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Oxygen-16 by the Method of Generator Coordinates*f
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Dilatational and collective quadrupole excitations of the nucleus 0"are treated by the method of gener-
ator coordinates described in the preceding paper. In this method, one starts from assumed two-body forces
and calculates the stiffness, inertia, and frequency of the collective motion. Numerical results are presented
for these quantities.

Experimental data relative to collective 0+ and 2+ states in 0"are summarized, and other theoretical
treatments of this problem are discussed. It is noted that collective models all imply too large a matrix
element for the decay of the 6.06-Mev (0+) state. One concludes that this state is not primarily a dilatational
excitation. Similar considerations apply to the 6.91-Mev (2+) state.

I. INTRODUCTION II. CALCULATION OF COLLECTIVE STATES IN 0"
The quadratic approximation' to the generator equa-

tion has been explicitly applied to dilatational and
quadrupole surface vibrations in 0". Ke chose a
Hamiltonian of the form

'HE low-lying levels of 0"have recently been the
subject of some detailed study, both experimental

and theoretical. This paper describes calculations of
dilatational and quadrupole surface oscillations in 0'
by means of the method of generator coordinates,
described in the preceding paper. ' To illustrate and test
this method by applying it to a specific case is the
primary motive for this investigation. In addition, we
sought to discover whether the 0+ and 2+ states at 6.06
and 6.91 Mev may be described in terms of collective
excitations of the doubly closed shells of 0".

The calculations and their results (Tables I and II)
indicate that the method of generator coordinates is
certainly a feasible way to obtain an explicit description
of collective motions. The calculated excitation energies
of the first excited collective (0+ and 2+) states seem
too high compared to the observed 6.06 and 6.91 Mev
to support the thesis that these observed states are
simple collective motions. The observed rate of pair
emission from the 6.06-Mev 0+ state supports this
judgment, as will be discussed in Sec. VI.

In Sec. II we outline the assumptions on which the
calculations are based and present the results. The cal-
culations themselves are detailed in Appendix A.
Section III summarizes some relevant experimental
data, and Sec. IV, the results of previous theoretical
work on 0".The results of the analyses reported here
are discussed in the context of the current experimental
and theoretical situations in Sec. V, and the implications
in Sec. VI.

8(xi, xg)

The nuclear two-body interactions (V;;) were assumed
to be of exchange type and to have a Gaussian de-
pendence upon the separation of the nucleons. The
strength of the two-body interaction was adjusted to
give a minimum in energy at a specified nuclear radius.

The nucleonic wave function was assumed to be a
Slater determinant of single-particle harmonic-oscillator
wave functions,

Ut(xi, n) Ug(xi, n)

(2)y(xr, ,xg,.n)=(A!) '

Ul(XA i n) ' ' ' UA (XA i n)

The coordinates x; represent the space, spin, and iso-
topic spin coordinates, (x~) = (x;,y;,e;,o...r,,) Thus, U;.
is a product of a three-dimensional oscillator function,
a spin function, and an isotopic-spin function. For 0",
one has four diferent space states, and each occurs with
four diGerent spin-isotopic-spin combinations.

The manner in which the nucleonic function depends
on the deformation coordinate, n, specifies the kind of
deformation being treated. For dilatational deforma-
tions, u defines simply an isotropic scale factor for the
extension of the nucleonic wave function:

*Based in part upon the thesis submitted by James J. Gri@n
to Princeton University in June, 1955 in partial full6lment of the
requirements for the degree of Ph.D. Preliminary reports of this
work appeared in Proceedings of the 1954 Glasgow Conference on
Suclear and M'eson Physics, edited by E. H. Bellamy and R. G.
Moorhouse (Pergamon Press, London and New York, 1955), p .
42 and 43; in J.A. Wheeler, Suppl. , Nuovo cimento 2, 908 (1955;
and in J. J. GriKn, Phys. Rev. 99, 648(A) (1955).

t Grateful acknowledgment is made of a Fulbright Fellowship
held in Copenhagen, 1955-1956.

$ Present address: Los Alamos Scientific Laboratory, Los
Alamos, New Mexico.' J. J. Griffin and J. A. Wheeler, preceding paper LPhys. Rev
108, 311 (1957)g.

U;(x;; n) = U;(x,e ",y;e,s,e,as;, r*;;0)
(dilatational). (3)

In the quadrupole mode, 0. de6nes an extension along
one axis combined with volume-preserving contractions
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TAnLE I. Nuclear two-body interactions. V;;= —l~p exp{—(r;;/R)'[w+mP +bI"+k&"j).

Vo(&o 1.5)
(Mev)

Vo(ro -&.2)
(Mev)

R
(10-» cm)

Rosenfeld
Simplified
Ferrell-Visscher'

—0.13
0.00
0.30

+0.93
+0.80

0.53

0.46
+0.20—0.03

—0.26
0.00
0.20

54.0 70.5
64.2 100.8
52.2 Mev at r0=1.28

1.75
1.75
1.732

& See reference S.

along the two perpendicular axes:

U;(x;;n)= U;(x e~i, y;e~l, s;e ~, o;,r, 0)
(quadrupole). (4)

%ith these quantities dered, one can calculate the
kernels of the generator equation (see Appendix A and
preceding paper'):

I(rs,8) = d*(xi, ,xg, n)

"simplified" mixture, used by Inglis' in similar calcu-
lations, and for dilatations, the empirically derived
mixture used by I'errell and Visscher. 4 ~ The calcula-
tions themselves are discussed in more detail in Ap-
pendix A.

Tables II and III summarize the results of these
calculations. It has been shown in the preceding paper'
that the solutions of the generator equation in this
approximation have eigenvalues which are uniformly
spaced at intervals

)($(xi, ',xg,' 8)dxi' dxg,
(~)

E„+i—E„=ls (X/OR) &=ho, (9)

E(rr, 8) = ~/*(x], ,xg, o)a(xi, ,xg)

)&Q(xi, . ,x~, 8)dxi dx~.

and that the ground state of collective motion has an
energy lower than the nucleonic state p (x,, ,xz, a= 0)
by an amount

The quadratic approximation is obtained when I(n,p)
is replaced by a Gaussian in O= (n 8), —

st X AQ

~(z,)=
5K 16s 2

(10)

I(rr,8)=exp( —sb'), (6)

The properties of dilatational and quadrupole states
have been calculated for five specific interactions (sum-
marized in Table I). The spread of the undeformed
nucleonic wave functions is obtained by equating the
root-mean-square displacement of the particles in the
undeformed state with that for a uniformly dense
sphere of the specified radius:

(r') = ssre'2&

=9/(4ko')

for 0" wave functions whose exponential dependence
is exp( —-', ks'r'). The calculations were done for rs ——1.5,
1.28, and 1.2)&10—"cm. The exchange mixtures used
and the strengths required to give a minimum in the
energy at these radii are exhibited in Table I. The
mixtures are the mell-known Rosenfeld' mixture, the

'L. Rosenfeld, VNcLeur Forces (Interscience Publishers, Inc. ,
New York, 1949},Part III, Sec, 11.33,

and the ratio, E/I, is replaced by the leading terms of
its expansion in powers of 8 and y= (n+8)/2,

1 r)'E(a, p)
E(n,8) =E(0,0)+—b'2%2 g~p

ro

1.5X1Q»
1.5X10 "
1.28X1Q»

1.20X 10-»
1.20X 10-»

Exchange
mixture

Rosenfeld
Simplied
Ferrell-

Visscher
Rosenfeld
Simplified

X Ao/SK AQ 6(Bo) 4saoo a

409 0.303 11.1 —1.3 1.96 Q.i 1
615 0.303 13.6 —0.8 1.60 0.09

608 0.416 15.9 —1.6 1.88 0.11
1090 0.474 22.7 —1.0 1.57 0.09
1629 0.474 27.8 —0.1 1.23 0.06

& In the dilatational mode, hm/BK is given exactly by the liquid-drop value

3 D. R. Inglis, Phys. Rev. 97, 701 I,'1955).
4 R. Ferrell and W. Visscher, Phys. Rev. 102, 450 (1956).
5 This interaction differs slightly from that used in reference 4.

Dr. Visscher was kind enough to point out that a slight error had
been made in deriving the parameters from the data cited therein,
and to supply the present corrected version of the interaction.

TAsI.E II. Results for dilatational vibrations. The quantities,
X, k'/sg, AQ, and 6(EO), all in Mev, have been calculated from
first principles from the nucleon-nucleon interactions of Table I,
by use of the method of generator coordinates. ' They represent,
respectively, the force constant, the inertial parameter, the
spacing between vibrational levels and the change in the system
energy made by the variational method of generator coordinates.
4sa0~ and u are dimensionless quantities which represent respec-
tively the proximity of the calculation to the limit at which the
variational wave function no longer lowers the energy (4saos=1),
and the spread of the ground-state collective wave function PEq.
(11)j. In order to make the calculation with the Ferrell-Visscher
interaction correspond precisely with the work of those authors,
that portion of the kinetic energy of the shell-model wave function
which corresponds to translation of the center of mass of the
system (in amount: ask'ko'/M) was subtracted from the total
nucleonic kinetic energy before the Hamiltonian kernel was
evaluated. This correction has only a slight effect on the vibra-
tional spacing, and was not included in the other calculations
summarized above. See reference 27.
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TAsI.E III. Quadrupole vibrations. The units are the same as
in Table II. "S-E"denotes the stiffness as based on the surface
term in the semiempirical mass formula. "Irrot. M" denotes the
inertia corresponding to irrotational fluid Bow.'

Exchange
mixture

1.5X 10 " Rosenfeld
1.5X 10 " Simpliied
1.5X10 " S-E Z;

Irrot. M
1.2X 10 " Rosenfeldb
1.2X 10 " Simplified"
1.2X10 " S-E E;

Irrot. M

aim/9R hQ h(Zo) 4sae~ a

546 0.445 15.6 —0.0 1.03 0.03
576 0.454 16.6 —0.3 1.02 0.02

72,3 0.606 6.6
996 0.735 26.5 X 0.98 X

1120 0.735 28.2 X 0.92 X

70.9 0.948 8.2

a See A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -
fys. Medd. 27, No. 16, 13 (1953).

b These rows are illustrative only, since the variational method does not
lower the energy in these cases; i.e., the lowest energy is obtained with no
collective motion of the system. The method of generator coordinates
therefore yields no energy lowering and an infinitely sharp collective
function: b, (Bo') =0; a =0.

This is a measure of the improvement of the combined
generator wave function over the nucleonic wave
function.

It has also been noted in the preceding paper, that
the variational procedure yields no energy lowering if
the quantity 4suo' is less than or equal to 1. This
quantity therefore indicates whether or not one is
close to the point where the method of generator coor-
dinates ceases to be useful.

Finally, the validity of the quadratic approximation
depends on the assumption that the Gaussian approxi-
mation to I(a,P) is valid and that the spread of the
collective wave function in n is small, that is, that the
higher order terms in Iq/I are actually negligible. A
measure of this spread is the quantity, u, which appears
in the ground state collective wave function,

It can be seen from Table II that u is suKciently small
in each case to insure that the approximation is valid,
at least as a first approximation. Figure 1 displays the
accuracy of the Gaussian approximation to the overlap
integral for the dilatational case. It can be seen that the
approximation is still good to within 10% when I(n,P)
has fallen to a value 0.04.

J. W. Bittner and R. D. MoGat, Phys. Rev. 96, 374 (1954).' W. F. Hornyak and R. Sherr, Phys. Rev. 100, 1409 (1955),
Wilkinson, Toppel, and Alburger, Phys. Rev. 101, 673 (1956).'F. Azjenberg and T, Lauritsen, Revs. Modern Phys. 27, 77

(1955}.

III. RELEVANT EXPERIMENTAL DATA

The energies, spins, and parities of many of the low-

lying states of 0" are well known from the work of
Bittner and MoGat, ' Hornyak and Sherr, Wilkinson,
Toppel, and Alburger, and the compilation of Azjen-
berg and Lauritsen. '

Figure 1 is a level diagram of the known 0+, 2+, and
4+ states in 0" (the collective states considered in this

paper are of this kind), and of some predictions of the
a-particle model for such states.

The transition rate from the 6.06-Mev 0+ state to
the ground state has been measured, " and found to
imply a matrix element

for this transition, with an error of less than 1O%.
0 0 is the ground state wave function and %~ the wave
function for the 6.06-Mev state; the sum extends over
all protons.

Also of potential interest in the present discussion are
the results of experiments on the reaction 0"(y,p)N"
in the region where the intermediate state of the 0"
nucleus has an excitation energy from 12.1 to 18.0
Mev"" and the inverse reaction, N"(py)0"" The
first two of these experiments seem to show a resonance
in the reaction cross section at an excitation energy of
about 14.7 Mev. From a theoretical study of angular
distribution of the photoprotons and from the inte-
grated cross section obtained in these experiments,
Wilkinson'4 at first proposed that this resonance might
be due to the first excited collective quadrupole state,
and gave arguments against the alternative interpre-
tation, that the resonance is due to a Quctuation in the
single-particle level density. In the report on his own
experimental study with Bloom, " which showed no
evidence of the corresponding resonance in the inverse
reaction, he withdraws this suggestion, and states that
some (unspecified) misinterpretation must have been
made in the previous experiment. He also cites the
(unpublished) study of the 0"(y,p)N's reaction by
Johanasson and Forkman, as a basis for believing the
14.7-Mev resonance to be spurious. The implications
of these conQicting results are therefore rather unclear
at this stage.

IV. PREVIOUS THEORETICAL ANALYSES OF O'6

General

Dennison" has calculated the excited states of a
system of four alpha particles coupled by harmonic-
oscillator forces, and has shown that by fitting the four
constants in this model to four of the low-lying states
in 0'6, one is able to account fairly well for the observed
spectrum of 0' up to about 13.5 Mev. Kameny" has
extended the work of Dennison to 16 Mev, and has
calculated some of the implications of this model for
transition probabilities. In both the identification

"Devons, Goldring, and Lindsay, Proc. Phys. Soc. (London}
A67, 134 (1954).

» B. M. Spicer, Phys. Rev. 99, 33 (1955}.
'2 Stephens, Mann, Patton, and Winhold, Phys. Rev. 9S, 839

(1955)."D. H. Wilkinson and S. D. Bloom, Phys. Rev. 105, 685 (1957)."D. H. Wilkinson, Phys. Rev. 99, 1347 (1955}.
'5 D. M. Dennison, Phys. Rev. 57, 454 (1940); 96, 378 (1954)"S.Kameny, Phys. Rev. 103, 358 (1956).
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l8--
I 5.70 (2+)
15.66 (0+)

I5 32 (2+}

I 3.54(0+)
l3.07(2+)
l2. I2 (0+)

I I.21(2+)—-- =

I0.23 (4+)-
9.84(2+)
9 42 (0+)~

7.0!(2+)--- =

6.06(0+)-

~I5.6
2+ RESONANCE, IN ~I4.7
0.'6'( h'~; p yN'yg
ur I3.24(4+) y/
ilil2.5(2+//i
Y/~ (2.43(0+)&ip
.~ ~ I I.5I(2+)~—

I l.25{0+)
'

10.36(4+)—--—
9.84(2+)—

6.9I(2+)
6.06(0+)

k —INDICATES LEVEL FIT TO EXPERIMENT

INDICATES RANGE OF DII.ATATIONAL (0+1
ENERGIES CALCULATED BY GENERATOR
COORDINATES.

INDICATES RANGE OF QUADRUPOLE (2+)
ENERGIES CALCULATED BY GENERATOR
COORDINATES,

5.99(0+)
~I536(0+)

l5.27(2+)=—I4.80(2+)~I4.55 (2+)
l4.25 (0+)
14.07(4+)
I 3.74 (0+Ii
I3.I 8 (2+,i

I2-97(2+
2+I

2+i
4+i

l2.50
l2. I2
I l.52
I l.43
I0.75
I 0.23
9.64 (0+)~7.66 (04 )= —7.I2 (2+)
6.9l (2+)~

-.06{0+)~

—0O0(0+)- ------- 0.00(0+)—————— —000{0+——
a-PARTICLE (a) 08SERVED a-PARTICLE (b)

FIG. 1. 0+, 2+, and 4+ levels in 0".The center column gives the observed levels (energy, spin and parity), the
resonance observed in 0"(y,p)N', and the range of dilatational and quadrupole energies calculated in this paper
(cross hatching). The first and third columns give the levels on two identification schemes in the a-particle model.
The levels it to the data to determine the constants in the a-particle model are indicated by an asterisk. The
n-particle levels are connected to the observed levels which presumably correspond to them by dotted lines. The
material for this 6gure was taken from references 6, 11, 12, 15, and 16.

schemes based on this alpha-particle model, the 0
state at 6.06 Mev is interpreted as a pure breathing
mode. The matrix element for the

0+(6.06 Mev) —+0+(0.00 Mev)

transition is given by Kameny: 14.7Xi0 cm'. The
energies of the 0+ and 2+ states based on the two pro-
posed identifications are shown in Fig. 2.

Perring and Skyrme" begin with an alpha-particle
model, but show that the wave functions for states of
four alpha particles may be used to obtain approximate
shell-model wave functions. In their treatment, they
obtain for the breathing mode of the 0, model a shell-
model wave function which is largely a mixture of
(1s) '2s and (ip) '2p configurations, but also includes
some admixture of two-particle excitations: (ip) s(id)',
(1p) '(1d)(2s), and (1p) '(2s)'. This wave function
yields a matrix element (as defined in Table IV) for the
transition 0+(6.06)—&0+(0.00) equal to 11)&10" cm'.
This work is also especially interesting as regards the
more general question of the relationships between the
shell model and the alpha-particle model.

' J.K. Perring and T. H. R. Skyrme, Proc. Phys. Soc. (London)
H69, 600 (1956).

0+ State

Visscher and Ferrell" point out that the generator
wave function obtained in the preceding paper' for the
6rst excited dilatational mode is approximately a shell
model wave function composed of these same two con-
figurations, (1s) '(2s) and (1p) '(2p). They obtain an
energy of 9.1 Mev for the irst excited dilatational state,
which is signi6cantly lower thari the energy obtained
from generator coordinates with identical two-body
interactions (see Table II). In a later paper" they
report that an energy of 6.65 Mev can be obtained for
a dilatational state in which one allows different ampli-
tudes of dilation for the s and p shells of 0".

It would seem at first as though these results were in
absolute conQict with the results reported here, since
the Ferrell-Visscher wave function is an approximation
to the generator wave function (variational), and would
therefore be expected at best to yield a higher excitation
energy. However, these authors do not actually calcu-
late energies all the way through from 6rst principles—that is, solely from assumed two-body forces and a
trial wave function. Instead, they determine the diag-
"R. A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956}."R.A. Ferrell and W. Visscher, Phys. Rev. 104, 475 (1956).
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I.O

0.5

XAC r

diRerent amplitudes of vibration in the two shells does
not seem to change this matrix element significantly.

SchiR" has calculated the matrix element for pair
emission from the 6.06-Mev state in 0's and the 7.68-
state in C's (which probably corresponds to the 0"
state) on two assumptions, (u) that the 7.68-Mev state
in C" is a 2-particle shell-model state, (p;) '(p;)' and
(b) on the assumption that the 6.06-Mev state in 0"
is a collective dilatational vibration (using both the
liquid-drop and n-particle model). In case (a) the
matrix element is too small, in case (b), too large.
Elliott" points out that inclusion of (2s) and (2p)
excitations to the extent of 50% would bring SchifPs
shell-model calculation into agreement with the experi-
mental value.

Redmond" has shown that a 0+ state formed from
shell-model configurations of the type (is) '(2s) gives
a matrix element which matches the experimental value
rather well. He gives no reason, however, for believing
that the 0+ state which is observed is an excitation only
of (is) nucleons, rather than (1p), or, more important,
a linear combination of (is) '(2s) and (1p) '(2p) exci-
tations. These latter possibilities are those which occur
in the wave functions used by Ferrell and Visscher and
Perring and Skyrme.

In Table IV, the various theoretical values for the
O.O 0.2 0.4 0.6 0.8

8 ~ (a-Pl
l.o l.2

FIG. 2. The exact overlap kernel for dilatational deformations
of the wave functions used in this paper, together with the ratio
of the Gaussian approximation and this exact kernel. It can be
seen that the Gaussian approximation is quite good, being in
error by only 10 J& when the exact kernel has dropped to 0.04 of
its maximum.

'0 This question has been discussed with Dr. Ferrell and Dr.
Visscher, and they concur in this statement of the situation.

onal matrix element for the excited state from what
they know empirically about energy levels in neighbor-
ing nuclei. Their calculation is therefore subject to the
uncertainty associated with such a substitution, and the
final excitation energy they obtain will be in error by
the same energy as the error in this substitution. "
Naturally, their method, containing a disposable
constant, may well yield results in better agreement
with observation than does an approach like the present
one, which is uniquely specified as soon as the two-body
forces have been chosen.

Their result that the energy of a dilatational state
can be lowered by allowing the two shells to dilate with

diRerent amplitudes is undoubtedly valid in a more

general context than any particular set of numerical

results, and indicates one of the complications one

might expect to occur in collective motions of this kind.
Ferrell and Visscher have also calculated the matrix

element for pair emission from the 6.06-Mev 0+ state,
and find that it is too large to agree with the observa-
tions $Eq. (12)j by about a factor of two. Allowance for

monopole matrix element are summarized together with
the experimental value Vote .added im proof. J. —
Touchard, Compt. rend. 244, 2499 (1957), also discusses
the 0+ state in terms of collective dilatational mode.

V. RESULTS OF THE ANALYSIS BY
GENERATOR COORDINATES

We now discuss briefly the results presented in
Tables II and III.It can be seen that the values obtained
for the stiffness, X, for the quadrupole vibrations are
significantly higher than those obtained from the semi-
empirical mass formula. This diRerence is qualitatively
consonant with the well-known fact that vibrations of
nuclei with closed shells are far stiffer than vibrations
of nuclei halfway between closed shells. This behavior
shows up, not only in theoretical analyses of shell eRects
on collective behavior, "but also in empirical surveys of
level regularities. "

The calculated inertial parameter, 5K, on the other
hand is quite close to the value implied by the assump-
tion of irrotational Row. This, again, is in qualitative
agreement with analyses of collective inertia, '4 for closed
shell nuclei.

The energy spacing, AQ, of the collective states seems

in every case too high to allow identification of the
6.06-Mev and 6.9j.-Mev states of 0" with modes of

s' L. Schiff, Phys. Rev. 98, 1281 (1955}.
~ J. P. Elliott, Phys. Rev. 101, 1212 (1956)."P.J. Redmond, Phys. Rev. 101, 751 (1956).
~ S. Moskowski, Phys. Rev. 103, 1328 (1956).
~~ Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern

Phys. 28, 432 (1956}.
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dilatational and quadrupole surface vibration. It also
seems unlikely that any reasonable choice for the two-
body interactions could alter this situation. However,
it should be pointed out that the strength of the two-
body interactions (for the exchange mixtures used here)
required to give a radius 8=1.2&(A&&(10 " cm are
unrealistically large. This circumstance may well make
the calculated rigidity of the nucleus also in these cases
unrealistically large. It cannot be excluded that this
eGect is large enough to account for (1) the very high-

energy spacings obtained for dilatational modes when
E=1.2)& 10 "A & cm and (2) the failure of the collective
qladrsspole vibrational wave function to lower the
ground-state energy of the system.

VI. SUMMARY OF THE EXPERIMENTAL AND
THEORETICAL SITUATION

Dilatational Modes

One would like an unequivocal answer to the question.
Is the state at 6.06 Mev a dilatational state) This
question can perhaps be discussed in two parts, referring
to the two relevant available data, (a) the transition
between it and the ground state and (b) its energy.

The transition matrix element is more amenable to
discussion in general terms since it involves simply the
wave functions one chooses to describe the states. In
this framework, the implications of the various theo-
retical analyses displayed in Table IV are clear: Shell-
model states involving two particles give too small a
value, while collective dilatational states, and shell
model states resembling them, give too large a value
for this matrix element. The obvious inference supports
Elliott's suggestion that a mixture of the two is what
is required to explain the experimental fact.

The energies obtained for the first excited dilatational
state (Table II) are not inconsistent with the hypothesis
that the 6.06-Mev state is, in fact, a mixture of shell-

model components corresponding to dilatational and
two-particle excitations: These energies are sufficiently

high to contradict the assumption that the collective
motion is slow compared to the motion of the individual
nucleons. Therefore, such states will not exist in pure
form, but will instead mix rather strongly with nearby
noncollective states. One can suppose that the state at
6.06 Mev is one of the resulting states.

Quadrupole Excitations

In the case of the 2+ state at 6.9i Mev the lifetime
has been measured. "The situation in this case seems
the same as that of the 0+ state: the lifetime is longer
than that implied by collective models, and shorter
than that obtained from two-particle excitations.

The energies obtained in this paper for quadrupole

2' C. Swann and F. Metzger (unpublished).

TAsr.z IV. Calculated values of the matrix element for the
0+(6.06 Mev)~0+(0.00 Mev) transition in 0". The numerical
values are somewhat affected by the specific assumptions involved
in each calculation but the qualitative increase in the matrix
element as one increases the dilatational component in the wave
function will not be changed by these details. Also, the quanti-
tative mixture required to fit the experiment in the state proposed
by Elliott will depend somewhat upon the particular linear com-
bination of the configurations which is used. Nonetheless, it is
clear that with enough admixture of two-particle excitations the
correct matrix element can certainly be obtained. The same kind
of situation prevails as regards the- calculation of Redmond,
whose result depends on the radius assumed for 0". A footnote
is used to indicate those assumptions which are capable of giving
agreement with the experimental matrix element, provided the
parameters of the wave functions are properly chosen, but which
do not give this agreement uniquely.

Reference (I)=(@0(Z„r&2 ( 1) Model of 0+ state

Devons et gl. (3.8+0.3)X10 "cm'
Schi8b 0.00

Schi6' 0.6X10 ~' cm'

Redmond~
Elliot'

Experimental value'
Experimental value'

Ferrell and
Visscher'

Perring and
Skyrmeg

Kameny'

Schi f1'b

GrifFin

9X10 "cm'

11X10 "cm'

14.7X10 '6 cm2
17X10—"cm'
19X10 "cm'

(17 to 22)X10 &6 cm2

Experimental
Pure two-excited-particle
con6gurations
Two-particle con6gura-
tions mixed by nucleon-
nucleon forces
(1s) '(2s) state

50% (1s) '(2s),
(1P) '(2P)
-5o% (»)-'(1d)',
(1P) '(2s)' (1P)s(1d)(2s)
Dilatational: linear com-
bination of (1s) '2s and
(1P) '(2P)
Shell-model wave func-
tion obtained from n-
model dilatational state
a-particle model
o.-particle model
Liquid-drop model
Generator coordinates

a See reference 10.
~ See reference 21,
e Schi6 actually calculates the matrix element for mixed configurations

only in C», but it is unlikely that the result would be qualitatively dif-
ferent for 016.

& See reference 23.
e See reference 22.
& See reference 18.

See reference 17.
~ See reference 16.
& Adjusted to agree with the experimental value of 3.8 &(10 26 cm~ by

suitable choice of constants in the wave function.

General

The reasonable inference regarding the question of
collective states in 0", seems to be that they probably
do not exist in pure form. It is still possible that they

excitations are sufBciently large to suggest that the 2+

state at 6.9j. Mev is not a state of pure surface vibration.
More generally, they imply that states of this kind will

probably not appear in pure form, since the collective
frequency is of the order of single-particle frequencies.
Thus, the quadrupole state, if it occurred, would be
mixed with other nearby 2+ states, and would behave
in the manner erst proposed by Wilkinson to explain
the observed results. Since this proposal has been
withdrawn on the basis of later data, it is difficult to
make any clear statement on experimental grounds.
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occur at significant admixtures into other states, which
may exhibit, as a result, some eRects most simply
understood in collective terms.

As regards collective vibrations in other light nuclei,
it is reasonable to believe that closed-shell nuclei are
probably the most unfavorable to the existence of well-
de6ned collective modes, since'4 these nuclei tend to be
stifkr against deformation and have a lower collective
inertia than their neighbors. Both eRects operate to
increase the energy of excited states, and therefore to
invalidate the hypothesis that the collective motion is
slow compared with the nucleonic motion. One would
expect that adding a pair, or a few pairs, of particles to
a closed shell nucleus will enhance the tendency towards
low-lying states of collective vibration.

The author wishes to express his gratitude to Pro-
fessor John Wheeler, who suggested this research, to
Professor Niels Bohr for the hospitality of Universitetets
Institut for Teoretisk Fysik, Copenhagen, and to the
Fulbright Commission for a fellowship in Denmark
during 1955—1956, and to acknowledge stimulating dis-

cussions with Professor Aage Bohr, Dr. Ben R. Mottel-
son, and Dr. William Visscher.

APPENDIX I. CALCULATION OF THE KERNELS
IN THE GENERATOR EQUATION

A. Overlap Kernel, I(n, Il)

The overlap kernel is given by the expression

This expression for I is approximately equal to the
Gaussian

I(n,P) —exp L
—sb'j. (17)

The accuracy of this approximation for the dilata-
tional case is illustrated in Fig. 2.

3. Hamiltonian Kernel, E(a,g)

The Hamiltonian kernel is given by the expression

f 1 &

E(n,a) = y'(x„x„a) P VP=- P V;;
2M ' 2~&&

A

X—Q y(xr, xg, P)dxr dxg, (18)
2 '~~ )r,, (,

which we write a,s the sum of three parts

E(n,P) =Er(n,P)+E~(a,P)+Eo(n,P) (19)

185'kp' e—'&

I(a,g) — (dilatations)
3f cosh'

corresponding to-the kinetic energy operator, nuclear
interaction, and Coulomb interaction portions, respec-
tively.

Direct integration of the kinetic part yields"

I(n,8)= y*(xr, ,xg, a)

Xy(xt, ,xg, P)dxtdxs dxg) (13)

Er(n, P) =.
e
—2V-

(quadrupole deformations).

6k'kp' 2e&

I(n,a)
M coshb/2 cosh'

(20)

where g(xr, . ,x~) is an antisymmetrized product of
one-particle oscillator states:

U, (x, ; n)= N'gr;, (k~;)II;,(k,x;)II,, (k. )s
XexpL —-'(k.'x'+ k 'y'+ k 's') $s (o,)v(r, ) (14)

Here i denotes a quintuplet of quantum numbers

(ir, is, is, o„r,), and k depends on a according to the
deformation considered:

The nuclear interaction part of the Hamiltonian

kernel involves evaluation of matrix elements of the
two-body interaction

fr~i )
V;;= —Vs exp —

~

—
~ (w+rrsP "+bP'+hP"). (21)

Eg)

k„=k =k, = kpe for dilatations,

k,=kg= kpe

k, =kpe '~

P, I'~, and I'" are the space, spin, and space and spin
exchange operators. After one has summed over all spin

fpr quadrupple defprmatipns (15) and isotopic-spin quantum numbers in the closed shells,
the sum of these matrix elements reduces to"

Direct integration yields the result

I(a,P) = (cosh') '.
The value of the constant is

s= 18 for dilatational deformations,

s= 9 for quadrupole deformations.

(16)

~' Dr. Visscher points out that one should subtract the kinetic
energy corresponding to the center-of-mass motion, —4kskss/M,
from the total kinetic energy. If this is done, the 18 is replaced by
17.25 and the 6 by 5.75 in these expressions. In the calculations
reported, this correction was made only for the case of the Ferrell-
Visscher forces. See caption, Table II.

~' This shows that results can depend on the exchange param-
eters only through combinations d =4m —m+2(b —h), e=4m —m

+2(h —b). The letters d and e refer to the direct and exchange
integrals of which these are the coeKcients. For the three mixtures
used in this paper the values of d and e are as follows: Rosenfeld,
0.01, 2.41; simpMed; —0.04, +2.8; Ferrell-Visscher, 0.21, 2.27.
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r~ t'&u) '
2 g U;*(x,; a) U;*(xp, a) —Vp exp —

I

—
I

Ez i

XP(4w m—+2b 2—h)

+ (4m —w+2h —2b)P»")

X U;(xp) n) U, (xg) a)dxjdxp. (22)

The final result for dilatations can be written mostly
simply in terms of the combination, X= (kp'Rp) e '& cosh':

—VpI(n, g) &

E~( n8) = (A+BR+CD ') (dilatations),
(2+&)'~'

(23)

where
A i——120(m+w),

B~ ——168w+48m+48 (b—h),

Ci= 66w j6m+24(b w—),
A p

=48 (m+w),
Bp

——44w+ 4m+ 16(b—h),

Bp——64w —16m+32 (b—h),

Cp =48w —12m+ 24(b h—),
A p= 18(w+m),
B4= 12 (w+m),

Cp=6(w+m).

C. Finally, the Coulomb kernel, X|.-, dered by

where

A = 186(w+m),

B=288w+48m+96 (b—h),

C= 120w+48(b —h).

1 8
Eo(a,P)= y*(x—g,

. xg., n)
2~

XP(xy, xg,.P)dxg. dxg (25)
I

was integrated exactly for dilatational deformations,
with the result

A i+B

%+CATV

E„(a,P) = —VpI(n, 8)pX&
(2+~)'(2+&)*'

A p+Bpjj+Bp&+Cp&p Ap+B4X+C,X')

(2+@,) (2+) )(2+g)'(2+X) &

(quadrupole) (24)

For quadrupole deformations, the result is slightly more
complicated. Using X and p, = (kpPE')e& cosh(-,'5) for
condensation, one obtains

83e'ko
Ee(n,P) =I(n,P) — exp( —y(coshb) &

2(2m)'
(dilatations). (26)

For the spheroidal deformations the expansion in 8 and

y was carried out before integration, and the resulting
coeKcients were evaluated approximately.

Once the complete kernel, E(a,P), is obtained the
quadratic approximation is made by expanding the
ratio, K(n,P)/I(a, P) to terms of order b' and y'. The
inertia, BR, and stiffness, X, are then determined from
the coeKcients of b' and y' as described in the preceding
paper. ' The results are given in Tables II and III.


