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Angular Correlation of Annihilation Radiation in Alkali Halide Crystals~
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A new type of instrument has been used for measurements on Mg metal. and single crystals of LiF, NaCl,
KCl, KBr, and KI. The data, after correction for instrument resolution, yield the momentum distribution
of either the photons or the center of mass of the positron and electron just prior to annihilation. The mo-
mentum distribution obtained for NaC1 is accounted for by assuming (a) that the positron is bound to the
chloride ion in an s state, (b) that annihilation takes place with one of. the electrons of the closed shell, and
(c) that the overlap wave function is of the form (r b)'e ".B—est agreement with experiment was obtained
for 30% of the annihilations taking place with s electrons for which fr=0.73 A, and m=3.64 A I and the
other 70% with p electrons for which b=0.70 A and m=4.00 A '.

I. INTRODUCTION The measurements which have been reported thus
far have in every case determined a set of numbers
proportional to the probability that the total mo-
mentum of the annihilation photons has a s component
lying between p, and p,+Ap, . The probability that the
total momentum of the annihilation photons, p, lies
between p and p+Ap, i.e., E(p)hp, is obtained from
the data as follows. Let the coincidence counting rate
measured at an angle 0, after correction for instrument
resolution, be represented by C, (8). Then

HE measurement of the angular correlation of
two-photon annihilation radiation will, when the

data are corrected and properly analyzed, lead to the
distribution of the total momentum of the positron and,
electron just prior to annihilation. ' The value of such
information is strengthened considerably by theoretical
calculations which indicate that a positron is reduced
to thermal energies before it is annihilated. ' The results
obtained for positrons annihilating in certain metals
confirm these calculations, ' since the momentum distri-
bution obtained is largely that expected on the basis of
the Fermi distribution of the free electrons.

The alkali halides are of interest since they are ionic
crystals. This provides the possibility of the positron
becoming bound to the negative or halogen ion.4 The
binding energy of the positron to the isolated chlorine
ion as calculated by Simons' is 3.74 ev in the ground
state. When one takes into account the Madelung
correction due to the neighboring ions in the crystal, '
the binding energy in NaCl is 8.4 ev. '

Although the alkali halides have already been studied
by Lang, ' our results are reported here since we have
obtained more detail. Since the experimental arrange-
ment used in this investigation is basically diferent
than that used in other measurements of this type, a
detailed description of the apparatus is included here.

$(p) ~HdC, (8)jdH,

where p+is equal to 8 times the momentum of an
annihilation photon, i.e., p =Hmc. '

The apparatus described here yields, after correction
for instrument resolution, numbers which are propor-
tional to the probability that the total momentum has
a p component in cylindrical coordinates which lies
between p, and p,+Ap„ i.e., C(p,)Ap, . If we let
D (P,) = C (P,)/2s P„ then D(P,) ~ D (8), since P, =Hmc,

and
t "i. dD(8i)

E(p) ~ Hs' — dH,
~o 81 d01

where p=Hsmc and Hi ——[Hs'+8'j'.
One advantage of the latter method is that S(p) is

determined with less error since it is obtained from a
sum of slopes rather than from the slope at a point. As
will be seen later, an additional advantage lies in the
improved counting e%ciency.
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II. APPARATUS

1. Geometry

The experimental measurements determine the rela-
tive number of pairs of annihilation gamma rays having
an angle between them which lies between a.—(8+LB)
and x—0. This relative number is determined by scintil-
lation counters connected in coincidence as indicated in
Flg. 1.

One of the collimators placed in front of the scintil-
lation counters defines a narrow cone originating at the

e
sample (collimator 8, Fig. 2) while the other defines a
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FIG. 1. Schematic diagram of apparatus.
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FIGP 2. Diagram of col]jmators and sample,

thin conical shell coaxial with the cone defined by the
first. This arrangement will admit in one direction
gamma rays falling into a cone with a half-angle of one
milliradian and in the opposite direction those falling
into the conical shell with a half-angle 02 and a thickness
of plus and minus one milliradian. The coincidence
circuit indicated that their time of arrival was in
agreement to within 0.7 p,sec.

The geometry is indicated schematically in Fig. 2.
The distance L from the sample to collimator "A" was
varied according to the angle Q~ to be selected and the
pa rticular collimators used. The range use was from
one to two meters. The thickness of the conical shel
was kept at 2 milliradians for 02 set at an integral
number of milliradians. The half-integral positions were
obtained by keeping the collimator fixed and changing
L appropriately. For convenience collimator "A" and
its counter were set up on the carriage of a lathe with
the axis parallel to the lathe bed. The source and sample
holder was clamped to the head stock. The three sets of
collimators were aligned with the aid of a surveyor' s
transit.

A source strength of approximately 0.7 millicurie
gave a counting rate of about 1.3 counts/minute be-
tween 2 and 6 milliradians. We did not continue taking
data when the counting rate dropped below 0.25
count/min. Approximately one month of continuous
operation was required to take the data for each sample
measured. The apparatus was checked frequently for
reliability and reproducibility. The coincidence counting
rate at a given angle 0& was divided by the singles
coun ing rnting rate in "A" with the same collimator. ince
the latter is proportional to the solid angle of co-

limator "A,"this ratio is proportional to the coincidence
counting rate per unit solid angle.

2 Calculation of Resolution

Before the data may be analyzed to determine the
momentum distribution, they must be corrected for the
finite resolution of the apparatus. To do this we must
first calculate the resolution of the apparatus. This
calculation must be carried out for each angle at which
data were taken.

F a given collimator defined by the central angleor a glv
~ ~

f0 e want to determine the relative probability owe wan
hecounting gamma rays correlated at some angle f. T e

first step in determining this probability is illustrated
by Fig. 3. A point p],ey in the sample is considered as
the source of two gamma rays correlated at the ang ele

ccP. If one of these gamma rays strikes collimator 8 a
the point p,8 then the other gamma ray will strike
collimator "A"somewhere on the approximately circular

)

Yg

FIG. 3. Diagram illustrating the method of determining, for a
given set of collimators de6ning the central angle 02, the relative
probability of counting gamma rays correlated at an ang e P.

line indicated. The probability of this giving rise to a
count is proportional to the length of arc falling within
the opening in the collimator. This arc length is re-
corded for a fixed point in the sample (pi, 8i), while the
point in collimator "3",(p,g), is varied until the opening
in collimator "8"is covered. Then a new point in the
sample is used and the process is repeated. When the
calculations have been carried out for all points in the
sample the calculation is complete for that value of f.
Now the calculation is repeated for other values of II

until the resolution curve for Q~ is determined. The same
calculation is carried out for all values of 02. Three of
the resolution curves obtained are shown in Fig.

3. Data Correction

When all of the resolution curves are obtained, the
data correction may be carried out. The procedure is
one of trial and error.

To explain this procedure, let us assume that we
guess the corrected data to be T(0) and the resolution
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curve for the collimator at the angle 8„ is given by
Q„(8). Then let the generated function be defined by

G(8„)= T(8)D,„(8)d8.
O

~0

When a T(8) is found such that G(8„) equals the data
measured at the angle H„and this equality holds for all
values of 8„ for which data were taken, the T(8) is the
corrected data and it will be designated by D(8). The
trial function T is adjusted until this condition is
satisfied.

The raw and corrected data for I iF are given in

Fig. 5.

4. Momentum Distribution from the Data

Consider the meaning of the corrected coincidence
rate per unit solid angle, i.e., D(8). First note that by
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FIG. 5. Curves illustrating the eRect of the correction for the
instrument resolution. The upper curve gives the uncorrected
data; the lower curve gives the data after correction. The un-
certainties indicated are estimated probable errors.

be the density in momentum space such that

C(P,)aP, =4~P, R/(P, '+P,')'JdP. aP, .
0

I 2 5 4 0 l 2 5 4 5 6 7
lN l0" RADIAN

5 4 5 6 7 S 9

Note that the corrected coincidence counting rate at a
given angle 8 is proportional to C(p„), where P, =8mc
and C(p,)/2~P, —=D(p, ) is proportional to the corrected
coincidence counting rate per unit solid angle. Then, by
expressing C(p, ) in terms of D(p, ), we have

FIG. 4. Resolution curves obtained for the collimators de6ning
the central angle 02 equal to 1, 3, and 6 milliradians.

conservation of momentum the sum of the momentum
of the positron and electron just prior to annihilation is
equal to the sum of the momentum of the two annihi-
lation gamma rays. The momentum sum, p, is very
small compared to the momentum of one of the
gamma rays which is approximately the rest mass of
the electron times the speed of light, mc. The projection
of the momentum sum onto a plane perpendicular to
the direction of one of the gamma rays, p, , is approxi-
mately Once. The coincidence counting rate at a given
angle 8 is proportional to the probability that the
momentum vectors in momentum space terminate on a
thin cylindrical shell of radius P, =8mc. The coincidence
counting rate per unit solid angle is proportional to the
probability that p falls in one narrow element of this
cylindrical shell.

Now consider how these corrected data lead to the
momentum distribution. Let C(p,)dp, be the proba-
bility that the vector p in momentum space will termi-
nate somewhere on a cylinder of radius p„and let R(p)

D(P,)=2 ~L(p'+P*')'jdp'
aJ p

Now taking the derivative of~both sides of this expres-
sion with respect to p„

dD(P, ) r" 8&/(p '+p, ')')
=2 dpi'.

Jo 8P,

The integral may be rewritten in terms of a derivative
of R with respect to p:

dD(pp) (" dR dp
=D'(P.)=2 dP'

dp dp,

Since
P'=P'+P' and dp=(p. ip)dp. ,

it follows that

D'(p.)=2p. . . ,dP'
dP (P'+P*')'
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venience since the abscissa is just transformed b the

Pp P Pv The dertvative of the corrected
data is obtained by a least squares method. The
integration is obtained with the aid of 1p m t

6.
p ot 0 D Pp Pp IJersgs P, for LiF is given in Fig.

P„=4ttscX10 '.
e abscissa transformation is ill t dis i us rate for

III. RESULTS

1. Check on Method.

e e I
1 1 1 I 1 1

5
~~

IO

~ ~

ow WIltlIlg Pp as (P '+P„')'*, dividing both sides by
P„and then integrating over P„we have

D'I (P'+P')'3
(P*'+P') '*

~"
t

" dRL(P'+P'+P')') dP dP-

dP (P'+P'+P')'

I1+ IN UNITS OF Inc x IO 3

Fzo. 6. Plot of D'~',p )/p versus p (the curve on the right).
e uncertainties indicated are estimated robable

replot this quantity verse p =(
hift d to th l ft b thy pp p

th ift(fo hihth b
e as e circ es in icate t e geometrical construction of p,

A check on the operation of the apparatus and the
method of analyzing the data is obtained from the
measurements on magnesium Wh en a igh-speed
positron enters a metal it is rap'dl 1 d d
tht ermal energies and is then annihilated by one of the
con uction electrons. For metal th d

(P) equals unity up to the Fermi energy and then it
abruptly drops to zero. The X(P) should then be pro-
portional to P' up to the maximum 11 d,

2/2PI / 111 equals the Fermi energy, and then it shouM
drop to zero. Our results are compared with the calcu-
lated Fermi distribution in Fi . 7. Not h

until its area is equal to the area under the shaded

If the va
in this manner yields an energy of 6 96 I

the valence of magnesium is taken to be 2.00, the
Fermi energy is calculated to be 7.09 ev. This re resents

o . ~0 in t e energy. More extensive measure-
ments and analysis are needed howe towever, to etermine
whether or not this agreement is fortuitous.

The double integral on the right ma be ex
in egration y going to cylindrical coordinates,

i.e., the double integral is replaced b

dR Pprfpv t' dR

"e ~P (P'+P')'
The probability that the total momentum lies between

density R(P) by the following relation:

E(P)~P =4trP1R(P) ~P.

Therefore, the probability X(P) is obtained from the
data by the following prescription:

, t
"&'I (P-'+P')'*3

(P*'+P') '

The fact that ththe data are taken for a particular p, and
'

P,)/P, is integrated over P, is only a minor incon-
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FIG. 7. Comparison of the ex crim
forma ', d h

perimental momentum distribution
t e calculated Fermi distri-gnesium, as ed curve with h

, so i curve. e area under the shaded ortion
dashed curve is the same as th t d hs a un er t e solid curve.
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FIG. 9. Comparison of calculated and experimental momentum
distributions obtained for NaCl. The individual contributions due
to s and p electrons are indicated by the dashed curves, their sum
by the solid curve, and the experimental values by the solid
circles. The contribution due to s electrons is 30%%up of the total.
The estimated probable errors for some of the points are indicated.

a wave function leads to a sequence of peaks which
decrease only slightly in amplitude with increasing
momentum.

In this analysis the product tI pp was taken to be

IPp(pp=Ap(f bp) 8 p" for r)bp
=0 for r &bo,

for an s electron annihilating the s positron and

Prompt=At(r —br)'e '" cos8 for r) b,
=0 for r &b~,

for a p electron annihilating the s positron. The calcu-
lation was carried out for a wide range of parameters
with the aid of a C.P.C. The 6t was made for the
momentum distribution obtained for NaCl. The
parameters giving best fit for the annihilation with an
s electron were bp

——0.75 A and mp ——3.64 A ' and 29.8%
annihilated in this way. For annihilation with a p
electron b~=0.70 A and m~=4. 00 A '. The results of
this analysis are shown in Fig. 9. The dashed curves are
the separate contributions for s and p electrons, the
solid curve their sum and the solid circles the experi-
mental values.

Further attempts are being made to account for the
shape of the other E(p) curves.
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