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A new type of instrument has been used for measurements on Mg metal and single crystals of LiF, NaCl,
KCl, KBr, and KI. The data, after correction for instrument resolution, yield the momentum distribution
of either the photons or the center of mass of the positron and electron just prior to annihilation. The mo-
mentum distribution obtained for NaCl is accounted for by assuming (a) that the positron is bound to the
chloride ion in an s state, (b) that annihilation takes place with one of. the electrons of the closed shell, and
(c) that the overlap wave function is of the form (r—b)% ™. Best agreement with experiment was obtained
for 30% of the annihilations taking place with s electrons for which =0.75 A, and m=3.64 A~ and the
other 709, with p electrons for which 5=0.70 A and m=4.00 A1

I. INTRODUCTION

HE measurement of the angular correlation of
two-photon annihilation radiation will, when the
data are corrected and properly analyzed, lead to the

distribution of the total momentum of the positron and .

electron just prior to annihilation.! The value of such
information is strengthened considerably by theoretical
calculations which indicate that a positron is reduced
to thermal energies before it is annihilated.? The results
obtained for positrons annihilating in certain metals
confirm these calculations,? since the momentum distri-
bution obtained is largely that expected on the basis of
the Fermi distribution of the free electrons. '

The alkali halides are of interest since they are ionic
crystals. This provides the possibility of the positron
becoming bound to the negative or halogen ion.* The
binding energy of the positron to the isolated chlorine
ion as calculated by Simons® is 3.74 ev in the ground
state. When one takes into account the Madelung
correction due to the neighboring ions in the crystal,®
the binding energy in NaCl is 8.4 ev.”

Although the alkali halides have already been studied
by Lang,® our results are reported here since we have
obtained more detail. Since the experimental arrange-
ment used in this investigation is basically different
than that used in other measurements of this type, a
detailed description of the apparatus is included here.
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The measurements which have been reported thus
far have in every case determined a set of numbers
proportional to the probability that the total mo-
mentum of the annihilation photons has a z component
lying between p, and p.+Ap,. The probability that the
total momentum of the annihilation photons, p, lies
between p and p-+Ap, ie., N(p)Ap, is obtained from
the data as follows. Let the coincidence counting rate
measured at an angle 6, after correction for instrument
resolution, be represented by C,(6). Then

N(p) <0dC,(6)/do,

where "p¥is equal to 6 times the momentum of an
annihilation photon, i.e., p=0mc.3

The apparatus described here yields, after correction
for instrument resolution, numbers which are propor-
tional to the probability that the total momentum has
a p component in cylindrical coordinates which lies
between p, and p,+Ap,, ie., C(p,)Ap,. If we let
D(p,)=C(ps)/2mp,, then D(p,) = D(6), since p,=0bmc,
and
aD(6

dd,
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where p=~0pmc and 6,=[0+6]%.

One advantage of the latter method is that N(p) is
determined with less error since it is obtained from a
sum of slopes rather than from the slope at a point. As
will be seen later, an additional advantage lies in the
improved counting efficiency.

II. APPARATUS
1. Geometry

The experimental measurements determine the rela-
tive number of pairs of annihilation gamma rays having
an angle between them which lies between =— (64 A6)
and w—@. This relative number is determined by scintil-
lation counters connected in coincidence as indicated in
Fig. 1.

One of the collimators placed in front of the scintil-
lation counters defines a narrow cone originating at the
sample (collimator B, Fig. 2) while the other defines a
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Fic. 1. Schematic diagram of apparatus.

thin conical shell coaxial with the cone defined by the
first. This arrangement will admit in one direction
gamma rays falling into a cone with a half-angle of one
milliradian and in the opposite direction those falling
into the conical shell with a half-angle Q; and a thickness
of plus and minus one milliradian. The coincidence
circuit indicated that their time of arrival was in
agreement to within 0.7 usec.

The geometry is indicated schematically in Fig. 2.
The distance L from the sample to collimator “4” was
varied according to the angle Q, to be selected and the
particular collimators used. The range used was from
one to two meters. The thickness of the conical shell
was kept at 2 milliradians for Q. set at an integral
number of milliradians. The half-integral positions were
obtained by keeping the collimator fixed and changing
L appropriately. For convenience collimator “4” and
its counter were set up on the carriage of a lathe with
the axis parallel to the lathe bed. The source and sample
holder was clamped to the head stock. The three sets of
collimators were aligned with the aid of a surveyor’s
transit.

A source strength of approximately 0.7 millicurie
gave a counting rate of about 1.3 counts/minute be-
tween 2 and 6 milliradians. We did not continue taking
data when the counting rate dropped below 0.25
count/min. Approximately one month of continuous
operation was required to take the data for each sample
measured. The apparatus was checked frequently for
reliability and reproducibility. The coincidence counting
rate at a given angle @, was divided by the singles
counting rate in “4” with the same collimator. Since
the latter is proportional to the solid angle of col-
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limator ““4,” this ratio is proportional to the coincidence
counting rate per unit solid angle.

2. Calculation of Resolution

Before the data may be analyzed to determine the
momentum distribution, they must be corrected for the
finite resolution of the apparatus. To do this we must
first calculate the resolution of the apparatus. This
calculation must be carried out for each angle at which
data were taken.

For a given collimator defined by the central angle
2., we want to determine the relative probability of
counting gamma rays correlated at some angle y. The
first step in determining this probability is illustrated
by Fig. 3. A point py,0; in the sample is considered as
the source of two gamma rays correlated at the angle
¥. If one of these gamma rays strikes collimator “B” at
the point p,6 then the other gamma ray will strike
collimator “4”’ somewhere on the approximately circular

Fi1G. 3. Diagram illustrating the method of determining, for a
given set of collimators defining the central angle Qs, the relative
probability of counting gamma rays correlated at an angle y.

line indicated. The probability of this giving rise to a
count is proportional to the length of arc falling within
the opening in the collimator. This arc length is re-
corded for a fixed point in the sample (p1,81), while the
point in collimator “B”, (p,0), is varied until the opening
in collimator “B” is covered. Then a new point in the
sample is used and the process is repeated. When the
calculations have been carried out for all points in the
sample the calculation is complete for that value of ¢.
Now the calculation is repeated for other values of ¥
until the resolution curve for Q; is determined. The same
calculation is carried out for all values of Q,. Three of
the resolution curves obtained are shown in Fig. 4.

3. Data Correction

When all of the resolution curves are obtained, the
data correction may be carried out. The procedure is
one of trial and error.

To explain this procedure, let us assume that we
guess the corrected data to be 7'() and the resolution
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curve for the collimator at the angle 8, is given by
Q,(0). Then let the generated function be defined by

G(.)= fwT(())Qn(G)dO.

When a 7'() is found such that G(.) equals the data
measured at the angle 8, and this equality holds for all
values of 6, for which data were taken, the 7'(f) is the
corrected data and it will be designated by D(6). The
trial function 7T is adjusted until this condition is
satisfied.

The raw and corrected data for LiF are given in
Fig. 5.

4. Momentum Distribution from the Data

Consider the meaning of the corrected coincidence
rate per unit solid angle, i.e., D(6). First note that by
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Fic. 4. Resolution curves obtained for the collimators defining
the central angle @, equal to 1, 3, and 6 milliradians.

conservation of momentum the sum of the momentum
of the positron and electron just prior to annihilation is
equal to the sum of the momentum of the two annihi-
lation gamma rays. The momentum sum, p, is very
small compared to the momentum of one of the
gamma rays which is approximately the rest mass of
the electron times the speed of light, 7c. The projection
of the momentum sum onto a plane perpendicular to
the direction of one of the gamma rays, p., is approxi-
mately 6mc. The coincidence counting rate at a given
angle 6 is proportional to the probability that the
momentum vectors in momentum space terminate on a
thin cylindrical shell of radius p,=6mc. The coincidence
counting rate per unit solid angle is proportional to the
probability that p falls in one narrow element of this
cylindrical shell.

Now consider how these corrected data lead to the
momentum distribution. Let C(p,)Ap, be the proba-
bility that the vector p in momentum space will termi-
nate somewhere on a cylinder of radius p, and let R(p)
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F16. 5. Curves illustrating the effect of the correction for the
instrument resolution. The upper curve gives the uncorrected
data; the lower curve gives the data after correction. The un-
certainties indicated are estimated probable errors.

be the density in momentum space such that

C(Pp)APp=47er‘f R[(Pp2+ﬁz2)é]dpz Ap,.
0

Note that the corrected coincidence counting rate at a
given angle 6 is proportional to C(p,), where p,=0mc
and C(p,)/2xp,=D(p,) is proportional to the corrected
coincidence counting rate per unit solid angle. Then, by
expressing C(p,) in terms of D(p,), we have

D(p,)=2 f RL(p2+52) 1.

Now taking the derivative of both sides of this expres-
sion with respect to p,,

aD(p,) ® OR[(p,+p)*]
-2 ap..
dp P 0 aPp

The integral may be rewritten in terms of a derivative

of R with respect to p:

aD(p,)
=D’(pn)=2
dpp 0

Since
p=p,+p. and dp=(p,/p)dp,,
it follows that
* dR 1

D'(po)=2p | —————dp-
? o dp (p+pS)!
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F16. 6. Plot of D'(p,)/p, versus p, (the curve on the right).
The uncertainties indicated are estimated probable errors. To
replot this quantity versus p.= (p2—p,»)* for a particular p,,
each point is shifted to the left by the appropriate amount. This
method is illustrated for the case p,=4mcX1073 by the curve
on the left (for which the abscissa should now be read as p,).
The dashed circles indicate the geometrical construction of p.
from p, for this value of p,.

Now writing p, as (p.2+,%)%, dividing both sides by
$,, and then integrating over p,, we have

D'L(p2+pHH] y
(P24}
_ f“" fwzdR[(Px“riJuz—l—N)%] dp:dp, .
o Yo dp (p2+p+p5}

The double integral on the right may be expressed as a
single integration by going to cylindrical coordinates,
i.e., the double integral is replaced by

©dR  p,dp, © dR
™ ———=1rf —dp=—mR(p,).
0 dP (Pp2+17u2)% Py dp

The probability that the total momentum lies between
¢ and p+Ap, namely N(p)Ap, is found from the
density R(p) by the following relation:

N(p)Ap=4mp*R(p)Ap.

Therefore, the probability N(p) is obtained from the
data by the following prescription:

w 1) 2 2\3
N(P)‘—‘—‘H’Zf L2422,
o (P2}

The fact that the data are taken for a particular p, and
D' (p,)/p, is integrated over p, is only a minor incon-
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venience since the abscissa is just transformed by the
relation p,2=p,*+p,% The derivative of the corrected
data is obtained by a least squares method. The
integration is obtained with the aid of a planimeter.

A plot of D'(p,)/p, versus p, for LiF is given in Fig.
6. The abscissa transformation is illustrated for
Py=4mcX1073.

III. RESULTS
1. Check on Method

A check on the operation of the apparatus and the
method of analyzing the data is obtained from the
measurements on magnesium. When a high-speed
positron enters a metal it is rapidly slowed down to
thermal energies and is then annihilated by one of the
conduction electrons. For metals the density function
R(p) equals unity up to the Fermi energy and then it
abruptly drops to zero. The N (p) should then be pro-
portional to % up to the maximum p allowed, pr, where
prt/2m equals the Fermi energy, and then it should
drop to zero. Our results are compared with the calcu-
lated Fermi distribution in Fig. 7. Note that the
parabolic shape fits at the lower momenta. The solid
line representing the Fermi distribution is extended
until its area is equal to the area under the shaded
portion of the data. The peak momentum determined
in this manner yields an energy of 6.96 electron volts.
If the valence of magnesium is taken to be 2.00, the
Fermi energy is calculated to be 7.09 ev. This represents
an error of 1.87 in the energy. More extensive measure-
ments and analysis are needed, however, to determine
whether or not this agreement is fortuitous.
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F16. 7. Comparison of the experimental momentum distribution
for magnesium, dashed curve, with the calculated Fermi distri-
bution, solid curve. The area under the shaded portion of the
dashed curve is the same as that under the solid curve.
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Fic. 8. The experimental momentum distributions obtained for Mg, LiF, NaCl, KCl, KBr, and KI.
The estimated probable errors for some of the points are indicated.

2. Alkali Halide Crystals

The N(p) versus p curves obtained for Mg, LiF,
NaCl, KCl, KBr, and KI are given in Fig. 8. The
estimated probable errors for some of the points are
indicated.

To account for the shape of the N(p) curves, we
assume the positron is bound to the halogen ion and
that annihilation takes place with one of the two s
electrons or six p electrons in the closed shell of the
halogen ion to which it is bound. The bound positron
is assumed to be in an s state. The total momentum of
the two annihilation gammas is assumed to be equal
to the vector sum of the momentum of the positron and
electron just prior to annihilation.

If we knew the wave functions of the positron and
electron, the momentum distribution of the annihilation
radiation could be determined. Ferrell' has indicated

that
N(p) = k2[fe‘ik'f¢<pd~r] ,

where p="nk, Y ¢ is the product of the wave functions
of the positron and electron, and dr is the element of
volume.

Ferrell' made an analysis of some N (p,) data for the
alkali halides taken by Lang et al.? For this analysis he
assumed the wave function of the positron to be a delta
function. The momentum distribution obtained by such
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FiG. 9. Comparison of calculated and experimental momentum
distributions obtained for NaCl. The individual contributions due
to s and p electrons are indicated by the dashed curves, their sum
by the solid curve, and the experimental values by the solid
circles. The contribution due to s electrons is 309, of the total.
The estimated probable errors for some of the points are indicated.

a wave function leads to a sequence of peaks which
decrease only slightly in amplitude with increasing
momentum.
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In this analysis the product ¢ ¢ was taken to be

\l/0<po=A0(7""bo)2e—m°T for
=0 for 7r<b,y,

f>b0

for an s electron annihilating the s positron and

Yier=A41(r—b)% ™" cosf for r>b;
=0 for r<b,

for a p electron annihilating the s positron. The calcu-
lation was carried out for a wide range of parameters
with the aid of a C.P.C. The fit was made for the
momentum distribution obtained for NaCl. The
parameters giving best fit for the annihilation with an
s electron were bp=0.75 A and m,=3.64 A~ and 29.89,
annihilated in this way. For annihilation with a
electron 5;=0.70 A and m;=4.00 A~1. The results of
this analysis are shown in Fig. 9. The dashed curves are
the separate contributions for s and p electrons, the
solid curve their sum and the solid circles the experi-
mental values.

Further attempts are being made to account for the
shape of the other N(p) curves.

ACKNOWLEDGMENTS

We thank Dr. H. P. Hanson, Dr. H. Primakoff, and
Dr. C. Herring for helpful and interesting discussions.
We are grateful to Dr. L. G. Lang for pointing out an
error in the data analysis. Ferrell’s review! was of con-
siderable aid in the interpretation of the NaCl data.



