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The values of the energies at the point K=2xe {1,0,0) are calculated in Si by the orthogonalized plane-
wave method. The curves of energy verses K are drawn in the t 100) direction. The results are in agreement
with the fact that Si is an insulator. They also indicate that the minimum of the lowest conduction band
lies near the surface of the zone.

TABLE I. Orthogonality coeKcients, A„&(~ K+h( ).'

(a2/47r~) [ K+h (
2 A I& () K+h ( ) A 2s( [ K+h j ) —F2„()K+h) )

0.016941
0.016874
0.016674
0.016608

0.15937
0.14865
0.12142
0.11374

0.045692
0.060936
0.081406
0.084505

HE orthogonalized plane-wave method has proved
to be quite accurate in giving the energies of a large

number of electronic bands at high symmetry points of
the reduced zone. ' WoodruG' has presented the method
in a convenient form and has used it to evaluate the
energies of the valence and conduction bands in silicon
at the point K=0 of the reduced zone. In the present
work the energy bands have been calculated at the
point. K= 2 as'(1,0,0) by the same method

The sets of plane waves (100), (011), (120), and
(211) have been used in deriving the crystal symmetry
combinations of plane waves, which transform accord-
ing to the irreducible representations of the small

group of the wave vector K= 2s.a '(1,0,0).' The approx-

imate atomic-core wave functions and the energy
eigenvalues for the Si atom have been evaluated by
WoodruG. ' The coe%cients of orthogonality between
the plane waves and the core functions are listed in
Table I. Since the Fourier coefficients of the potential
do not depend on the wave vector K, Woodruff's values
of these quantities have been used.

The final results obtained for the energies are pre-
sented in Table II. At the point K= 2 ora'(1,0,0), as at
the point K= (0,0,0), the energies of the various states
appear in the same order in Si as in diamond.

In Fig. 1 the curves of energy versus K are plotted
along the

C
100j axis. The results of Table II and those

of Woodruff for the same stage of approximation were
used. The interpolation scheme is that proposed by
Slater and Koster4 and the integrals over atomic orbi-
tals are treated as parameters to be 6tted to the
calculated values of the energies.

From the position of the energy bands in Fig. 1, it
can be seen that Si should be an insulator. This was

a Anl() K+h( ) = (00) ~JOrts expLi(K+h) rjdtt, where 24rtl is the core
function for the atomic state and 00 is the volume of the unit cell.

TABLE 11.Energies (in rydbergs) of valence and conduction states
in Si crystal with K=2s.a '(1,0,0).

F86 „X3

XI(1) x4(i) XI(2) X&(1) X4(2)

EI' —1.0035
E2 —1.1153
Eg —1.1164
E4 —1.1665
Eg —1.1871

—0.7674—0.9464—0.9552

0.2880
-0.4547 0.0956 0.4504—0.4927 0.2413—0.5408—0.5408

I » -L544
"0.766

f'2g

Xi 12)
-0.541

a The subscripts attached to E indicate the order of the secular deter-
minant used in obtaining the energies.
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Pro. 1. Diagram of the energy band structure of Si
along the L100j axis.

' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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not the case in a recent calculation by Jenkins, o who
used a variational cellular method. It is dificult to
determine the position of the minimum of the conduc-
tion bands, because the energies at I'ts and at Xt(2)
are almost equal and the interpolation scheme is only
approximately valid. Since, however, it has been shown'
that the value of the energy at F1~ decreases very little
if plane waves of higher energy are taken into account,

' D. P. Jenkins, Proc. Roy. Soc. (London) A69, 548 (1956).

it is to be expected that the minimum. should lie near
the point I= 2ora '(1,0,0), as predicted by Herman. '
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Observations in e-type germanium show a decrease in the anisotropy of the magnetoresistance with in-
creased ionized-impurity content and with decreased temperature. Although similar to what is expected due
to ionized-impurity scattering, the details of the variation do not agree with calculations assuming aniso-
tropic impurity scattering. Deviations from the magnetoresistance symmetry conditions are observed for
crystals with electron concentration n&4&(10" cm ' at 77'K.

'HE interpretation" of magnetoresistance obser-
vations3 in e-type germanium has confirmed the

(111) symmetry of the band structure deduced from
cyclotron resonance experiments4 ' at low temperature.
However, there is apparent lack of agreement between
the anisotropy observed~' in the low-field galvanomag-
netic eRects and that expected from the cyclotron-
resonance eRective masses. It has also been observed
that the magnetoresistance anisotropy seems to be a
function of the concentration of impurities and the
temperature at which the measurements were made.
In this paper, experimental data pointing out this
eRect are presented, and possible explanations are
discussed.

The magnetoresistance coefFicients' b, c, and d are
defined in Eq. (1). This expression describes the mag-
netoresistance for a cubic crystal in the low-field region,
i.e., where the change in resistivity is proportional to
the square of the magnetic field.

Q j2+s
Ap (I H)'

=b+c +d
pH~ 12' 12H'

In this equation p is the resistivity, and I and H are

the current and magnetic field, with the components
taken along the cubic axes. For a conduction-band
structure like that in germanium, the coefFicients
satisfy the conditions:

b+c=0, d) 0. (2)

b+c+d

&+ (Roao)'
(3)

can be used to calculate' E from Eq. (4).

( E' 2E+1y-
W=2

~2E'+5E+2l
(4)

These coefficients are functions of the relaxation time
& and the shape of the energy surfaces, as represented
by the ratio of longitudinal to transverse eRective
masses, E . If a specific form is assumed for the de-
pendence of v on energy, E can be calculated directly
from the magnetoresistance. H, in addition to the
magnetoresistance, the Hall coefficient R and the con-
ductivity ~ are known, E can be calculated, provided
that r is a function only of the energy of the carriers.
Observations of the quantity

' B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).
~ M. Shibuya, Phys. Rev. 95, 1385 (1954).' G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).
4 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
& Dexter, Zeiger, and Lax, Phys. Rev. 104, 637 (1956).' Benedek, Paul, and Brooks, Phys. Rev. 100, 1129 (1955).
~ C. Goldberg and R. E. Davis, Phys. Rev. 102, 1254 (1956).' M. Glicksman, Phys. Rev. 100, 1146 (1955).

Here E is the ratio of the mass anisotropy E to the
relaxation-time anisotropy E,. 'Ihe latter is defined as
the ratio of longitudinal to transverse scattering times
in the same directions as the mass ellipsoids. If ~ is a

' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).


