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For an A-particle system, a trial wave function is constructed
of the form

q (xi, ,xz) =J v (xi, ,xg; n)f(n) dn

The preliminary nucleonic wave function, p, solves the problem
in a "construction potential. " This potential depends upon a
"deformation parameter" or "generator coordinate, " n. The col-
lective wave function, f(n), or "generator function, " is folded into
p to produce a system wave function that depends only upon the
coordinates, x;, of the particles. In the integration, the deforma-
tion parameters dissolve away. They do not appear in the final
state function; they only generate it. No collective coordinates
ever come into use nor do such coordinates ever have to be defined.
In typical cases when the generator function contains one or
more nodes, it generates nodes in the system wave function + of
the kind that describe collective kinetic energy. The energy of the
system is extremized with respect to choice of the generator

function, f(n). No Hamiltonian ever appears except the A-particle
Hamiltonian. All nucleons are treated on the same basis whether
in or above closed shells. The appropriate variational calculation
leads to an integral equation or "generator wave equation" for
f(n) This .equation is solved in two limiting cases: the quadratic
approximation, and the 8-function approximation. An analysis is
made of the Peierls-Yoccoz procedure to calculate the effective-
mass parameter in cases where the forces acting in the system are
invariant with respect to translation or rotation. There is no
external machinery to drive the construction potential. The
effective inertia constant does not appear likely to agree in general
with that calculated for the essentially different problem of
particles in such a machine-driven potential, though the latter
value is presumably more nearly correct for physical applications.
The trial wave function in the method of generator coordinates is
designed for simplicity, not for precision. It is applied in the
following paper to the dilatational and shape oscillations of 0 6.

I. INTRODUCTION; THE METHOD OF GENERATOR
COORDINATES IN OUTLINE; SUMMARY

Variational Description of Collective Motion

OHR and Mottelson' and others have had success
in describing collective nuclear rotations and dc-'

~ ~

~

formations in analogy to molecular rotations and de-
formations (Table I). For many parts of their analysis,
it is unnecessary to go go back to the many-body
problem. However, when one wants to determine such
a quantity as the frequency of a collective vibration
starting from an assumed force between nucleons or to
have an explicit expression for the wave function of the
system in terms of coordinates alone, it is, of course,
necessary to return to 6rst principles. Much attention
has recently been given to this problem, which presents
considerable mathematical complexities. The present
paper seeks to assess a vuriatioeal —and therefore
approximate —method which has been put forward
previously' to describe collective motions.
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requirements for the degree of Ph. D.
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'A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
26, No. 14 (1952); A. Bohr and B. Mottelson, Kgl. Danske
Videnskab. Selskab, Mat-fys. Medd. 27, No. 16 (1953).

'The earliest proposal LD. L. Hill and J. A. Wheeler, Phys.
Rev. 89, 1106 (1953)j assumed a trial function that contained the
velocity potential, u(x),

fv(x, )expo( i(M/k)Z;N(xi)}f—(n)dn

The present simpler and physically more reasonable form was
proposed by J. A. Wheeler, Proceedings of the 1054 Glasgow C'on-

ference on Nuclear und meson Physics, edited by E. H. Be]lamy

3

We consider a system of A-particles with coordinates
xl, x2, . x~ with a Hamiltonian function,

II= (pis/2M)+ (pss/2M)

+ (p~'/2~)+P &(r;s). (&)

We construct the trial wave function of the variational
method in the following way: we replace the actual
potential felt by a particle by a fictitious potential,
characterized by a shape parameter, o.. We solve the
wave equation for individual particles moving in this
potential. Out of these individual particle wave func-
tions, we construct by formation of a determinant or
otherwise a many-particle wave function

the nucleonic wave flnction, 9i„(xi x~, cr) (2).
This wave function is completely and uniquely deter-
mined once one knows the constriction potential as a
function of n. The trial wave function for the many body
system is now taken to be given by the following
expression:

+(xi, x„)= q (x; cr)f(a)drr.

Here the quantity, o., may be given the name of gen-
erator coordirIate, because it serves to generate the wave
function of the system. It should be emphasized, how-

and R. G. Moorhouse (Pergamon Press, London and New York,
1955), pp. 42 and 43; J. A. Wheeler, Suppl. Nuovo cimento 2, 908
(1955) and J. J. Gritfin, Phys. Rev. 99, 648(A) (1955); and has
since been developed and explored in further detail by R. Peierls
and J. Yoccoz, Proc. Phys. Soc. (London) A70, 381 (1957) and
J. Yoccoz, Proc. Phys. Soc. (London) A70, 388 (1957).
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TABLE I. Analogy between the collective nucleus and a molecule, illustrating features that can be expected to come into evidence
in eey treatment of collective motions, whether via the product type of wave function or via the generator coordinate type of wave
function that is treated in this paper.

Property

Individual particle state occupied by

Slowly varying parameters that acct en-
ergy of individual particle states

Oscillation period in an example

Fundamental period of motion of most
energetic particle in same example

Vibrational potential energy described as
function of these one or more parameters
by a curve or surface

Vibrational or rotational kinetic energy

Exchange of energy between individual par-
ticle excitation and general vibration of
the system can take place at point of
contact between one potential surface
and an adjacent one, via a radiationless
transition

Molecule

Electron

Internuclear separations; r12, r13, etc.

8X10 '5 sec in H2

10 "sec

V(r12,r13, ~ ~ ) =sum of energies of indi-
vidual electron states plus electrostatic
interactions not otherwise taken into
account

Mainly localized in nuclei

Mechanism for excitation to be degraded
into vibrational energy; important in
polyatomic molecules, where the varia-
tion of two or more parameters ordi-
narily allows one to arrive at a point in
con6guration space where two successive
potential surfaces make a cusp-like
contact

Nucleon

Nucleus

Sum of energies of individual nucleon states
calculated for a deformed well plus other
interactions not otherwise taken into
account

Increment of kinetic energy of nucleons be-
cause well is moving and nodes of indi-
vidual particle wave functions are under-
going displacement

Mechanism for nucleonic motion to be de-
graded into collective motion, and con-
versely for energy of collective vibration
to be imparted to an individual nucleon
as for example in a nucleonic evaporation
process. To be distinguished from direct
energy exchanges between a pair of nu-
cleons —an independent mechanism for
capture and evaporation. Both contribute
to the absorption component of the com-
plex nuclear potential

Parameter n and other parameters that de-
scribe in more detail the configuration of
the nuclear well

~5X10~' sec in U

0.3)&10 "sec

ever, that this generator coordinate is not expressed or
expressible as a function of the coordinates, xi - x~.
The only quantities free in determining the trial func-
tion, 4, are (1) the nucleonic quantum number, e,
that characterizes the nucleonic state of the many
particle system in the construction potential, and (2)
the generator roaee fgrlctiors, f(n), a so far undetermined
function of n. We next determine this collective wave
function by the requirement that the expectatiort salle
of the energy of the A-particle system shall be an ex-
tremum with respect to choice of the generator wave
function, f(n):

special case of this more general form of wave function is
obtained by substituting for the correlation function,
S, the expression

S(x; n) =8(n —P(xr xg)). (6)

Here 6 is the Dirac delta function. The quantity
g(x, . x~) is a trial expression for the collective co-
ordinate of the state in question. For example, in the
case of translational collective motion, one would insert
for $, the expression

$= (1/A) (xr+xs+ +x&).

SZ=O; or SE/Sf(n)=O.

Renunciation of Any Explicit Use of a
Collective Coordinate

(4) Owing to the presence of the delta function, it is obvious
that the integration over the generator coordinate, 0.,
can be carried out at once with the result that the
combined wave function has the form

It would be easy to imagine a more general formula-
tion of the method of generator coordinates, in which
one took a variational function of the'form

XS(xr, ,xx., n)f(n)dn. (5)

Here the function S(x; n) is considered to be Axed once
and for all and to describe an extra correlation among
the particles not included in the nucleonic wave func-
tion, y(x; n). Our collective wave function is a special
case where the function S is set equal to 1, Another

This is the type of wave function used by Bohr and
Mottelson, Tolhoek, Tomonaga, and others' in de-
scribing the collective vibrations and other collective
motions. The advaritages and difBculties of this type of
wave function are well known. It is simple in principle
but —in the case of oscillations and rotations —difficult
to write out in detail. In particular, it is dificult to
find a simple explicit expression for the deformation co-

H. A. Tolhoek, Physica 21, 1 (1954); S. Tomonaga, Progr.
Theoret. Phys. Japan 13, 467 (1955); Marumori, Yukawa, and
Tanaka, Progr. Theoret. Phys. Japan 13, 442 (1955); Lipkin,
de Shalit, and Talmi, Nuovo cimento 2, 773 (1955); Marumori,
Progr. Theoret. Phys. Japan 14, 608(L) (1955}.
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'TABLE II. Comparison and contrast of the product type and generator type of wave functions for the description of collective motion.

Quantity

Wave function

Collective variables o.2, ng, ~

Number of coordinates

Complete Hamiltonian

Energy operator in reduced form for treat-
ment of collective motion

Deformation potential

Product type of
wave function

% (xt, XA) = rp(xy, ' ' ' XA, a('x) )f(a(x) )

Functions of the particle variables,
X1 '''Xg

A+s (extra coordinates)—s (constraints) =A

P1 + +—+& V(r;a)
pA

2m 2m i&&

A function of collective variables, o,2, ~ ~ n„
obtained explicitly or implicitly by ap-
propriate averaging procedures

A function, V(aq, ai, ) of the collective
variables in complete analogy to the
molecular vibration potential

Generator type of
wave function

e(xg, xg) =fq (xi, xg, a)f(a)da

Parameters which describe the shape of the
construction potential but which are in-
tegrated out and never appear in the Anal
trial wave function

Always A

—+ "+&v('&)
P1

2m

Integral wave equation for collective mo-

tion: f[E(a,p) EI(a,p)—7f(p) =0

In general a kernel, E(n2,p2, o.3,p3,' ~ ) or
integral operator; in certain cases reduc-
ible via the "8-function approximation"
to the form V(am, ai, . )

LE:(n») &.I(n») jf—(P)d(P) =o (9)

where E is the so-called energy kernel and the I is the
overlap kerrtel.

Exact Solution in the Quadratic Approximation

This generator muse equation can, in general, only be
solved by numerical methods. However, there are two
simple classes of kernel (Table III) that simplify the
equation. In the one case (Sec.III), it is a good approxi-

ordinate, $(xt, ,x~) in terms of the individual par-
. ticle coordinates. The method of generator coordinates
described in the present article is probably less accurate
than the method of the product wave function. Its
primary advantage is, therefore, only the one of con-
venience: one never deals with any expression for a
collective coordinate, $. One never sees anything in the
nature of an explicit collective coordinate. One sees
only the "generator coordinate, "

n, which is not a co-
ordinate at all but a parameter which describes the
shape of the "construction potential. " This difference
in approach between the method of the "product wave
function" and the present method of "generator co-
ordinates" (Table II) is the central topic of the
present paper.

Integral Wave Equation for Generator
Wave Function

The present investigation consists of four parts. In
Sec. II, we spell out the method of construction of the
over-all wave function in more detail and the conse-
quences of the variational principle for the choice of
function f(n). We show that the variational principle
leads to a simple integral equation for the determination
for the function f(n), an integral equation of the follow-

ing form,

. mation to replace the kernels by mathematical ex-
pressions of the form

(p+ny '
E'(n») = Eg+—L2S—4$ (P—n) j+ r gq;f)

~' 2' &2J

fe(n) =1Ve expL ——,'(n'/a') j; a'=
1

(13)
5KQ 4s

The uniform spacing of the energy levels and the quad-
ratic form of the ratio of kernels, E/I, leads us to iden-
tify the system in question with a harmonic oscillator.
The constant 5K may be regarded as the eGective mass
associated with the collective motion, and the quantity
0 is to be identihed with the eR'ective frequency of the
harmonic oscillator.

Differential Equation in 6-Function Approximation

In Sec. IV, we analyze the case where the integral
equation reduces to the Schrodinger diGerential equa-
tion. We call this case the 6 fgrictioN approxi-matiort:

I(n,p) —+ 8(n —p), (14)

)'t' (n+p )
&(n,P) ~ — ~"(n P)+ V

~
lf—'(n —P) (15)2' &2)

XI(n»), (10)

I(,p) =e PL
—~( —p)'3 (11)

t

We call this case the qladratic approximation For suc. h
quadratic kernels, the eigenvalue problem can be solved
exactly by a natural generalization of the familiar
harmonic oscillator wave functions. The energy eigen-
values are found to be given by the simple formula

E =Ii +(v+-')AQ —(91M'/16s) (v=0, 1, 2, ). (12)

The generator wave function for the ground state, ~=0,
has the form
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TABLE III. One-dimensional generator equation: relation of the solvable cases to the general case. The generator function, f(a),
of the generator coordinate, n, generates the collective wave function as indicated in Eq. (3).

energy kernel
overlap kernel

1(cx,P) =overlap kernel+

8,+$0RO~

A2+—$2s —4s2(P -a)2)
29K General function of P and a (even in p —a)

Simple Gauss function
expL —s(a —P)']

8-function limit
(s very large)
(Sec. IV)

General value of s

General function of P and a (even in p —a)

Integral equation goes over into

Solutions given by standard
harmonic oscillator functions

Solved in III via generalized
harmonic-oscillator functions.
Solutions make sense only
when s) MQ/4A. (See Kq.
(13))

Schrodinger differential equation,

d A2 dfSolve — —+LE—V(o.))f(n) =0.
dn 2m(a) dn

Solution demands general methods of
theory of integral equations or lattice
approximation leading to n algebraic
equations for n unknowns. Peierls'
approximation uses trial solution of
type f(0t) =e'~ and expands expecta-
tion value of energy in form

(E) ICp ,'EptpP+—-4)=—=
(I) Ip

——,'IpkP+ .
Discussion in Sec. V.

Issue of the Effective Inertial Parameter

In trying to describe collective motions, one has
several goals: (1) to construct in a simple way a wave
function, 4'„„(x~, ,x~) that (a) depends upon particle
coordinates alone but (b) brings into evidence collective
motion; (2) to separate off in a separate equation the
dynamics of the collective motion. One seeks a form for
this equation that will show up (a) the effective inertia
associated with the collective motion and (b) the re-
storing force, if any. By renouncing any explicit use of
a collective variable, P(x~, ,x~), the method of
generator coordinates achieves these goals by a method
that is direct and easy, but not at all simple to check
for accuracy. This issue of accuracy, at the present
stage of nuclear physics, focuses primarily on the
inertial parameter (Sec. V).

The method of generator coordinates is applied in
the following paper to treat the dilatational and de-
formational oscillations of 0' .

II. METHOD OF GENERATOR COORDINATES
AS A VARIATIONAL METHOD

Variational Method as a Means to Bring into
Evidence an Elusive Degree of Freedom;
Example of Resonating Group Structure

To bring into evidence the degree of freedom associ-
ated with collective motion without actually bringing
onto the scene any new coordinates and to do this by
a variational type of trial wave function is a problem
of a very general character, not limited to collective
vibrations of the nucleus. A similar problem has been
faced in quite another connection in the past: how to
describe the degree of freedom associated with the
approach and recession of two alpha particles. ' It is

' John A. Wheeler, Phys. Rev. 52, 1107 (1937);for other applica-
tions of the method of resonating group structure, see F. Brown,
Phys. Rev. 56, 1107 (1939); R. Buckingham and H. Massey,

not enough to introduce as coordinate the separation
of the centers of mass of two alpha particle groups,

X= (—x~—x3—X3 x4+ x5+ xp+ x7+ xs)/4, (1$)

because the groupings of neutrons and protons into
alpha particles ordinarily changes as a consequence of
the collision. To meet this difhculty, it was found useful
to introduce the concept of "resonating group struc-
ture. " The wave function for the system was written
as a superposition of terms corresponding to atl the
possible groupings of neutrons and protons into alpha
particles:

t' —1—2—3—4+5+6+7+8 i
E. )

Xc (1,2,3,4)c (5,6,7,8)

(—1—2—3-8+5+6+7+4)
+~i

4

Xc (1,2,3,8)4 (5,6,7,4)

~ ~ ~

Here the functions 4 represent the wave functions of
alpha particles at rest—assumed known —and the func-
tion F(X) represents a so far undetermined function of
the variable X. Thus the total wave function, 0, has
the character of a trial wane function It is the .key con-
cept to determine the "best" trial wave function of this
type —best in the sense of the variational principl-
by extremizing the expectation value of the energy of
the system with respect to the choice of F (X) . Of course,

Proc. Roy. Soc. (London) A179, 123 (1941);H. Hocker, Physik.
Z. 43, 236 (1942); H. Massey and R. Buckingham, Phys. Rev. 71,
558 (1947); also the summary in A. Rosenfeld, EucleI7r Forces
(Interscience Publishers, Inc. , New York, 1949).
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one cannot calculate this expectation value,

Pr ps
(8)=

~

+* + + +p V(r I,) %dr
2m 2m i&k

4 Wr, (18)

explicitly without knowledge of F(X). However, one
can perform all integrations other than those which
acct the separation coordinates themselves. In this

way, one expresses the energy in a form that depends
only on the functional form of F(X). Then the demand
that the energy be an extremum,

88=0, (19)

leads directly to an equation for the unknown function
F(X).This equation may be termed the "wave equation
for the alpha-particle scattering" in the relevant ap-
proximation. The existence of such an equation in one
coordinate, X, clearly by no means implies or assumes

that the same groupings emerge from the collision
which entered it. On the contrary, the asymptotic be-
havior of the function F(X) at large distances gives one
a means to define the scattering cross section regardless
of the amount of exchange that takes place at the time
of collision. The consistent following out of this line of
reasoning led directly to the first introduction of the
scattering matrix. 4

BrieRy stated, the variational method allows one to
sort out one or two variables from a larger number of
variables. The most convenient technique for this

purpose depends upon the nature of the problem. In the
alpha-particle case, the function to be varied depended

upon a separation because that separation was easily
defined. In the present case, it would be conceivable to
introduce an undetermined function of a suitably de-

fined collective coordinate, but unhandy to do so

because of the complications met in defining such co-

ordinates. This is the reason for adopting in the present
problem a parameter o., related, not directly to the
configuration of the particles themselves, but to the

shape of the effective potential in which they move.
From this concept follow naturally the features of the
method described here: (1) construction potential,

(2) deformation parameter or generator coordinate,

(3) nucleonic wave function, y(xq, ,xg, n), (4) gen-

erator wave function, f(a), and (5) the trial wave func-

tion formed by folding together 3 and 4.

Construction Potential and the Preliminary
Nucleonic Wave Function

The kind of construction potential to be used de-

pends upon how much of the normal nucleonic inter-

actions we suspend in the construction of the pre-

liminary nucleonic wave function, p(x~, . X~, n). It
is simplest to think at the start of the case where all

interactions are suspended and where they are replaced
by a potential well, V(x,y, sn) (Fig. 1). The shape of
this well or its extension shape or both are described
by one or more parameters, n. Let II,(x; n) denote the
single particle states in this potential well. Then we fill

up the lowest A states and construct the antisym-
metrized nucleonic wave function

(p(xy, ~ ~ ~ xg ', n) = (A!)
Qy(xg, G) Ny(xg, a)

(20)
Qg(xy, n) ' ' 'Ng($g, a)

Much attention has been given to the calculation of
such individual particle wave functions in a deformed
potential well. '

It is interesting to compare this scheme for con-
structing the preliminary nucleonic wave function with
the familiar procedure for building the electronic wave
function for a molecule out of molecular orbitals. The
intermolecular separations, r,~, r~„, fulfill in that
problem the function of the deformation coordinates, n,
in this problem in one sense: they can be regarded as
defining the principal features of the average field of
force. In the molecular case as in the nucleonic case,
one deals at this level of analysis only with an average
field of force. No account is taken of the circumstance
that different particles move in slightly different fields
of force. But it is to be recalled that final energy values
are not being calculated at this stage; one is only setting
up a trial wave function which is subsequently to be
used, without any thought as to where it came from, to
extremize the energy of the system.

~ Perturbation methods: James Rainwater, Phys. Rev. 79, 432
(1950);D. L. Hill and J.A. %belier, Phys. Rev. 89, 1102 (1953),
Figs. 14 through 23; S. Moszkowski, Phys. Rev. 99, 803 (1955);
S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
29, No. 16 (1955); electronic machine calculations: Nilsson;
K. Gottfried, thesis, Massachusetts Institute of Technology, 1955
(unpublished); Marvin Rich, Bull. Am. Phys. Soc. Ser. II, 1, 253
(1956); electronic calculations and statistical methods, D. L.
Hill and J. A. Wheeler (to be published).

BOTTOM OF
POTENTIAL WELL

Fro. 1. Schematic representation of construction potential,
V(x,y,z; e). The parameter a may describe a change in shape of
the potential well, such as a spheroidal deformation; or a change
in orientation, as in the case of a collective rotation; or a change in
extension as in a dilatational vibration; or there may be several
such parameters to describe simultaneously several types of
collective motion.
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Were the molecule endowed with an atmosphere of
positive electrons as well as negative electrons, one
would obviously use opposite effective fields of force
for the two kinds of particles in the preliminary "con-
struction potential" phase of the calculations. Similarly,
in the nucleonic problem, it is reasonable to think of
using different construction potentials for neutrons and
protons (1) in dealing with nuclei of high charge
number' or (2) in analyzing collective states of dis-
turbance in which the neutrons and protons vibrate as
groups relative to each other. ' Obviously, one will
count on using at least two generator coordinates in
describing the collective motions of such a system.

Despite the similarities between molecular vibrations
and the collective motions of the nucleus, there is one
evident difference in the mathematical machinery as
just outlined for the two cases. In the nuclear problem,
the method of generator coordinates assigns construc-
tion potentials which every particle can follow. In the
molecular case, one can define the equivalent of a
construction potential for the electrons, but for the
nuclei that make up the molecule, it is not convenient
to define such construction potentials. There is no
statistical character to the distribution of these heavy
centers of mass. They are treated on quite a different
footing in the analysis. In the simplest approximation,
all of the kinetic energy is assigned to them. s In con-
trast, the kinetic energy of collective nuclear oscilla-
tions arises from all the particles. ' These particles
experience an increase in kinetic energy due to the
changes in time of the effective potential well. This in-
crease over and above the normal kinetic energy for a
stationary configuration may be identified with the
kinetic energy of the collective motion. "

To suspend all of the nucleonic interactions and to
replace them in total by a construction potential for
the definition of the preliminary nucleonic wave func-
tion, &p(xi, ,x~, n), is, of course, a drastic procedure
to which there are more accurate but more complicated
alternatives: (I) Follow the devices of the shell model.
Include the effect of the bulk of the nucleonic forces in
the effective average potential, now to be our 0,-

dependent construction potential. Recognize, however,
that there remain residual interactions, that couple the
individual nucleon states. "Allow for the resultant con-

' M. H. Johnson and E. Teller, Phys. Rev. 93, 357(L) (1954);
W. J. Swiatecki, Phys. Rev. 98, 203 and 204 (1955).

'M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948);
J. H. D. Jensen and H. Steinwedel, Z. Naturforsch. Sa, 413
(1950);J. S. Levinger, Rev. mex; fis. 5, 177 (1956) and references
therein cited.

8 M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).' D. R. Inglis, Phys. Rev. 96, 1059 (1955) and 97, 701 (1955);
A. Bohr and B. R. Mottelson, -Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 30, No. 1 (1956); S. Moszkowski, Phys. Rev.
103, 1328 (1956); Lipkin, de Shalit, and Talmi, Phys. Rev. 103,
1773 (1956).

~~ D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953),
Figs. 7 and 8.

"M. G. Mayer and H. H. D. Jensen, Elementary Theory of
XNclear Shell Stricture (John Wiley and Sons, Inc. , New York,

Generation of New Nodes in the System
Wave Function by the Method of

Generator Coordinates

When we fold the nucleonic wave function, q(x, ,

,x~, n) into the generator wave function f(n) to
give the variational wave function, +(xi, ,x~), we
put into the final wave function as many new nodes
associated with collective motion as there are nodes in

X2

Xg

X
l

(b)

(c)

FIG. 2. Nodes in the original "nucleonic" wave function (a) and
generation of a new node by folding into a generator wave function,
f(n), which itself has one node (c). The indicated function, f(n),
gives positive weight to the nucleonic wave function when the
construction potential is dilated to the extension, L2=LO(1+0.),
as in diagram (b}.A negative weight is attached to the contracted
nucleonic wave function in (a). The superposition with opposite
signs of nucleonic wave functions such as those in (a) and (b)
gives a total system wave function, +(xI,x2), that has an extra
node, as indicated in (d). The present illustration is limited to the
case of two particles free to move in only one dimension. The
"nucleonic wave function" in (a) and (b) is y(xI, x2, u) = (2/L)
X Lain(3m. xi/L) sin(4xxs/L) —sin(4n xil/L) sin(3xx&/L) g.

1955); E. Feenberg, Shell Theory of the S'Ncleus (Princeton Uni-
versity Press, Princeton, 1955);A. M. Lane, Handblch der Physik
LSpringer-Verlag, Berlin (to be published) j.~ K. A. Brueckner, Phys. Rev. 100, 36 (1955) and earlier papers
therein cited; see also the analysis of Brueckner's method by
H. A. Bethe, Phys. Rev. 103, 1353 (1956).

figuration interaction in whatever detail seems reason-
able in constructing the nucleonic wave function,
y(xi, .x~, n) O.r (2), follow the formalism of Brueck-
ner" in allowing for these residual nucleonic interactions
and in building up an appropriate mathematical ex-
pression for the nucleonic state function —again in an
n-dependent construction potential that represents the
saturation part of the nucleonic interactions. We have
not attempted either of these ambitious programs. In-
stead the following paper uses a simple Slater deter-
minant of individual-particle wave functions to repre-
sent the nucleonic state function for the deformed
potential well.
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f(n). Figure 2 illustrates in a very much over-simplified
way the mechanism by which nodes are introduced
into the wave function in the 3n-dimensional configura-
tion space. These nodes are ordinarily associated, not
with individual-particle excitations, but with excita-
tions of the system as a whole.

Where the new nodes appear in the newly generated
wave function depends, of course, upon the choice of
construction potential and deformation parameters that
one has made in the 6rst place. Natural choices present
themselves for these quantities in the nuclear problem,
where it is fairly clear what to do to describe dilatations,
shape vibrations, and collective rotations. However,
one could imagine other conceivable applications of a
purported method for the analysis of collective motions
where it would not be at all obvious what to use for
the deformation parameters. In such problems, the
method of generator coordinates provides no magic
machinery that can be operated without the exercise
of judgment.

Use of the Variational Principle to Determine
the Generator Wave Function, f(n)

We shall now 6nd the trial function that extremizes
the energy,

Z=
~

e*(x)m (x)d3x, d3x.

4'*(x)% (x)d'xi d'x&, (21)

We substitute the expression for the trial wave function
in terms of the nucleonic wave function —presumed to
be known —and the still adjustable generator wave
function, f(a):

+~(x) = Jt y*(x; n) f*(n)dn,

e(x) = y(x; P)f(8)d8.

Then in expression (21) for the energy all quantities
dependent upon x are known, and the integrations over
these variables can be performed. Only integrations with
respect to n and p remain to be done:

I-'=
~

f*(n)K(n,P)f(P)«dp

f
f*( )I( 8)f(8)d dp (24)

Here the "overlap integral, "I, and the "energy kernel, "
E, are abbreviations for the expressions

I(a,p)
(

r 1
&p (Xr, ' xg', n)

K(n,p) l " II

Xp(xi, . ,xg, P)d'xi . d'xg, (25)

which are Hermitian in the sense
where the Hamiltonian contains particle coordinates
only: I*(,P)=I(P, ), K*(,P)=K(P, ). (26)

ps Pa+ + +2 l'(r*a).
28$ 2m

(22) The generator wave function has now to be chosen to
extremize the integral (24):

dna*(a)~ dP[K(a, P) EI(n,8)7f(P)d—8+comp. conj.

f*( )I(,p)f(p)d dp

(27)

The coefficients of 8f*(n) and 8f(n) must vanish indi-

vidually, because these are two linearly independent
variations. Thus one arrives at the generator wave

equation

be written as an integral equation by 'the substitutions

I(n,p) S(p n), —

[&(n,p) &~(n») 7f(8)dp= —o (28)

and its complex conjugate which need not be recorded.
The "wave equation" (28) is an integral equation,

whereas the Schrodinger equation is conventionally
written as a di6erential equation. . The difference is
largely formal. The usual Schrodinger equation can also

as pointed out long ago by Dirac."He emphasized that
the 5-function form of the potential energy part of the
kernel is appropriate only in the case where the forces
under consideration are velocity independent. In the
more general case where the forces depend upon ve-

"P.A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 3/6 (1930).
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locity, he showed that one is naturally led to a more
general kernel to represent the potential of the forces, "
Conversely, one can interpret (28) purely formally to
mean that our description of collective motions con-
tains a velocity-dependent effective potential.

(30)

from which the appropriate de6nition of orthogonality
is at once obvious.

Ke shall assume that the family of all proper func-
tions, f„(P), is complete in the sense that any continuous
function F(P) with finite generalized norm,

F*(n)1(n,a)Z(P) dndff =m& (31)

can be expressed as a linear combination of these
proper functions:

(32)

Then the coefFicients in the expansion are evidently

%ith this expansion, the formal machinery of the
method of generator coordinates is completed in its
most primitive form. Special ways of solving the wave
equation (28) are summarized in Table III and dis-
cussed in the following sections.

The ground-state eigenfunction, fs(n), in the ex-
amples that we have considered has qualitatively the
character of the lowest eigenfunction of the harmonic
oscillator problem. The spread, dx, in that familiar
problem of Schrodinger wave mechanics is determined
by the balance between kinetic and potential energy:

Properties of the Generator Wave Function, f(n)

Solutions of Eq. (28) which belong to two distinct
eigenvalues, E„and E„,satisfy a generalized condition
of orthogonality. To derive this relation, one (1) writes
down Eq. (28) for f„(P), (2) multiplies it on the left by
f,*(n), (3) integrates over n, (4) writes down the corre-
sponding expression with the roles of v and v' inter-
changed, takes its complex conjugate, and subtracts,
using the fact that I and E are Hermitian. One finds
the result

In the present problem of collective motions, it might
seem that the kinetic energy is all included already in
the basic nucleonic wave function, p(xi, . x~,' n) I.f
that view were correct, there should be no term in the
energy that Ascreases as the spread, ho., is decreased—
like the first term in (34). Then the minimum energy
would be achieved by making An=0. In other words,
the generator function, f(n), would become a 8 function
centered on some still undetermined value of e. Selecting
that value of n to minimize the energy would be nothing
but the old fashioned optimization of a trial wave
function, now the function &p(x, , x~, n), with respect
to one or more conventional variational parameters, o..
No trace would remain of any collective motion.

Actually not all of the kinetic energy is included in
the preliminary nucleonic wave function. Folding that
wave function into the generator wave function pro-
duces a final wave function, 0'(xi, . ,x~) with altered
kinetic energy. This alteration appears most clearly in
Fig. 2, where one sees the extra "collective node"
introduced into the final wave function by the folding
process. Even for a generator wave function, f(n), that
has no nodes, and that resembles a Gaussian function,
the kinetic energy increases as the spread, 60,, of the
Gaussian is decreased. However, this increase in kinetic
energy does not continue without limit as it does in the
familiar oscillator problem (Fig. 3). The wave function,
p(x&, . xz, n), has after all a perfectly finite kinetic
energy.

The switch from a trial wave function y(x„x~, n)
with fixed n to a trial function built by folding p and f
together can at most lower the collective kinetic energy
by the amount indicated in Fig. 3. Not even all that
improvement is realizable. The collective potential
energy increases approximately as (hn)' in the examples
that we have examined. Consequently, there is ordi-
narily an optimum value of the spread, hn, for minimiz-
ing the total energy.

K.E.

(34)

"See also J.A. Wheeler, Phys. Rev. 50, 643 (1936);K. Way and
J. A. Wheeler, Phys. Rev. 50, 675L (1936) and 51, 552 (1937);
L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 27,
281 (1941); and Blanchard, Avery, and Sachs, Phys. Rev. 78,
292L (1950) and 79, 220(A) (1950) for further considerations on
velocity-dependent forces.

FIG. 3. Kinetic energy associated with collective motion as a
function of the spread, Aa, of the ground state generator wave
function, f(n), (qualitative). The dashed curve gives the corre-
sponding kinetic energy for a real oscillator of the same inertial
constant, 5R. The expectation value of the collective kinetic
energy falls off quadratically for small (Aa)~, whereas the ex-
pectation value of the collective potential energy rises quad-
ratically, One cannot inde6nitely lower the total energy by in-
creasing Aa, however, because the kinetic energy stops falling off
as fast as quadratically.
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It can happen that the initial falloff of the kinetic
energy, also proportional to (ha)', is characterized by a
smaller proportionality constant than the corresponding
constant for the rise of the potential energy. In this
event, one has to set Ao. =0 to minimize the energy of
the system. One example of this kind showed itself in
the calculations reported, in the following paper on
spheroidal deformations of 0",in the special case where
large strength constants were assumed for the two-
body forces in the original Hamiltonian. No such diS.-
culty appeared for weaker strength constants or for
either choice of strength constants in the case of
dilatational oscillations. In those cases, the use of a
ground state generator wave function, f(n), of optimum
spread lowered the total energy of the system by
amounts of the order of 4 Mev.

At this point, there appears more clearly than ever
the distinction between the parameter, n, that measures
the deformation of the generator potential and a real
collective coordinate, $(xq, xg), that measures, for
example, the fractional dilatation of the particles in
the nucleus. A zero value for An by no means implies
a zero value for the spread, A$, in values of the collective
coordinate. That spread has a certain natural minimum
value, (A$);„, for the preliminary nucleonic wave
function, &p(x~, ,x~, n). To fold this function into a
generator wave function of spread, An, is, qualitatively
speaking, to increase the spread of g in the final-system

wave function to something roughly of the form

h$= $(h$) „.„'+const(hn)'5'.

as follows:

N*(a,g) dnI (n,p)dPN {p,q') =& (g g'—),

J N (n g)dgB(g P) =8(n 8)—

Then the old and new generator wave functions are
connected by the relations

l

f.(P) =
~

N(P, ~)g. (n)dn,

g (~) = B(~,P)f.(P)d8

The energy kernel, K(n») is transformed to the new
energy kernel,

L, (y,q') = N*(n,g)dnK(n, P)dpN(P, g'). (39)

The transformed generator wave equation takes the
form

(40)

If the optimum spread in hg is greater than (hg)
the increase is easily arranged by the method of genera-
tor coordinates. If the optimum spread is less than

(A$);„, one may go back to the construction of the
original nucleonic wave function and look for a means
to construct a wave function of smaller spread, (AP;„).
Or it is conceivable that the method of generator co-
ordinates is not adapted to analyzing collective motions
of the presumed symmetry. Or it may be more natural
to conclude that the system does not exhibit this par-
ticular type of collective motion.

This analysis of relative spreads in P and in n fur-
nishes some background for an alternative formalism
that we have not found worth pursuing. One can look
for a way to put the normalization integral in a more
conventional form. One can transform from the genera-
tor wave function, f(n), to a new function, g, of a new

variable, g, in such a way that

(the integration over q is to be carried out after the
integration over v~) and

B(q,P) = (const) exp) —2s(q —P)'5. (41)

Of course, a function g(g) that is already narrow cannot
be further narrowed. In mathematical terms, the in-
tegral (40) for f(p) will not converge unless the Fourier
transform of g(g) falls o6 fast enough at high wave
numbers. These features of narrowing and broadening
suggest that the new variable g just dehned may be
closely related to the true collective variable $.

In the particularly simple case (Sec. III) when the over-
lap kernel has the form

I(n,p) =exp[ —s(p —n)'5,

we evaluate the broadening and narrowing kernels
with the results

f
N(p, g) = (const) dq exp/(q'/8s)+iq(P q)5—

f.*( )~(»)f"(P)d dp= g.*(n)g"(~)d (36)

For this purpose, one dehnes a "broadening kernel, "
B{q,P), and its reciprocal, a "narrowing kernel, "N{8,g),

Inclusion of Nucleonic Excitations in Analysis

So far, we have considered collective states of motion
built upon the lowest nucleonic state of the system.
When both nucleonic and collective motions are ex-
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cited, it is natural to consider a trial wave function of
the form

(42)

Then straightforward application of the variational
principle leads to the conclusion that the coefficient of
every bf& &~(n) must vanish in the expression for bE
In this way, one arrives at a series of coupled wave
equations (m=0, 1, 2, ) for the generator wave
functions, f&"&(p):

Z FLIC-(,P) EI—-(,P)jf'"'(P)dP=o (43)

Here the overlap and energy kernels have the values

r„„(~,p) 1
I y„„~(x;n)

E„„(n,p) ~ H

X q „(x;p)d'» d'xz. (44)

' Reference 10, Figs. 24, 25, 33, and 34.

Obviously the system of equations (43) is dificult to
analyze. It is one simplification that the oB-diagonal' overlap kernels vanish when u =P. This circumstance
suggests the crude approximation of neglecting both
overlap aed Hamiltonian off-diagonal kernels altogether.
In this approximation, states of collective excitation
are built upon states of nucleonic excitation without any
allowance whatever for interchange of energy between
the two kinds of excitation. The system of equations
(43) then breaks apart into separate equations of the
type that we have already considered. The typical
solution may be designated by the symbol f„&"&(p).On
being folded into the nucleonic state p„(x;n) it gives a
system wave function +„„(x) with the expectation
value E, for the energy.

In an improved approximation, one can allow in
appropriate cases for the coupling between collective
and intrinsic excitations, particularly in situations
where radiationless transitions between neighboring
energy surfaces become important. "

Nothing said so far establishes any well-defined way
to go on improving indefinitely the degree of approxi-
mation to an accurate solution. The expansion (42) is
far from unique. Let n be fixed. Then the infinite series
of functions q „(x;n) is already a complete set in terms
of which the accurate solution can be expanded. The
same is true if o. is fixed at another value. There is,
therefore, a great arbitrariness in the choice of the
functions f&"&(n) in the expansion (42). The same con-
clusion can be stated in other terms. The set of func-
tions +„,„(x&, x~) is formally over comp/etc. To get a-
complete set of functions, it would seem sufhcient to
fix v once and for all and to assign all values to the set
of nucleonic quantum numbers, e. To let v take on the

values 0, j., is to overpopulate the basis state
functions many times over.

The expansion of the accurate state function +(x) in
terms of nucleonic wave functions &p„(x; n) for a axed
value, n=o.o, though possible in principle, is inappro-
priate in practice. Such an expansion demands that
one go to very high states of.excitation of the individual
nucleons. However, all semblance of collective motion
may be expected to disappear at extremely high excita-
tions. The deformation parameter, n, loses its useful-
ness. Folded wave functions of the type +„„(x&, xz)
of reasonable excitation will not be able to describe the
state of the system to any acceptable approximation.
The number of acceptable state functions available for
expansion purposes, far from being overcomplete, may
well not even be numerous enough for completeness.

This incompleteness of the quantum-mechanical de-
scription of collective motion is accepted here, not as
an unhappy consequence of a deficient mathematical
framework, but as a natural and expected consequence
of the very nature of collective motion. There is a
fundamental contrast between collective vibrations and
rotations on the one hand, and collective translation
on the other. In the case of translation, the law of
conservation of linear momentum guarantees the
existence of a useful center-of-mass coordinate. In the
case of rotation, there exists a law of conservation of
angular momentum, of course, but it provides no
integrable relation among the nucleonic coordinates.
Any coordinate for collective rotation derives its use-
fulness, not from the law of conservation of angular
momentum, but from the definability of the nuclear
surface. The same is true of typical deformation co-
ordinates. But this definability is approximate only. It
is washed out more and more at higher and higher
excitations. The collective coordinates are not in prin-
ciple separable. Consequently, one ought not to expect
a well-defined partition of the Hamiltonian into a
collective and an intrinsic part. One should be content
if the approximate character of the variational method
corresponds to the limit definability of the collective
motion. If these considerations make one modest in his
demands for a description of collective motions, then
the method of generator coordinates may satisfy part
of these demands.

III. QUADRATIC APPROXIMATION

Origin of the Quadratic or Gaussian
Approximation

We consider here the case where the overlap kernel
can be well approximated by a Gaussian function of
the form

1(n,p) = expL —s(p —n)'], (4S)

and where the ratio of kernels, X/I, is a simple quad-
ratic function of p and n as indicated in Eq. (10).

It is reasonable to expect a Gaussian behavior for
I(n,P) when (1) the number of particles is very large
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Sr(xi Q) ' 'Qi(XA n)

NA (Xr,er) .ZtA (XA,n)

and (2) the nucleonic wave function is well represented
by a Slater determinant of the form

q(xi, xA, n) = (46)

The coefficient of b' is easily seen to be positive definite;
the projection of one state on a different state always
has a modulus less than unity. One is accustomed to
expressing the product of many factors that are nearly
equal to one

Then the overlap integral has the form

I(n)p)=— y (xi~ xA', er)p(xr, ' xA', p)dxi' 'dxA

in the form

(1—ei) (1—es) . (1 e„), —

eXp( —el —es' ' ' e ),

(55)

(56)

SA.

(47)

where the typical one-particle matrix element has
received the abbreviation

which is known to give a very good approximation to
the same result. No way is evident to generalize the
argument from a product to a determinant. We have
not found an argument to prove that I should be well

represented by the formula

(n,P);a —— e;*(X,n) Na (X,P)dr. (4g)
I(~,P) =expL —(2 ~'—2 I

&'a I')~'j
i i&k

(57)

This matrix element has the value

(~,~);a=&;a, (49)

OR-diagonal elements have the form

(rx,P)'a= rr'a&+ (53)

where the numbers a,a(y) form an anti-Hermitian
matrix. Thus the overlap integral in lowest approxima-
tion takes the form"

(1—aiS')
—ag2*5

when the deformation parameters are the same for
both nucleonic states. %hen the two deformation
parameters diRer by the small amount

(50)

then diagonal elements have the form

(~,P) aa= 1 ria~'+— (51)

Here aa(p) is a slowly varying real positive function of
the mean deformation coordinate

v= ( +ti)i2. (52)

I=expI —s(P—er)'].

The Hamiltonian kernel,

(58)

pt px
E(erg) = q ~(xr, xA n) + +

2m 25$

+Q V(f 'a) &p(xi, ' ' ',xA; 8)dxl' ' 'dxA (59)

so long as every individual correction factor, u,4' and
a;~5, is small compared to one, no matter how large the
number of particles is made. However, numerical calcu-
lations for the case of 16 particles bound in a deformable
harmonic-oscillator potential (next article) show that
the Gaussian error function approximation fits the com-

puted values of I to 10 percent over a range of Ivalues
extending from 1.00 down to 0.03, and much better
over most of the range. Consequently, we conclude that
it is reasonable to approximate the overlap kernel by
a Gaussian error function of the difference, 8=P—n.

As for the dependence of I(tx,P) upon the mean de-

formation, y=xs(er+P), we know that I=i for 8=0,
whatever be the value of y. Consequently, we adopt the
simplest assumption and take I to be independent of y
for a/I values of the difference, 8=P—rx:

=1—(2 ~'—2 I
&'a I')&'+ " (54)

i i&%

"Reference 10 gives this analysis for the case of particles
bound in a one-dimensional square potential well. There the
diagonal coef6cients have the value a;=-,'+(j'm /6), and the off-
diagonal coeKcients are a;a= (—1)&+a2jk/( j'—k'). The coeKcient,
(Za; —Z;&a~a;at'}, of —S' in (54) has for large values of e
the approximate value (n/4)+(41/288)+(12) '(6ea+6a+1)
X in(3.562n), as seen in the following listing:

2 3 4 S

Coefficient of f accurate summation 6.6969 1S.3038 27.9304 44.8293—52 from f asymptotic formula 6.6964 1S.3034 27.9299 44.8287

See also M. G. Redlich and E. P. Wigner, Phys. Rev. 95, 122
(1954) for the analogous problem for a three-dimensional square
well.

is most easily analyzed in the case where the difference
8 =P n is zero. The—n it represents the expectation value
of the energy for a wave function endowed with one or
more' variational parameters, n. This energy must
exhibit a minimum if (1) the system is endowed with

stability with respect to deformations of the type in

question and (2) the nucleonic trial wave function is
well adapted to recognizing this stability. Let these.
conditions be satis6ed. Let the point of equilibrium be
placed at er=P=O by suitable definition of these de-

formation coordinates. Let the expectation value of
the energy be developed in a power series abo»', this
equilibrium. point through terms of thy second order in
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', (n-+p)=n=p; thus,

E(n,p) =E(y ——,'8, y+-,'8) s=p

=K(&,&) =K,+-,'NIQ'&'+ . . (60)

where

(2)
g, (u, t)=I —

I
1-

(ui

t —~6N&-

1+(2v)-'
(66)

Now 6x y=s (n+P) and change b=P n—F.or large
values of 5, the two deformationsn=y ——,'h and P=y+-', 8

di8er substantially. The value of the Hamiltonian
kernel will be dominated by the decreasing overlap of
the two nucleonic wave functions. To recognize this
effect, we consider the quotient K/I. The Hamiltonian
is Hermitian. Consequently, E, J and their quotient are
all even functions of b. Therefore, we can express the
ratio in a power series in 8 good through terms of the
third order in the form

E/I =constant+constant 8'+s-OR(Py'

k' (0+ni '
=E,+ L2s —4s'(8 —n)sj+-', 01iQ'I

I
. (61)'

25K

f 4y 1 1+-,'u
gs(u, n) =

I

—IEI+u'j
&u) 1+(2r) ' 1——,'u

1+(2o)-'

a —-'N-

1+stu
(67)

The curly brackets in Eq. (63) contain one constant
term and one term proportional to n', both of which
must vanish. These two conditions determine the un-
known energy and spread of the ground-state wave

The qualitative dependence of the ratio of kernels,
K/I, upon the deformation parameters is shown in
perspective in Fig. 4.

In the following paper, the Hamiltonian kernel is
computed explicitly for a simple treatment of collective
motions in 0". It is found there that the quadratic
form (61) provides a good representation of the ratio
of kernels over the range of deformations of interest.
Consequently, we believe that the quadratic approxi-
mation is useful for an appreciable range of problems.

Solution of the Generator Wave Equation
for Quadratic Kernels

In this quadratic approximation, the generator wave
equation,

LK(,8) E.I(,8)jf.(P-)d8=0, (62)

on division by tsAQ, takes the harmonic oscillator form-

)( f (A/ORQ)I 2s —4s'(8 —n')g+(ORQ/A)L-', (8+n)g'

—2(E„—E,)/hQ) expL —s(P —n)'jf„(P)dP=0. (63)

We can try a solution of the form

fo(p) =&o exp( —8'/2a') (64)

where a is a constant so far undetermined. Then the
integrals in (63) are easily computed explicitly, with
the result that the equation takes the form

(s/s)'$1+(2sa') 'j &

X Lgt (ORQ/As, sa') —2 (Es—E,)/AQ+ gs (ORQ/As, sas) sn'j
XexpI —sn'/(1+ 2sa') $ =0, (65)

FIG. 4. Qualitative dependence of the ratio of kernels, K(of,p)/
I(n,P), upon the deformation parameters. The expectation value
of the energy is governed by the balance of two eRects: the rise
in K in the b direction, physically to be understood as an increase
in potential energy; and the fall of K in the 8 direction, to be
interpreted as decrease of kinetic energy. When the generator
wave function has a Gaussian form, f(a) =exp( —a'/2a'), the
typical value of K is weighted by the factor f(0.)f(P); that is, by a
circularly symmetric weighting factor. The larger the radius of
this probability distribution, the higher would be the expectation
value of the energy if the positive curvature of K/I in the y direc-
tion exceeded the negative curvature of K/I in the 8 direction. In
this anomalous case, the energy of the system is obviously opti-
mized by a probability distribution of zero spread. In the normal
case, the fall oR in the 8 direction dominates, and the energy is
lowered by attributing a 6nite radius to the probability distribu-
tion. If one radius for the distribution lowers the energy, will not
a radius twice as great produce four times the lowering in the
energy. Yes, for small radii. No, for large radii. The quantity
being weighted is not K/I, but K itself, which contains the extra
factor I=exp( —sb~). This circumstance means that one cannot
go on lowering the kinetic energy indefinitely by an amount
proportional to the square of the spread in f This feature of the.
expectation value of the kinetic energy shows up in Fig. 3. It
implies that there exists a well-defined optimum spread in f(al
for maximum reduction in the energy of the system.
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function
Ep Eg——+,'AQ -(DR—Q'/16s),

a'= (A/NIQ) —(1/4s) .

where

(68)
= (s/gr) &I= (s/gr) & exp[ —s(P—a)'] (77)

E„„=(s/ g)r&It .
The zero-point energy above the constant energy E,

has the familiar value —,AQ in the limiting case, s ~ ~,
of an overlap kernel of very narrow spread. %hen the
spread has the maximum allowable value, and s
=5KQ/4A, then the zero-point energy above Eg is only
half as great: ~~AQ.

In a similar way, one verifies that

E,=Eg+ 2AQ —(oiIQ'/16s),

ft(P) =NP exp( —P'/2a'),
(69)

also satisfy the generator wave equation.
%ave functions for higher excited states can be ex-

pressed in the form

f.(P) =N.P.(P/a) e"p(—P'/2a'), (70)

In the limit s —+ ~,
Inorm~ &(P n)

and

Iknorm Ikconst+I~pot norm+I~kin normq

with

Ikconst norm EgI rnmo(a&P) E g(P n) j

(p+ )'
Epot norm= sORQ

~ ~
Inorm(n, p}&2)

(p+a'i~ -', 5lIQg
( ) S(P—n)

2 )

(79)

(80)

where the eth order polynomial P„(x), is gtot ordinarily
a Hermite polynomial. Instead, it is given by the re-
cursion formula

where
P„(x)= (x+Ad/dx)P, t(x),

2 = ——,
' —(mQ/8As).

(71)

(72)

a'~ A/mQ. (74)

Similarly, the recursion formula (71) for constructing
excited-state wave functions goes to the Hermite form

II.(x) = (x——',d/dx)II„, (x).

For a closer view of the transition to a differential

equation, write the integral equation in the form

[Knorm(a, P) —EI rm(as, Pno)]f (P)dP=s0, (76)

The corresponding energy values are

E„=E,+(.y-,')AQ —(mrQ'/16s).

Thus the harmonic oscillator is almost as easy to treat
within the scheme of the integral equation (9) as in the
familiar Schrodinger formalism.

IV. CORRESPONDENCE BETWEEN INTEGRAL EQUA-
TION AND SCHRODINGER DIFFERENTIAL EQUA-

TIONS; 8-FUNCTION APPROXIMATION

Quadratic Kernels in the Limit of Small Spread

When (1) the spread of the overlap kernel becomes
very small and (2) this kernel is adequately represented

by a 5 function, the integral equation (28) transforms
into the Schrodinger equation. Beginning with the case
of the harmonic oscillator, set equal to infinity the
quantity s that measures the reciprocal of the square
of the spread of the Gaussian error type of kernel, I.
Then the spread constant, a', for the ground-state wave
function itself (68) goes to the familiar Schrodinger
value

and

E„„„., (a,P) = (A'/2m) (s/x)-'

X [2s—4s'(P —n)'] exp[ —s (P—n)']
—(A'/29K) l't" (p—n). (83)

Evidently the integral equation goes over in this limit
to the familiar Schrodinger form

—(A'/20K) f"(n)+E,f(n)
+-',mQ'n'f (n) —E„f(n) =0, (84)

6-Function Limit for Kernels That
Are Not Quadratic

Ke have identified the 5-dependent part of the energy
kernel, E(n,p), with a kinetic-energy operator and the
y-dependent part with potential energy. This possi-
bility of this decomposition will not be expected to
disappear when the dependence of the potential energy
upon the mean deformation parameter, y=2(a+p), is

no longer quadratic. One will still expect to approximate
the 5 dependence of the kernel by a Dirac b" function
in the case where K is appreciable for only a small range
of b. This limiting situation will be expected when the
number of nucleons is exceedingly large. The coeKcient
of the 5" factor will, in general, be y-dependent. In
other words, the effective inertial constant of the col-
lective motion will depend upon the deformation. "The
generator wave equation in this limit will still go over
to a differential equation, but a differential equation
of the form

(d/dn) [A'/29K(n) ](df/dn)+ [E„—U (n)]f(a) =0. (85)

This approximation is appropriate when we neglect the
velocity dependence of the potential energy and of the
inertial parameters of the collective motion.

"S. Moszkowski, Phys. Rev. 103, 1328 (1956).
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V. DIFFICULTY OF THE EFFECTIVE MASS

Idealized Problem of Two Particles in One
Dimension as an Example; Harmonic

Oscillator Construction Potential

given by the formulas

I(n p)
)

t'
q (xi)x2) n)

IC(n, P) I

In the analysis of collective motions both in the
quadratic approximation (Sec. III) and in the 8-func-
tion approximation (Sec. IV), there came into evidence
in a very natural way an inertial parameter, BR. To
make a simple test of the calculated value of BR con-
sider a system composed of two particles free to move
only along the x-axis, interacting with a short range
attractive potential v(x2 —xi). We shall demand that
the wave function be antisymmetric in the coordinates
of the two particles.

In the usual method of analysis, one introduces the
usual center-of-mass coordinate X=2(xi+x2) and the
relative coordinate x=@2—x~, separates variables, and
finds a solution of the form

(k2/2M) (V12+V22)+v(xi x«)

q (xi,x2., P)dxidx2. (92)

The integrations over x& and x2 are most simply per-
formed by use of the center-of-mass and relative co-
ordinates, X and x, and the transformation V/+V/
= i2Vx'+2V, 2. The nucleonic wave function takes the
form

v.-&(M~/h) x
Xexp' —(Mcu/@) (X—n) 2—(M~/4A) x'j. (93)

+(xi,x2) =N(x) exp(ikX),

belonging to the energy

The integrations give for the overlap and energy

(86) kernels the expressions

E=«+A'k'/4M,

where N(x) satisfies the equation

(87) &(,P) *+lI C1—(M /I)(P- )'j
XexpL —(M~/25) (P—n)'j. (94)

—(A'/M)d'e/dx'+ v(x)I= «u. (88)

Ni(xi, n) «ii(xg, n)
q (xi,x2, n) =2-l

02(xi, n) N2 (x2., n)

=v='(Ma)/k) (xi—x2)

This separation of variables is not possible for most
collective motions of a nucleus. Consequently, let us
start over again and proceed by the method of generator
coordinates.

We first introduce the harmonic oscillator construc-
tion potential,

V(x,n) =-,'MoP (x—n)',

with a strength 2'Mco' to be adjusted later. The quantity
n is the generator coordinate. We determine the fa-
miliar single particle eigenfunctions in this potential
and from them we construct the antisymmetrized
nucleonic wave function

Here e* is the expectation value of the energy of rela-
tive motion, calculated for a harmonic-oscillator type
of wave function, with node where the particles come
together because of the assumed Fermi statistics:

(Mb)) ' f ( MMx )
x exp]—

&2I) ~ & 4a)
(h' ) d' ( M(ox')

+ v(x) *exp~ — [dx. (95)
EM) dx' ( 4k

The energy e* must be a minimum. This type of prob-
lem is familiar. No further details need be added.

The solution of the generator Eq. (28) for the col-
lective wave function, f(n), is greatly simplified in the
present problem by the circumstance that the kernels
I(n,p) and E(n,p) depend on the difference, p —n, but
not upon n and P individually. This invariance, by well-
known group theoretic arguments, leads one to expect
solutions corresponding to irreducible representations
of the translation group, of the form

Xexp( —(Mcu/25)L(xi —n)'+ (x,—n)'j). (90)
f(P) =exp(ikP), (96)

Next we introduce an as yet undetermined function as one also easily checks from (28). The energy has the
f(n) and construct the trial system wave function, value

(91)

The overlap kernel I and the energy kernel E are

E= Jt K(O,P) exp(ikP)dP Jt I(O,P) exp(ikP)dP
(97)

= «*+Ii'k'/4M
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( 2&)
&(x&,x3; n) =

I
—

I
cos

(L)
2~ (&—n)

+cos
L E L &

(7rx )
in

I

—
I

cos
E 2L I

3r (X—n)
(99)

L

where the kinetic energy of collective motion comes into
evidence in a straightforward and reasonable way.

This simple result follows from the form of the system
wave function. On folding f(n) = e'3 into y (x~,x3, n)
and omitting an irrelevant multiplicative factor,
(4r@/M40)' exp (—Ak'/4M'&), we ind that this system
wave function reduces to the product

4' (x&,x3) =const Xexp (—M40x'/4A) exp (ikX)

of a well-determined internal wave function and a
factor that describes motion of the center of mass.

Two-Particle Problem with a Square Well
Construction Potential

No such acceptable result will emerge when we use a
nonharmonic construction potential to define the pre-
liminary nucleonic wave function, as was already
pointed out by Peierls and Yoccoz.' To bring out ex-
plicitly the difference we consider a square well . The
individual particle wave functions will have the form

ui(X; n) = (2/L)'*COSL4r(X—n)/L],
(98)

u3(X; n) = (2/L)-*' SinL2m. (X—n)/L]
between the limits x=n —3' L and x=n+ 3'L, and will
vanish outside. The resulting antisymmetrized nu-
cleonic wave function can be expressed in center-of-
mass and relative coordinates in the form

Thus, for example,

D4 ——4(K' —1) 3(»3—9) '(5»' —82» +365»31288);

and for~=0,
4' (k) = (SAN'/5ML')

compared with the correct eigenvalue, h33r3/ML', for
the lowest state of internal motion. The reason for this
unexpected result is simple. The system wave function,
+(x&,x3) formed by folding together q (x&,x3, n) (Eq.
99) and f(n) =exp (ikn) still factors into two parts,

4(x& &x3) = —4'(x3 &x,) = (normalization factor)
)(expr ik (3x&+3x3)](2(K' 2»—3)—' sin[3 (K—2)3t—-', »4r]

—2 (K'+ 2» —3) ' sin L-', (K+2)q ——,
' »4r]

+ (K'+4»+3) ' sinL3 (K+4)4t —33»s.]
—(K' 4»+—3) ' sinL-,' (K—4)g ——',Km.]}, (101)

where q = 4r
I
x3—x~ I /L; but the erst factor that de-

scribes the internal motion is now dependent upon k.
Therefore, it is reasonable that the internal energy
should also depend upon k.

No such k dependence of the internal energy appeared
in the case of the harmonic-oscillator construction po-
tential, because there the internal wave function was
independent of k. This independence came about be-
cause the nucleonic wave function in that case factored
into a term dependent upon X—n alone and a term
dependent upon x alone. No such factorization is pos-
sible in the case of the nucleonic wave function (99).
As a consequence, the rate of oscillation of the first
factor in (101) increases with increasing k.

Two Contributions to the

Effective

Mass
The new kernels I(n,P) and E(n,P) still depend only

on the difference, P—n. Therefore, group theory again
says that the generator wave function f(p) =exp (ikp)
solves the generator wave equation. The energy has
as before the form (97), with one part representing
internal energy and the other part representing kinetic
energy of motion of the center of mass. However, this
internal energy is now dependent upon the wave number, k:

So much for the origin and nature of the k-dependence
of the internal energy, ~*; now for its consequences.
Expanding e* in a power series in k through terms of
the second order, we can write the expectation value of
the total energy of the system following Peierls and
Yoccoz, in the form

8= e*(k)+h3k3/4M
= (ee*+0+-',43*k'+ )+A'k'/4M4rEg+E3 sin»4r

e*(k) = (h'7r'/4ML3)
m D,+D3 sinnr

(102)
(100)

E= (constant) +h'k'/2M, 44+

From the momentum dependence of the energy, one

where K=kL/v. and where X; and D; are algebraic can define an effective mass,

functions of ~: (103)
Ng ——Q,-', A,3a;3; Dg =Q,—', A P;

$3= ——', P (A sa,)—P A,A,a;a,/ (a;+a;);

D3 ——,
' Q (A '/a )—Q A;A;——/(a;+a;);

i&j
ay=»+2) a3=K+4; a3=K 2) a4=K —4;—

A g
———4/L(K+3) (K—1)]; A 3

——2/L (K+ 1)(K+3)];

A3 ——4/L(» —3) (K+1)]) A4 ———2/L(» —1)(K 3)].

For the total mass, we obtain a value

M, ff =
(1/2M) +e3*/h'

(104)

which is less than the correct value The method .of
generator coordinates gives for the incr&'al parameter of
the collective motion a valle that i s too small in the case
of the square-wel 1 construction potential, contrary to
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TAaLE IV. Comparison of number of parameters needed to
specify con6guration of construction potential with number of
inertial parameters.

and the energy kernel,

Construction potential

One-dimensional, translatable
arbitrary shape: n

Two-dimensional, rotatable
arbitrary form: o.

Three-dimensional, rotatable,
symmetric with respect to
rotations about a certain
axis which can itself change
its orientation: o.1, 0.~

Inertial parameters

3E, mass

A, moment of inertia about center
of rotation

A, moment of inertia for rotations
about axes perpendicular to the
symmetry axis; no meaning for
rotations about this axis, and
corresponding inertial param-
eter vanishes.

I(k) = I(h) exp(ikh)dh,

E(k) = E(h) exp(ikh)db,

(108)

Problem of Testing Correctness of
Inertial Parameter

(where 8=P—n) and develop them in powers of k and
give the coeKcient of (—1)""k"/e! the name I„or E„
as the case may be.

what happens when the nucleonic wave function is
built up out of harmonic-oscillator wave functions.

Generalizing from the two-particle problem just con-
sidered, we recognize several instances where the proper
form for the generator wave function can be deduced
directly from group theory:

f(n) =e'" in order to generate a state of wave
number k when o. describes a one-dimen-
sional translation of a construction po-
tential;

f(n) = e'~~ in order to generate a state of rota-
tional quantum number m when o. de-
scribes the rotation in a plane of an un-
symmetric two-dimensional construc-
tion potential, V(g,y; n);

f(ni, np) = Fi ~(n&,ap) in order to generate a state
of rotational quantum numbers, l and m,
when n& and cx2 describe the orientation
in space of a three-dimensional construc-
tion potential of axial symmetry. (105)

with

(E) Ep ——,'Epk'+

(I) Ip —-', Ipk'+

= (Ep/Ip)+-', P(EpIp —EpIp)/Ip']k'

=const+ (k'k'/2BYt),

5R =O'Ip'/(EpIp —EpIp).

(106)

(107)

Here the numbers I„and E„are obtained as follows:
AVe take the Fourier transforms of the overlap integral

In all these cases, we can evaluate the expectation value
of the energy at once in terms of the relevant group-
theory parameter: k; or m; or l and m; etc., as the case
may be. Let this expectation value be expanded in a
power series in the parameter in question through terms
of the second order. Then the coefFicients in this ex-
pansion define as indicated by Peierls and Voccoz-
an eRective mass or inertial parameter (Table IV):

(1) What is the correct value of the appropriate
inertial parameter in more general problems? (2) What
value is predicted by the method of generator co-
ordinates? (3) What conditions have to be satisfied for
the two values to agree?

In the case of translational motion, there is no doubt
as to the correct value of the inertial parameter: it
must equal the total mass of the system. In the case of
of collective rotations, according to the investigations
of Inglis, Bohr and Mottelson, Moszkowski, and others, '
the correct moment of inertia is calculable from the
response of the nucleonic system to a rotating deformed
potential well of the kind that is here called a construc-
tion potential. According to these authors, one can
calculate the moment-of-inertia parameter in either of
two equivalent ways, (1) by evaluating the increment,
dI., in the angular momentum of the system per unit
increment, chal, in the angular velocity, co, of the con-
struction potential:

d.ii=dL/dpi; (109)

or (2) by evaluating to second order the increase, AE,
in the expectation value of the energy of the nucleons
due to the rotation of the construction potential:

Spn= 268/M . (110)

It should be clearly stated that none of the cited
works given an unambiguous way to associate with a
given real physical problem a unique construction po-
tential. They and the method of generator coordinates
are alike in leaving the choice of generator potential
in the realm more of art than of science. But they-
and in particular, Inglis —give a unique prescription
to determine the inertial parameters for a given choice
of construction potential: (1) Calculate the nucleonic
wave functions, pp„(xi, x~., u) and the corresponding
energy levels, E„, for a fixed configuration, n, of the
construction potential. If the construction potential
omits all residual nucleonic forces, y can be represented
as a simple determinable combination of individual
particle states in a deformed potential. Otherwise, q is
a complicated many-body wave function. The following
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analysis applies to either case. (2) Define the operator
J'= iAB—/Ba. (3) Then the correct inertial parameter,
as defined in (109) or (110),will be"

(111)

This result applies to the lowest nucleonic state of the
system. To an excited state, a similar formula applies.
It is obtained by making obvious changes in (111).

It should be clearly stated that the inertial parameter
(111) is the correct result for the problem of particles
in a construction potential of the given form that is
translated or rotated or vibrated at a slow and constant
rate by external machinery. This is the reason why the
formula has a perturbation-theoretical character. A
very small perturbation of the boundary conditions
couples the initial state 0 to a typical excited state n
both states being defined for the same configuratio of
the construction potential.

In contrast, formula (107) for the inertial parameters
from the method of generator coordinates depends
upon the coupling, I(5) and K(b), between wave func-
tions for the same state, 0, for very diferent comfiglra

' D. R. Inglis, Phys. Rev. 97, 701 (1955).

tioes of the construction potential. There is no obvious
reason why the two expressions for QR and d,«should
turn out to be identical. Moreover, the problems where
these two parameters appear are really diGerent: there
is no external machinery to drive the construction
potential in the problem considered in this paper.
Nevertheless, it seems reasonable to believe that the
value d,«of (111)is approximately correct for collective
rotations, and to regard any departure of 9R of Kq.
(107) from d,«as witness to an inaccuracy in the method.
of generator coordinates. There is plenty of room for
such an error in this method for it relies upon a varia-
tional approach exclusively. The trial wave function
in the method of generator coordinates is designed for
simplicity, not for precision.
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