,
the T.o are components of irreducible tensors and (as a
consequence) have zero trace for v/0. For the smaller
values of v the connection of T„p with the multipole
operators in spin space is transparent. However, while
it is quite certain that T~p, for example, is connected
with the 2'-pole spin operator this is not apparent from
the form (10). It is now our purpose to establish the
connection between the T„p and the multipole operators
in a general way. At the same time this will serve to
facilitate the process giving the explicit form for the T„p.

We make use of the uniqueness property of tensors
of given rank in the space of a given spin. A simple way
to construct such tensors in general is by the method of
polarized spherical harmonics. Thus, 4

~. (J)=(J &)'x. (), (11)

where 'Jjr~(r) is a solid harmonic (also an irreducible
tensor of rank 1.) Kr,~(J) .is obviously an irreducible
tensor of rank I. and is entirely in the space of J. These
are the multipole operators referred to in the previous
paragraph. ' Any irreducible tensor of rank I.has matrix
elements

For v=2 we use
Too= (2j+1)—l.

(jml&~~l j'm') =C(j'L j m'~)t'-, ~+- (j ll&~ll j') (12)

3m' —j(j+1)
C(j2j; m0) =

Lj(j+1)(2j—1)(2j+3)3'
to obtain

180(2j—2)! '
T — (g 2 &J2)

— (2j+3)
The form of this result is to be expected since for a
given tensor rank the irreducible tensors in spin space
are unique, apart from a normalization factor. For v=4
we use the explicit form of C(jj4; m, —m) obtained
from Wigner's' result for the vector-addition coef-
ficients to obtain

(2j—4)
T4e= 210 J,'——(3J4—J')

(2j+5)!. 15

1—-(6J'—5) (J '—-'J') (10)
7

' A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).

E. P. Wigner, Grlppeetheorie (Friedrich Vieweg und Sohn,
Sraunschweig, 1931).See also Eq. (3.18) of reference 4.

and therefore any two tensors of this description, in a
given space, can diGer only by a factor, the ratio of the
reduced matrix elements. Therefore, we set

T,o =A „(j)v'„0(J), (13)

and only the constant A„(j) needs to be determined. To
do this it is sufficient to observe that 't!„e has a term
proportional to s" and the process of polarization indi-
cated in (11) reduces this to a term equal to v!J'.".
Therefore, A„ is fixed by comparing coefhcients of J,"
on the two sides of Eq. (13).

On the left-hand side of (13), we recognize that the
term in J," comes entirely from the term in

(—)' C(jjv; m, —m)

which is proportional to m". From Wigner's explicit
expression for the vector addition coefficient, we find

(—) ' "C(jjv; m, —m)

(2v+ 1)(2j—r )! '*

=(~')' . ~ U),
(2j+v+1)!

9 The role of these multipole operators in spin coupling has
been discussed in reference 4, Chap. VIII.
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where

s„(j)=[(j+ni)!(j—ns)!7-

(—) (j+v+m —0)l(j—m+o)!
xZ (14a)

(~)' [(v—) 7'

Therefore"

(jnz~v'p(J)
~
j'm)

v! 1 2v+1 (2j+v+1)! '
C(jvj;m0). (20)

2" 4ir 2j+1 (2j—v)!

The coeKcient of m" in S„(j) is seen to be"

.=p (~ )'[(v—~) ']'

= 2"(2v —1)!!/(v!)', (14b)

where (2v —1)!!—= (2v —1)(2v—3) . .5 3 1. Hence,

(—)' C(jjv;m, —m)

(2v+1) (2j—v)! ' 2"(2v —1)!!
[~ q" ], (15)

(2j+v+1)! v!

where the . ~ indicates terms with lower powers of m.
The coeKcient of J," on the right-hand side of (12)

is easily obtained. We have

The matrix elements of V',i'(J) are then obtained from
Eq. (12).

From the explicit results for T„p(v ~&4) given above,
it will be recognized that, apart from a scale factor, the
polarization process defined in (11) replaces z and r' in
'JJ„p by J, and J', respectively, only for v ~& 2. For v&~ 3,
additional terms arise from the noncommutation of the
components of J. For the nonaxially symmetric case,
a similar remark applies to V„M but attention must be
given to the noncommutation referred to. This is auto-
matically taken care of in the definition of Eq. (11).4

III. TEMPERATURE DEPENDENCE

We discuss the temperature dependence in the
(frequently) practical case that the coupling energy is
small compared to the thermal energy kT. Then, with
n= —1/kT, we expand (6) to terms of order n'.

2v+1 *
(2v —1)!!

0 ~ ~ ~ (16)

G„—fn Tr T„pH+-', n' Tr T„pHP}{Tr1) '. (21)

Here we consider v/0 only, since Go is trivial. Then

Tr T o=0
where the - indicates terms with lower powers of s.
Then

Also we assume that
Tr H=O.

2v+1 '*

(2v —1)!![J,"+
kr

V'„p(J) = (17)

and now the indicate terms with lower powers of J,.
The results (14) and (16) lead immediately to

2" 4ir(2g —v)!
T,p

———9„p(J).
i! (2j+v+1)!

(18)

(j m~ T,p~ j'm) =B '( )' C(jjv; m, m). ——

2v+1
C(jvj; m0).

-2j+1-
The sum in (14b) is readily evaluated by considering

f

�23'

(1+e'*)"(1+e '~) "de= 2p (v!)~S„'.

The integral is, of course, trivial.

(19)

This result combined with the definition (11) is the
desired relationship.

The result (18) can be used to obtain the matrix
elements of the operators 9"„p(J).From the equivalence
of (1) and (6), we can write

which means that the energy levels are measured from
their center of gravity.

Since H is rotationally invariant, it must have the
form of a sum of contracted tensors. That is,

H=Z( —) Tiiii(J)Ti. —pi(X)' L~~1 (22)
LM

where the Tiki(J) are certain irreducible tensors (rank
L) in the nuclear spin space and the Ti,is (X) are similar
tensors in some other space; for example, X may
describe the electron spin or an external field (electric
or magn. etic).

Considering the n (or 1/T) term of (21), we see that
a necessary condition that it shall not vanish is I= v.
This follows from the fact that the product of two
irreducible tensors of rank I and v contains irreducible
tensors of rank )i, where

~

v L~ ~&)!, &~ v+L. He—nce, for
v even, only the quadrupole coupling can contribute.
The dipole coupling, as is well known, will not make
any contribution to the 1/T term in an alignment. For
the case of polarization, however, where v=1 is pos-
sible, the dipole coupling will, in general, contribute to
the 1/T term.

"Reference 4, p. 147.
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If the term in n' (or 1/T') is considered, the necessary
condition that it shall not vanish is that a triangular
relation exist between v, L and L' where L, and L' are
tensor indices appearing in (22). Thus ~L L'—

~

&~v
&~L+L'. If we consider L=I'=1 (dipole coupling),
then the triangular condition is fulfilled for v=2 but
not for v& 2. The cross terms L= 1, L'= 2 and L= 2,
L'= 1 (dipole-quadrupole cross terms) permit v &~3 and
in alignment (or in tr or y emission) contribute only to
the v=2 term in the angular distribution. The pure

quadrupole term (L=L'=2) permits v ~&4 and so may
contribute to all terms of practical interest. "
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"In terms of specific calculations of GI and G2 most of these
results were already familiar (see reference 5, for example). How-
ever, the general principles which are operative in producing these
results had not been explicitly stated.
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Cross sections are derived for the one-quantum annihilation of longitudinally-polarized positrons and for
the photoelectric effect with longitudinally-polarized photons. Simple expressions, quantitatively reliable
for light elements, are obtained by considering only E'-shell electrons and describing the outgoing electron
(incoming positron) by plane waves. In both cases, the incoming and outgoing particles have predominantly
the same helicity if the free Dirac particle is relativistic.

In a note added in proof, these calculations are extended to the case of elliptically polarized radiation.
For linearly polarized photons, the results are compared with those obtained by including lowest-order
Coulomb corrections to the continuum wave function of the electron, as given by Sauter in 1931.The differ-
ence in the angular distribution is very marked, and indicates a sensitive dependence on the degree of screen-
ing of the Coulomb field.

INTRODUCTION

' QOSITRONS passing through matter emit radiation
in Bight through the processes of bremsstrahlung,

two-quantum annihilation, and one-quantum annihila-
tion with tightly-bound electrons. If the positrons are
longitudinally polarized, the emitted photons will be as
well, and in all three cases the higher-energy photon (if
there is a choice) has predominantly the same helicity
as the incoming positron; the degree of circular po-
larization of the radiation approaches 100% rapidly as
the positron becomes relativistic.

The polarization of bremsstrahlung and two-quantum
annihilation-radiation has been discussed previously' ';
we wish to present a simplified discussion of one-
quan'turn annihilation and the related process, the
photoelectric effect. In order to avoid such complica-
tions as those introduced by Coulomb wave functions,
we shall base the derivation on the following simplify-
ing assumptions:

(1) We assume that the outgoing electron (photo-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' L. A. Page, Phys. Rev. 106, 394 (1957).'K. W. McVoy, Phys. Rev. 106, 828 (1957l. Note thatreference
2 should read "Heitler, second edition" rather than "Heitler,
third edition. "

e8ect) and incoming positron (annihilation) can be
described with sufhcient accuracy by plane waves.

(2) Since the cross sections are by far the largest
for the most tightly bound electrons, we shall calculate
them only for K-shell electrons. Screening is neglected,
but otherwise we employ the correct relativistic wave
functions for the bound electrons, in order to treat the
spin effects properly.

In other words, we shall calculate the cross sections
only to lowest order; this is valid for high-energy par-
ticles striking low-Z atoms, and will be at least qualita-
tively correct for heavier elements. ("High energy"
merely means large compared to the K-shell binding
energy. ) We consider first the more straightforward
photoelectric e6ect.

I. Photoelectric Effect
For the (free) outgoing electron, we define the spinors

which describe states of complete longitudinal polariza-
tion by (k=c=1)

(n y+Pm)u=Eu,
(1)

(rr y/p)ug +urr, (rr y/p)ur, uz. —— ——

We call the electron described by Nz a "right-
electron, " since its spin and momentum define a right-


