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Electron Energy Bands in Cesium*
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The orthogonalized plane wave method and the cellular method have been applied to a calculation of
electronic energy levels in cesium. The same crystal potential was used for all states. Wave functions of core
electrons, required in the application of the orthogonalized plane wave method, were determined for this
potential. The cohesive energy was calculated according to a simple model. The magnitude at a nucleus of
the wave function of an electron on the Fermi surface was estimated by perturbation theory. The energies
of twenty-four states at four symmetry points of the Brillouin zone have been obtained. The bands inferred
from these results are compared with those in other alkali metals.

I. INTRODUCTION

~ NE of the principal problems in the theory of
electronic energy bands in solids is to determine

to what extent calculated bands are sensitive to details
of the assumed crystal potential. A comparison of
bands calculated for metals of the same crystal struc-
ture but differing in lattice constant and number of
electrons should contribute to an answer to this ques-
tion. The alkali metals are a useful system for this
comparison since there have been a number of studies
of their energy bands. ' ' Most of this work has con-
cerned the lighter alkali metals; there is little reliable
information on the heavier ones. In addition, it would
be of interest to determine the variation of energy bands
from element to element throughout the alkali metals.
There is some evidence to indicate that in the heavier
alkali metals, the bands depart from the free-electron
form.

Previous calculations of energy levels in cesium have
been made by Gombas' and Sternheimer. '

The work of Gombas was based on perturbation
theory applied to free-electron wave functions. He
replaced, in lowest order, the actual potential in the
exterior of the atomic cell by a constant: its average
value. The difference between the average of the po-
tential and the potential itself was treated by pertur-
bation theory. This procedure may be reasonably valid
since the potential is slowly varying over most of the vol-
ume of the cell. He obtained a value of —0.407 ry for the
energy of the lowest state of a valence electron (P&),
which is in reasonable agreement with our result of
—0.146 ry. The potentials used are slightly different. He
attempted to locate the state H& in the same way, but
used incorrect boundary conditions which give an energy

* Supported by the Once of Naval Research.' W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
2 F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612 (1947).' D. J. Howarth and H. Jones, Proc. Phys. Soc. (London) A65,

355 (1952).
4 H. Brooks, Phys. Rev. 91, 1027 (1953).

F. S. Ham, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1955), Vol. 1,
p. 127.' J. Callaway, Phys. Rev. 103, 1219 (1956).' P. Gombas, Z. Physik 113, 150 (1939).

R. M. Sternheimer, Phys. Rev. 78, 235 {1950).

apparently much too low. (He obtained —0.154 ry as
compared to our result +0.144 ry.)

The calculation of Sternheimer was designed to test
the hypothesis Ithat an observed discontinuity in the
compressibility of cesium at high pressures is due to a
crossing of the 6s and Sd bands. He tried to locate the
positions of those bands as a function of interatomic
distance. The choice of potential will be discussed in
the next section. Unfortunately, Sternheimer used in-
appropriate boundary conditions for the d bands. Our
calculation is in reasonable agreement with his results
for the location of the bottom of the 6s band and for
the effective mass in this band. We do not, however,
find the band to be almost parabolic. The shape of the
d band calculated in this work is in disagreement with
that determined by Sternheimer, in that the d band
we obtain resembles much more closely that found in
potassium' than the simple parabolic form he predicted.
His calculation of the effective masses in the d band is
not valid because of improper treatment of the de-
generacies in this band. We also And that p levels lie
quite close to the occupied band so that there is pre-
sumably a considerable degree of mixing of s and p
states as well as s and d states. Our calculation does not
attempt to test the validity of the hypothesis of crossing
of s and d bands since we have used the observed lattice
constant only.

We believed, however, that the potential used by
Sternheimer for s states, was reasonably accurate, and
could serve as a basis for a more careful study of the
energy bands. His potential was adapted for use in
this work. The cellular method was employed to study
the bottom of the lowest band: the energy of the lowest
state of a valence electron in the solid and the effective
mass were determined. The cohesive energy was cal-
culated on a simple model. The wave function was
calculated to second order in k, and a crude esti-
mate of the Knight shift was compared with the experi-
mental result. The orthogonalized plane wave (OPW)
method was applied to study the higher states. It was
necessary to calculate wave functions for some of the
core electrons using Sternheimer's potential. Energies
of twenty-four states at four symmetry points of the
Brillouin zone: I", H, I', and X were calculated.
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TABLE I. The function rU, where V is the crystal potential. U is
in Rydbergs and r is in atomic units.

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

110.00
107.00
104.15
101.50
99.00
96.60
94.40
92.40
90.50

87.00
83.85
80.90
78.15
75.55
73.05
70.65
68.30

63.90
60.15
56.70
53.70
50.90
48.40
46.10
43.90
41.80
39.80
37.95
36.20
34.55
33.00

29.75
27.00
24.60
22.75
21.00
19.45
18.00
16.70

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

10.0
11.0
12.0
13.0

14.40
12.45
10.85
9.70
8.80
8.00
7.32
6.71
5.62
4.77
4.07
3.56
3.220
2.985
2.800
2.655
2.568
2.498
2.440
2.386

2.287
2.216
2.172
2.132
2.096
2.066
2.041
2.020
2.005
2.000
2.000
2.000
2.000
2.000

II. CRYSTAL POTENTIAL

The choice of crystal potential is of crucia1 importance
in an energy-band calculation. In the alkali metals, it
is usual to adopt the model of Wigner and Seitz in
which an electron sees the field of one positive spheri-
cally symmetry ion, the rest of the cells being neutral.
This model seems to give quite good results for the
cohesive energies of the alkali metals. The potential
within the cell is based, in this calculation, on the
Hartree-Fock equation. According to the Hartree-Fock
equations, the effective potential varies from state to
state through the Brillouin zone. It is not possible to
take this into account exactly. It is perhaps a reasonable
approximation for states of not too high excitation to
use an exchange potential determined by the pre-
dominant angular momentum in the expansion of the
wave function for the state of interest in spherical
harmonics. ' This was done by Sternheimer for the 6s
and 5d levels. In order to reduce the calculational
problem somewhat, we have made the further and
worse approximation that the potential is the same for

TABLE II. Fourier coe%cients of the crystal potential deined
by V(k)=00 'J'e' 'V(r)d'r Th. e coeKcients are given as func-
tions of n'= [(a/2~) kg'.

n2

0
2

6
8

10
12
14
16
18
20
22
24
26

Vn2

0.97031
0.38561
0.25191
0.23107
0.21579
0.19613
0.17080
0.14724
0.13276
0,12465
0.12004
0.11585
0.11167
0.10748

912

30
32
34
36
38

42
44
46
48
50
52
54
56

Vn2

0.09470
0.08831
0.08510
0.08189
0.07868
0.07547
0.07389
0.07231
0.07073
0.06915
0.06757
0.06599
0.06441
0.06283

all states in the Brillouin zone. The potential is essen-
tially that for 6s states given by Sternheimer. It was
observed that this potential is not a smooth function of
position, and since no physical reason could be found
for the Quctuations, they were smoothed out. The re-
sulting potential is given in Table I. It yields an energy
for the lowest state of a valence electron in the free
atom in reasonable agreement with but slightly lower
than the spectroscopic value —0.2862 ry. The Fourier
coeKcients of the crystal potential are given in Table II.

Adoption of a single potential for all states greatly
simplifies the application of the OPW method. It is
necessary, however, to have wave functions for core
electrons which pertain to this potential. For the very
tightly bound states: 1s, 2s, 2p, 3s, 3p, and 3d, the
wave functions were taken from Hartree's calculation'
(a self-consistent field without exchange for Cs+). For
the higher states: 4s, 4p, 4d, Ss, and Sp, core wave
functions were found by numerical integration of the
appropriate wave equation.

III. COHESIVE ENERGY

According to the standard theory of the cohesion of
the alkali metals" the cohesive energy is the difference
of two quantities: the boundary correction and the
Fermi energy. The boundary correction is the difference
in energy between the lowest state of a valence electron
in the solid and in the free atom. The Fermi energy
takes account of the spread in energy of electrons in
the band. If the band is parabolic, it can be determined
from the effective mass. The average binding energy
Z~ of an electron is

Ea=Eo+2.21Eg/r P—E,)

where Eo is the energy of the lowest state of a valence
electron in the solid; E2 is the reciprocal of the effective
mass ratio: E&——m/m*, and E, is the energy of the

e D. R. Hartree, Proc. Roy. Soc. (Loridon) A143, 506 (1934).
'OE. Wigner and F. Seitz, in Solut State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 2955),
Vol. 1, p. 97,
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Quantity

E2

Es
Cohesive energy (kcal/mole)
Experimental cohesive en-

energy (kcal/mole)

This
calculation

—0.4156
1.401—0.0321—0.0152

14.8
19.7

Sternheimer

—0.4258
1.366—0.0447—0.0152

18.7

Brooks

—0.4266
1.202—0.0569—0.0152

22.6

"E.Wigner, Phys. Rev. 46, 1002 (1934). There is an error in
Wigner s formula in the low-density limit which has been cor-
rected above."J.Bardeen, J. Chem. Phys. 6, 367 (1938).

' W. D. Knight, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1956),Vol. 2, p. 93.

lowest state of a valence electron in the free atom,
—0.2862 ry. To this must be added E~, the interaction
energy (including correlation) of the valence-electron
distribution. If signer s formula is used for the corre-
lation energy, "we have for EI.

&r ——0.284/r, —0.88/(r, +7.79). (2)

The calculated values of Eo, J 2, and Ey are given in
Table III as is the cohesive energy computed from
these quantities. The values obtained by Sternheimer'
and by Brooks4 are also given. The quantity r, was
taken as 5.64 (in atomic units aH). Small differences
between these results and those of Sternheimer will be
noted. The diGerence in the energy of the lowest state
is largely unexplained, but may be due to the smooth-
ing of Sternheimer's potential. (The fluctuations of
Sternheimer's original potential are sufficiently large
as to render numerical integration of the wave equation
with it somewhat unreliable. ) In this calculation, Es
was obtained by Bardeen's method" which makes
calculation of matrix elements unnecessary.

It is interesting that such a simple model gives a
reasonable value for the cohesive energy. There is, of
course, considerable uncertainty in the value of Eq,
and it is inadequate to determine the Fermi energy
from E2 only. The calculations presented in Sec. V
show that the lowest band is far from parabolic.

IV. THE KNIGHT SHIFT

The shift of the nuclear magnetic resonance line in
metallic cesium (as compared with nonmetallic cesium)
has been measured. " This shift gives a value for

(I fr(0) I') where Pr is the wave function of an electron
on the Fermi surface; and ( ) symbolizes an average
over the Fermi surface; if the spin paramagnetic
susceptibility per unit mass, x„, is known:

~II Sx=—7(.~(I4r(0) I'), (3)
II 3"

TABLE III. The cohesive energy: the quantities Eo, E2, Ep, EI,
and the cohesive energy as defined in Sec. III are given as calcu-
lated by us, by Sternheimer, 8 and by Brooks using the quantum-
defect method. Atomic units (Rydbergs) are used, except as in-
dicated. Deviations of the band from parabolic form are not
included.

where M is the atomic mass. It is convenient to compare
(I fr(0) I

') with I P~(0) I
', where P~ is the wave function

for the valence electron in the free atom. The latter
quantity can be obtained from the observed hyper6ne
splitting in cesium, " according to the formula of
Fermi"

8~ p2I+1&t
I~~»nlrb'~(0) I',

)

where DW is the hyperfine splitting in energy units, p
is the nuclear magnetic moment in units of the nuclear
magneton, p,~ is the Bohr magneton, p~ is the nuclear
magneton, and I is the nuclear spin. From this we
obtain lit~(0) I'=3.9 in atomic units.

Because of the inaccuracies of Hartree-type wave
functions in the heavier elements, the principal quantity
of theoretical interest is

The value given by Knight" is (=1.3.
. A crude calculation of $ has been attempted. The

value of If~(0)l' can be taken from the work of
Sternheimer" .

Iy, (0) I'=2.6.

To obtain fr is dificult. We assume that the Fermi
surface is spherical and take the expansion of fs as
given by Silverman, "

f =e' 'I
Ns =As+1k coseQr+ k'{NsEs+ps),

where
I' s = (3 cos'8 —1)/2.

In Eq. (6), the functions es, Nr, Ns, and po are essen-
tially those given by Silverman. These functions have
been calculated. For kg=0.340, we obtain

ly (o) I'=3.o.
This yields

= 1.2.

The agreement is remarkable considering the crudeness
of the assumptions. In the 6rst place, there is no reason
why an expansion of Ps in powers of k should converge
readily on the Fermi surface. Also, one would expect
that relativistic eGects would be particularly noticeable
in a calculation of the wave function at the nucleus.
This may be the explanation for the very considerable
discrepancy between the observed and computed values
of If&(0) I'. There is also uncertainty in regard to the
value of p„, the paramagnetic susceptibility. The value

'4 P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).
~s E. Fermi, Z. Physik 60, 320 (1930).
".R. M. Sternheimer (private communication). We are in-

debted to Dr. Sternheimer for furnishing his wave function for
the free atom.

'r R. A. Silverman, Phys. Rev. 85, 22'7 (1932).
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FIG. i. Brillouin zone for the body-centered cubic lattice.

used by Knight was taken from a calculation by Pines
for free electrons. "

V. CALCULATION OF THE HIGHER LEVELS

The orthogonalized plane wave method has been
treated adequately in other papers, " and it is not
necessary to repeat the discussion here. In this calcula-
tion, OPW expansions were constructed for twenty-four
symmetry types at four symmetry points in the Brillouin
zone at the points F, II, P, and E. The Brillouin zone
for the body-centered cubic lattice is shown in Fig. 1,
A lattice parameter of 6.06 A was used, corresponding
to r, =5.64 in atomic units. "Linear combinations of
orthogonalized plane waves were employed which
transform according to the irreducible representations
of interest. "

Because high-speed electronic computing equipment
was not readily available to us, the calculations did not
involve higher than fourth-order determinants. The
convergence of the expansions appears to be quite good
for the state F~ for which an eighth-order secular
determinant was solved on the Whirlwind Computer at
the Massachusetts Institute of Technology through the
courtesy of Dr. L. C. Allen. The lowest eigenvalue in
fourth order was —0.4258 ry and in eighth order it de-
creased to —0.4268. The energy of this state according
to the cellular method was 0.4156 ry. The OPW method
is expected to yield a slightly lower energy owing to a
small error in the calculated 4s wave function. The
very good convergence exhibited by 1 & may not hold,
however, for all the other states. In particular, at the
symmetry points E and P, fewer plane waves will be
included in the OPW expansion for a 6xed number of
terms, so that the convergence is probably somewhat

' D. Pines, in Solid State Physics, edited by F. Seitz and D,
Turnbull (Academic Press, Inc. , New York, 1955), p. 367.' C. Herring, Phys. Rev. 57, 1169 (1940); J. Callaway, Phys.
Rev. 97, 933 (1955).

20 C. S. Barrett, Structure of 3Ietals (McGraw-Hill Book Com-
pany, Inc. , New York, 1952), p. 646.

~'Further details of the OPW calculation, including linear
combinations of the plane waves and the wave functions for the
core states, etc., may be found in the Master's thesis of E. L.
Haase, University of Miami, 1957 (unpublished).

~ TABLE IV. Energies of states at four symmetry points: states
of a particular symmetry are arranged in order of increasing en-
ergy. The degeneracy, order of determinant solved, and number
of waves included in the expansion for each representation are
listed. The quantity m'=L(a/2s)hg', where h is the wave vector
of the lowest OPW for the particular representation, is given.
The energies of the lowest two states of each symmetry type are
also given.

Order
Repre- De- of de-
senta- gener- termi- No. of
tion acy nant waves Energies (ry)

S-like states
r,
Ng
P1
8'g

P-like states
Ng
P4
II15

N4.
I'i5

D-like states
+12
Ng
I'25
~12
P3
N4

25r

N3
F-like states

I 25

gg g.
Pg
Np
&2S
F2

8 135
4 18
4 40
4 62

18
18
38
20
20
42

54 1
28
48 2
54 2
36 11/4
28 10/4
56 3
28 14/4

48 1
56 3
36 11/4
24 14/4
48 5
32 6

—0.4268—0.2848—0.1181—0.1445

—0.3417—0.2591—0.1726—0.0088
0.0687
0.2691

—0.2079—0.1666—0.1162
0.0421
0.0976
0.0995
0.1299
0.2416

0.1142
0.2036
0.3545
0.4702
0.8014
0.9727

0.6022
0.3449
0.6051
0.8163

0.2758
0.4847
0.6522
0.5255
0.4203
0.7578

0.5349
0.5139
0.8290
0.5738
0.8418
0.5502
0.7548
0.7931

1.1293
1.6954
0.9014
1.3727
1.0866
2.8687

poorer. Also, the D-like states did not appear to con-
verge as fast as the S and P states.

A conservative estimate would be that S and P
states at F and H are convergent to within 0.02 Ryd-
berg, D states within possibly 0.04 ry. The possible
errors at P and X may be double these 6gures. The
convergence of F-like states will probably be worse
since smaller determinants were used: these states are
relatively high. Except as discussed in the next section,
the order of levels within a particular band is probably
reliably g&ven.

The lowest two eigenvalues of the representations
calculated are given in Table IV. The states are classi-
6ed as S, P, D, or Ii according to the lowest spherical
harmonic which would appear in a cellular-method cal-
culation. The states are arranged in order of increasing
energy. The relation of the states at the symmetry
points is shown in Fig. 2.

VI. DISCUSSION

Previous work on potassium led to the hypothesis
that the order of levels at symmetry points in a band
of one particular type (as an s, P, d band) is relatively
independent of the crystal potential, and is determined
by the square of the wave vector of the lowest OPW



ELECTRON ENERGY BANDS IN Cs

2S
+.7

H IS——r
I

I2
p

I

H I2
N2

P4

pS

Ni
I

N~

I'
ISIO

K
III
Cl
CI

+.I

Hl
H 2Sr25

rI2

N4
N4~

tel?
w

~ I

2S'
N2H IS

HI2

Fio. 2. Energy levels at four symmetry points
up to 0.75 Rydberg.

ever, may be sensitive to details of the potential. The
choice of one potential for all states may be serious
here. If this result is real, however, a nonspherical form
for the Fermi surface is suggested, which would be
elongated along the L110j axis in the Brillouin zone. At
any rate, the low energy of the P levels indicates that
the expansion of E(k) in powers of k used previously
does not converge readily.
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in the expansion of the wave function. ' In Table IV,
we give the value of m'=L(u/2s)hj', where h is the
wave vector of the lowest OPW pertaining to the par-
ticular state for all of the states listed. With two ex-
ceptions, the ordering of levels according to increasing
ns' is the same as the ordering according to increasing
energy. In the case of P3 and E4, the observed inter-
change of the expected order is probably the result of
incomplete convergence of the levels. The reason for
the interchange of H2 and P5 in the Fband is not known.
The agreement with the hypothesis is, however, quite
good. The comments that were made in the calculation
on potassium' in regard to the order of levels predicted
by Wigner" apply here as well.

In comparing the bands with those calculated for
potassium, we note a general tendency for the bands
to be narrower. This tendency is particularly pro-
nounced for the P band. Some tendency toward con-
traction would be expected because of the larger lattice
constant.

The D band is of particular interest in view of the
proposal of Sternheimer' in regard to a discontinuity in
the compressibility. The energy Sternheimer obtains
for the bottom of the D band corresponds approximately
to the energy we have obtained for H~2, which is a low
level. We have not attempted to verify his statements
regarding the motion of the bands as the lattice con-
stant is decreased. The general form of the D band is
in good agreement with previous calculations for
potassium' and iron." In particular, we note that the
separation of the triply and doubly degenerate levels
at the center of the zone is smaller than at the corner
B, and that the order is reversed at H. The maximum
spread of the D levels occurs at E. The magnitude of
the split between the triply and doubly degenerate D
levels at the center of the zone in cesium is considerably
greater than in potassium, in spite of the relative coin-
pression of the band.

The relative order of levels in the P and S bands
separately corresponds to that in potassium. The P
band appears to have been lowered quite considerably
with respect to the S and D bands. This feature, how-


