given in volts. If we accept for the Thomas-Fermi function

$$\Phi(x) = e^{-0.60x}, \tag{22}$$

and we calculate the total cross section Q_0 , we obtain the following formula for $Q_0 Z^{-\frac{2}{3}} / \pi a_0^{-2}$:

$$\frac{Q_0 Z^{-\frac{2}{3}}}{\pi a_0^2} = \frac{75.850}{1 + 0.7308 x^2}.$$
 (23)

This formula gives for x > 2 the same results as our

PHYSICAL REVIEW

VOLUME 108, NUMBER 2

OCTOBER 15, 1957

Shock-Wave Compressions of Twenty-Seven Metals. Equations of State of Metals*

JOHN M. WALSH, MELVIN H. RICE, ROBERT G. MCQUEEN, AND FREDERICK L. YARGER University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico (Received January 18, 1957)

An explosive system is used to drive a strong shock wave into a plate of 24ST aluminum. This shock wave propagates through the 24ST aluminum into small test specimens which are in contact with the front surface of the plate. A photographic technique is used to measure velocities associated with the 24ST aluminum shock wave and with the shock wave in each specimen.

The measured velocities are transformed, using the conservation relations, to pressure-compression points. Resulting pressure-compression curves are given for 27 metals. The range of data is different for each material but typically covers the pressure interval 150 to 400 kilobars; probable errors in reported experimental pressure-compression curves are 1 or 2% in compression for a given pressure.

The experimental curves, which consist thermodynamically of a known P, V, E locus for each material, are used to calculate a more complete high-pressure equation of state. This is done by means of a theoretical estimate of the volume variation of the Grüneisen ratio $\gamma(V) = V(\partial P/\partial E)_V$. Calculated P, V, T states are listed for the various materials. For 24ST aluminum, quantities of application in shock-wave hydrodynamics are also tabulated.

INTRODUCTION

IN Sec. I an experimental method to obtain dynamic pressure-compression curves for solids is described and resulting data, plotted in Figs. 3–29, are listed for the following 27 solids: beryllium, bismuth, cadmium, chromium, cobalt, copper, gold, iron, lead, magnesium, molybdenum, nickel, silver, thorium, tin, titanium, zinc, 24ST aluminum, brass, indium, niobium, palladium, platinum, rhodium, tantalum, thallium, and zirconium.

Section II is devoted to the problem of generalizing the experimental Hugoniot curves into a complete thermodynamic description of high pressure states neighboring the experimental curves.

Throughout the present discussion it is assumed that stresses behind the shock wave are isotropic, and that the compressed materials behind the shock wave are in thermodynamic equilibrium. Further discussion of basic principles underlying the present work is found in previous papers^{1,2} dealing with dynamic pressure-compression results.

formula (21), as is shown in Table II, and thus it may

be used for rapid calculation of the total cross section Q_0 . Equation (23) corresponds more to a WKB-model for the atom than a Thomas-Fermi model. For x in

the range $0 \le x \le 2$, the results for the total cross section

 Q_0 given by (21) and (23) differ considerably from each other, since Q_0 given by (21) is infinite for x=0 while

The authors are indebted to Professor F. J. Wiśniew-

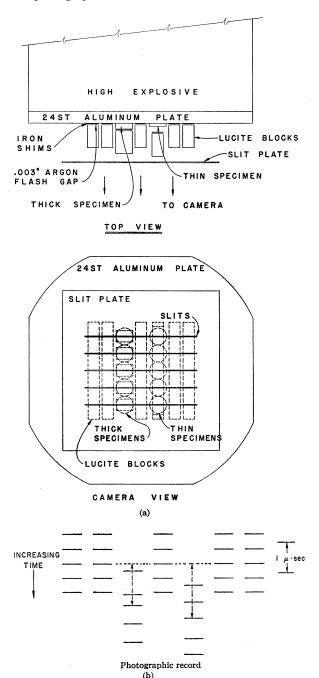
 Q_0 given by (23) is finite for x=0.

ski for his interest on this paper.

I. DETERMINATION OF HUGONIOT CURVES

A. Measurement of Shock Wave and Free-Surface Velocities

The experimental method used to measure shock wave and free-surface velocities is illustrated in Fig. 1. The detonation of the explosive system, pictured at the top of the figure, causes a plane shock wave to be transmitted into the 24ST aluminum plate. This shock wave next interacts with the test specimen, Lucite, iron-shim assembly on the front surface of the plate. The essential features of this assembly are the two rows of test pellets and the 0.003-in. thick argon-filled flash gaps. The pellets consist of one row of five thick specimens (0.250 in. thick by 0.750 in. diameter) to provide for shock velocity measurements and one row of thin specimens (0.125 in. thick by 0.750 in. diameter) for


196

^{*} Work done under the auspices of the U. S. Atomic Energy Commission.

¹ J. M. Walsh and R. H. Christian, Phys. Rev. 97, 1544 (1955). ² Goranson, Bancroft, Burton, Blechar, Houston, Gittings, and Landeen, J. Appl. Phys. 26, 1472 (1955).

free-surface velocity measurements of the same five materials. The flash gaps, when closed by the shock wave, provide light (due to multiple shock reflections in the argon) which is recorded by a moving image camera. The camera, in an underground bunker some 15 feet from the shot assembly, views the assembly through a slit system and sweeps the image in a direction normal to the slits.

A photographic record is also seen in Fig. 1, where

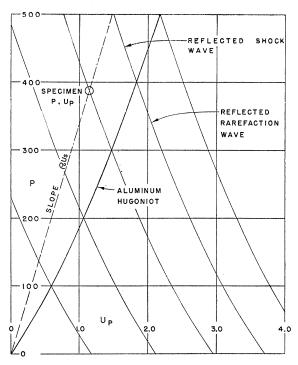


FIG. 2. Pressure versus particle velocity curves for 24ST aluminum, and a typical graphical solution to determine P, U_p for a test specimen.

pertinent features are identified. The record is analyzed by comparator reading, measured record offsets being converted to times by use of the known camera sweep speed. The measured time⁸ offset for the thick pellet is divided into pellet thickness to give the shock wave velocity for that material. The measured time for the thin pellet of the same material is the shock wave transit time through the thin pellet plus the time required for the free surface to traverse the free-run distance. When combined with the measured shock wave velocity and the known free-run distance, it gives the desired free-surface velocity. The measured shock wave and free-surface velocities are listed in Table I, second and third columns.

B. Transformation of Measured Velocities to Pressure-Volume Points

The transformation of measured velocities to pressurecompression points is done by two methods, both of

³ Small corrections are incorporated into the measured time offsets. These corrections arise from the fact that the 0.003-in. argon flash gaps over test specimen are closed at different velocities from the flash gaps over the main 24ST aluminum plate. The magnitude of each correction is determined by solution of the appropriate interface problems, using the graphical pressure particle velocity method discussed below. The applied corrections are taken to be the total difference in flash-gap closure times from the assumption that the light flash occurs in the final stages of closure of the flash gap. The corrections seldom affect measured velocities more than 0.5%, and more typically cause a change of about 0.2%.

	Cheels mean	Ener auntress	Free surface :	approximation		raphical soluti	on
Metal	Shock wave velocity Us (km/sec)	Free surface velocity $U_{f_{\bullet}}$ (km/sec)	Pressure P (kilobars)	Relative volume V/Vo	Shock particle velocity Up (km/sec)	Pressure P (kilobars)	Relative volume V/V₀
Beryllium $\rho_0 = 1.845 \text{ g/cm}^3$ $C_p = 0.474 \text{ cal/g °C}$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 37 \times 10^{-6} / ^{\circ}\text{C}$	9.044 8.934 9.112 9.332 9.851 9.832 9.633	1.697 1.739 2.358 2.364 3.422 3.235 3.189	141.6 143.3 198.2 203.5 311.0 293.4 283.4	0.9062 0.9027 0.8706 0.8733 0.8263 0.8355 0.8345	$\begin{array}{c} 0.847\\ 0.865\\ 1.189\\ 1.221\\ 1.730\\ 1.609\\ 1.592 \end{array}$	141.3 142.6 199.9 210.2 314.4 291.9 282.9	0.9063 0.9032 0.8695 0.8692 0.8244 0.8364 0.8364
Bismuth	2.696 2.585 3.075 3.084 3.682 3.659	$1.401 \\ 1.318 \\ 1.793 \\ 1.800 \\ 2.476 \\ 2.564$	184.9 166.8 269.9 271.7 446.3 459.2	$\begin{array}{c} 0.7402 \\ 0.7451 \\ 0.7085 \\ 0.7082 \\ 0.6638 \\ 0.6496 \end{array}$	0.718 0.676 0.914 0.922 1.212 1.222	189.5 171.1 275.2 278.4 436.9 437.7	0.7337 0.7385 0.7028 0.7010 0.6708 0.6660
Cadmium $\rho_0 = 8.64 \text{ g/cm}^3$ $C_p = 0.055 \text{ cal/g °C}$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 89.4 \times 10^{-6} / ^{\circ}\text{C}$	$\begin{array}{c} 3.599 \\ 3.421 \\ 3.918 \\ 4.450 \\ 4.324 \end{array}$	1.464 1.277 1.757 2.496 2.400	227.5 188.6 297.2 479.6 448.1	0.7966 0.8134 0.7758 0.7196 0.7225	0.690 0.619 0.850 1.190 1.120	214.4 182.9 287.6 457.3 418.2	0.8083 0.8191 0.7830 0.7326 0.7410
Chromium $\rho_0 = 7.13$ $C_p = 0.065$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 18.6 \times 10^{-6} / {}^{\circ}\text{C}$	$\begin{array}{c} 6.043\\ 5.923\\ 6.381\\ 6.370\\ 6.355\\ 6.357\\ 6.660\\ 6.674\end{array}$,		$\begin{array}{c} 0.5448 \\ 0.5395 \\ 0.7436 \\ 0.7449 \\ 0.7407 \\ 0.7403 \\ 1.007 \\ 1.008 \end{array}$	234.5 233 338 338 336 336 336 478 479	$\begin{array}{c} 0.9098\\ 0.9089\\ 0.8835\\ 0.8831\\ 0.8834\\ 0.8835\\ 0.8488\\ 0.8490\end{array}$
Cobalt $\rho_0 = 8.82$ $C_p = 0.099$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 36.9 \times 10^{-6} / ^{\circ} \text{C}$	5.445 5.696 5.632 6.019 6.052	1.016 1.327 1.334 1.890	244.0 333.4 331.4 504.5	0.9067 0.8835 0.8816 0.8439	0.502 0.683 0.653 0.901 0.955	241.1 343.2 324.4 478.1 509.8	$\begin{array}{c} 0.9078 \\ 0.8801 \\ 0.8841 \\ 0.8503 \\ 0.8422 \end{array}$
Copper $\rho_0 = 8.90$ $C_p = 0.092$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 49.5 \times 10^{-6} / {^{\circ}\text{C}}$	4.744 4.768 5.070 5.015 5.508	1.024 1.094 1.440 1.456 2.079	216.2 232.1 324.9 324.9 509.6	0.8921 0.8853 0.8580 0.8548 0.8113	$\begin{array}{c} 0.511 \\ 0.570 \\ 0.711 \\ 0.731 \\ 1.032 \end{array}$	215.8 241.9 320.8 326.3 505.9	0.8923 0.8804 0.8598 0.8542 0.8126
Gold $\rho_0 = 19.24$ $C_p = 0.312$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 42.6 \times 10^{-6} / ^{\circ} \text{C}$	3.679 3.864 4.130	0.771 1.012 1.375	272.9 376.2 546.3	0.8952 0.8690 0.8335	0.380 0.505 0.666	269.0 375.4 529.2	0.8967 0.8693 0.8389
Iron $\rho_0 = 7.84$ $C_p = 0.107$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 35.1 \times 10^{-6} / ^{\circ} \text{C}$	5.652 5.474 5.458 5.438 5.229 5.231 5.206 5.209	2.163 2.037 1.988 2.005 1.789 1.773 1.755 1.755	$\begin{array}{c} 479.2 \\ 437.1 \\ 425.3 \\ 427.4 \\ 366.7 \\ 363.6 \\ 358.2 \\ 358.4 \end{array}$	$\begin{array}{c} 0.8087 \\ 0.8139 \\ 0.8179 \\ 0.8156 \\ 0.8289 \\ 0.8305 \\ 0.8314 \\ 0.8315 \end{array}$	1.085 1.013 0.993 0.994 	480.8 434.7 424.9 423.8 	0.8080 0.8149 0.8181 0.8172
Lead $\rho_0 = 11.34$ $C_p = 0.030$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 85.1 \times 10^{-6} / {}^{\circ}\text{C}$	2.914 3.268 3.250 3.724	1.230 1.745 1.731 2.420	203.0 323.1 318.7 510.5	0.7889 0.7330 0.7337 0.6751	0.590 0.819 0.802 1.118	194.8 303.2 295.3 471.7	0.7975 0.7494 0.7532 0.6998
Magnesium $\rho_0 = 1.735$ $C_p = 0.250$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 76.8 \times 10^{-6} / ^{\circ} \text{C}$	5.987 7.082	2.242 4.157	116.4 260.4	0.8128 0.7066			

TABLE I. Experimental data.

	Shock wave					Graphical solution			
Metal	velocity Us (km/sec)	Free surface velocity U _{fs} (km/sec)	Pressure P (kilobars)	Relative volume V/Vo	Shock particle velocity Up (km/sec)	Pressure P (kilobars)	Relative volume V/V®		
Molybdenum $\rho_0 = 10.20$ $C_p = 0.0612$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 15 \times 10^{-6} ^{\circ} C$	5.699 5.647 5.955 5.861 6.210 6.124	0.874 0.888 1.176 1.200 1.724 1.636	254.0 255.7 357.2 358.7 546.0 511.0	0.9233 0.9214 0.9013 0.8976 0.8612 0.8664	0.437 0.444 0.591 0.606 0.850 0.792	254.0 255.2 359.0 362.3 538.4 494.7	0.9233 0.9214 0.9008 0.8966 0.8631 0.8707		
Nickel $\rho_0 = 8.86$ $C_p = 0.1050$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 39 \times 10^{-6} / {^{\circ}\text{C}}$	5.417 5.653 5.620 6.031 5.969 5.952	0.981 1.350 1.390 1.955 1.981 1.835	235.3 337.8 345.8 522.0 523.5 483.5	0.9095 0.8806 0.8763 0.8379 0.8341 0.8459	0.490 0.678 0.687 0.957 0.982 0.887	235.0 339.4 341.8 511.0 519.0 467.4	0.9095 0.8801 0.8778 0.8413 0.8355 0.8510		
Silver $\rho_0 = 10.49$ $C_p = 0.056$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 56.7 \times 10^{-6} / {^{\circ}\text{C}}$	4.065 4.113 4.378 4.846 4.848	1.015 1.049 1.448 2.041 2.074	216.4 226.3 332.5 518.8 527.4	0.8752 0.8725 0.8346 0.7894 0.7861	0.504 0.527 0.717 0.985 1.010	214.9 227.4 329.3 500.7 513.6	0.8760 0.8719 0.8362 0.7967 0.7917		
Thorium $\rho_0 = 11.68$ $C_p = 0.030$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 33.3 \times 10^{-6} / ^{\circ} \text{C}$	3.497 3.192 2.954 2.900	2.112 1.604 1.246 1.198	431.3 299.0 215.0 202.9	0.6980 0.7487 0.7891 0.7934	1.043 0.812 0.620 0.571	426.0 302.7 213.9 193.4	0.7017 0.7456 0.7901 0.8031		
Tin $p_0 = 7.28$ $C_p = 0.054$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 60 \times 10^{-6} / {^{\circ}\text{C}}$	4.555 4.435 4.004 3.557 3.524	2.704 2.539 1.912 1.486 1.364	448.3 409.9 278.7 192.4 175.0	0.7032 0.7138 0.7612 0.7911 0.8065	1.290 1.190 0.925 0.705 0.670	427.8 384.2 269.6 182.6 171.9	0.7168 0.7317 0.7690 0.8018 0.8098		
Titanium $\rho_0 = 4.51$ $C_p = 0.126$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 25.5 \times 10^{-6} / {^{\circ}\text{C}}$	6.329 5.790 5.501 5.469	2.723 1.926 1.437 1.364	388.1 251.3 178.1 168.1	0.7849 0.8337 0.8694 0.8753	1.370 0.980 0.723 0.684	390.8 255.7 179.3 168.6	0.7835 0.8307 0.8686 0.8749		
Zinc $\rho_0 = 7.135$ $C_p = 0.092$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 100 \times 10^{-6} / {}^{\circ}\text{C}$	4.481 4.450 4.465 4.053 4.059	2.589 inc single-crystal 1.795 1.826 1.823 1.355 1.345 nc single-crystal e	286.9 289.9 290.4 195.9 194.8	0.7997 0.7948 0.7959 0.8328 0.8343	1.250 1.190 0.88 0.894 0.650 0.673	447 414 281.4 283.9 188.0 198.3	0.7507 0.7556 0.8036 0.7991 0.8396 0.8370		
24ST aluminum $\rho_0 = 2.785$ $C_p = 0.23$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right) = 69.0 \times 10^{-6} / {}^{\circ}\text{C}$	4.022 4.029 7.531 6.927 6.500 Actual 2	1.295 1.310 3.230 2.319 1.700 4ST aluminum of ree are representa	185.8 188.3 335.8 222.7 153.5 lata consists o	0.8390 0.8374 0.7874 0.8333 0.8696	0.630	180.8	0.8434		
$V\left(\frac{\partial T}{\partial T}\right)_{p}$ Brass $c_{p}=0.09$ $\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=61.6\times10^{-6}/^{\circ}C$	4.446 4.440 4.731 4.726 5.236 5.220	1.181 1.143 1.553 1.569 2.200	220.9 213.5 309.1 311.9 484.6	0.8672 0.8713 0.8359 0.8340 0.7899	0.590 0.571 0.791 0.770 1.085 1.077	220.7 213.3 314.8 306.2 478.0 473.0	0.8673 0.8714 0.8328 0.8371 0.7928 0.7937		
Indium $\rho_0 = 7.27$ $C_p = 0.057$ $\frac{1}{V} \left(\frac{\partial V}{\partial T} \right) = 99 \times 10^{-6} / ^{\circ} C$	3.745 3.965 4.348				0.7837 0.9812 1.281	213.5 283 405	0.7907 0.7525 0.7054		

TABLE I.—Continued.

			Free surface	approximation		aphical soluti	on
Metal	Shock wave velocity U. (km/sec)	Free surface velocity <i>Ufe</i> (km/sec)	Pressure P (kilobars)	Relative volume V/V₀	Shock particle velocity Up (km/sec)	Pressure P (kilobars)	Relative volume V/Vo
Niobium $\rho_0 = 8.604$ $C_p = 0.065$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 23.3 \times 10^{-6} / {^{\circ}\text{C}}$	5.177 5.311 5.642				0.5489 0.7434 0.9929	244.5 341 482	0.8940 0.8606 0.8240
Palladium $\rho_0 = 11.95$ $C_p = 0.0583$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 35 \times 10^{-6} / {^{\circ}\text{C}}$	4.673 5.004 5.374				0.4728 0.6200 0.8219	262.5 372 531	0.8988 0.8761 0.8471
Platinum $\rho_0 = 21.37$ $C_p = 0.0322$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 26.7 \times 10^{-6}/^{\circ} \text{C}$	4.199 4.306 4.495				0.329 0.4550 0.6102	295 416.5 586	0.9238 0.8943 0.8642
Rhodium $\rho_0 = 12.42$ $C_p = 0.059$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 25 \times 10^{-6} / {^\circ}\text{C}$. 5.470 5.865				0.4100 0.7566	278.5 551	0.9250 0.8710
Tantalum $\rho_0 = 16.46$ $C_p = 0.034$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 19.5 \times 10^{-6} / {^{\circ}\text{C}}$	3.811 4.010 4.323				0.4327 0.5800 0.7685	271.5 383 547	0.8865 0.8554 0.8222
Thallium $\rho_0 = 11.84$ $C_p = 0.031$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 114 \times 10^{-6} ^{\circ} \text{C}$	$\begin{array}{c} 2.804 \\ 2.817 \\ 3.120 \\ 3.145 \\ 3.538 \\ 3.541 \end{array}$				$\begin{array}{c} 0.6416 \\ 0.6386 \\ 0.8446 \\ 0.8406 \\ 1.090 \\ 1.089 \end{array}$	213 213 312 313 456.5 456.5	$\begin{array}{c} 0.7712 \\ 0.7733 \\ 0.7293 \\ 0.7327 \\ 0.6919 \\ 0.6925 \end{array}$
Zirconium $\rho_0 = 6.49$ $C_p = 0.068$ $\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 15.6 \times 10^{-6} / ^{\circ} \text{C}$	4.494 4.674 4.920				0.7117 0.9563 1.275	207.5 290 407	0.8416 0.7954 0.7408

TABLE I.—Continued.

which use the Rankine-Hugoniot relations

$$V/V_{0H} = (U_s - U_p)/U_s,$$
 (1)

$$P_{H} = \rho_{0} U_{s} U_{p} + P_{0H}, \qquad (2)$$

for the conservations of mass and momentum across a shock front. Here P_{0H} , V_{0H} refer to pressure and specific volume for the undisturbed state ahead of the shock front and P_H , V denote pressure and specific volume for the state behind the shock front. U_s and U_p are, respectively, the shock wave velocity, and the particle velocity for the state behind the shock front, each relative to the undisturbed state ahead of the shock front.

For the first transformation method, we note that the experimental free-surface velocity, U_{fs} , is the sum of the shock particle velocity and the particle velocity, U_r , due to the centered rarefaction wave which relieves the pressure, i.e.,

$$U_{fs} = U_p + U_r. \tag{3}$$

The approximate relation⁴ $U_r/U_p \approx 1$, or equivalently

$$U_p \approx U_{fs}/2, \tag{4}$$

is combined with Eqs. (1), (2), and measured values of U_s and U_{fs} to determine pressure-volume points. Resulting data are listed in Table I under *Free Surface* Approximation and are plotted in Figs 3-29 as \times 's.

⁴ Calculated refinements of the free-surface velocity approximation are discussed in Sec. II-B and listed in Table VII. The approximation was also discussed in reference 1, where expressions for possible errors associated with its use were shown to be small.

The second transformation method makes use of certain equation of state data for 24ST aluminum. The necessary 24ST aluminum data (derived using experimental 24ST aluminum results in the next section of this paper) are the curves of pressure versus particle velocity shown in Fig. 2. The curve from the origin is the locus of all pressure-particle velocity states attainable by propagating a right-going shock wave into normal undisturbed 24ST aluminum at P=0, $U_p=0$. When such a shock wave interacts with the 24ST aluminum-specimen interface, a left-going disturbance is reflected into the aluminum. The locus of P, U_p states that can be reached by the reflected disturbance is given by the appropriate cross curve in Fig. 2. For pressures greater (and particle velocities smaller) than that corresponding to the initial right-going shock wave, the cross curve corresponds to reflected shock waves. For smaller pressures (and greater particle velocities) the cross curve corresponds to a rarefaction wave which is reflected leftward from the interface. The P=0 point on each cross curve, in particular, corresponds to the aluminum free-surface velocity for that shock strength.

For the procedure below, it is necessary to identify the cross curve corresponding to the shock wave in the 24ST aluminum plate. This information is obtained by

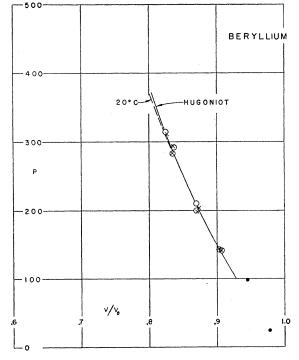


FIG. 3. Pressure-compression curves for beryllium. The solid curve in this figure and in Figs. 4 to 29 is an analytical fit (Table II) of Hugoniot curve experimental data obtained by the graphical solution method. Points plotted as circles in these figures are from the graphical solution method; points plotted as X's are from the free-surface approximation method. (See Sec. IB.) The dashed curve in each figure is a 20°C isotherm, computed using the Hugoniot curve and the methods given in Sec. II. Data points below 100 kilobars are from recent articles by P. W. Bridgman.

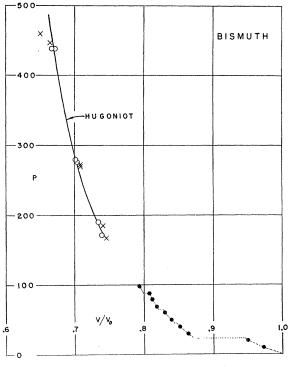


FIG. 4. Pressure-compression curves for bismuth. See caption to Fig. 3.

including a pair of 24ST pellets among the test specimens in each shot. The measured free-surface velocity then identifies the desired cross curve from its intercept with the particle velocity axis. Similarly, the measured shock wave velocity is used to construct a line from the origin in Fig. 2 of slope $\rho_0 U_s$ whose intercept with the above-described locus of right-going shocks determines [see Eq. (1) for $P_0 \approx 0$] the (P, U_p) point for the aluminum shock wave, and consequently determines the associated cross curve. The two determinations of the cross curve are averaged to give the value used in the succeeding analysis.

The boundary conditions that pressure and particle velocity must be continuous across the interface between the 24ST aluminum and the test specimen can now be used to construct a graphical solution. First, the known initial density ρ_0 and the measured shock velocity U_s for each specimen are used to construct a line from the origin (see Fig. 3) of slope $\rho_0 U_s$. From Eq. (1), for $P_0 \approx 0$, it is seen that the desired (P, U_p) point for the shock lies on this ray. The intersection of this ray with the aluminum cross curve then satisfies the boundary conditions and gives the desired pressure and particle velocity. The associated relative volume is then calculated by substituting this particle velocity and the measured shock velocity, Us, into Eq. (2). Pressurevolume points determined by this method are listed under Graphical Solutions in Table I and are plotted in Figs. 3-29 as circles.

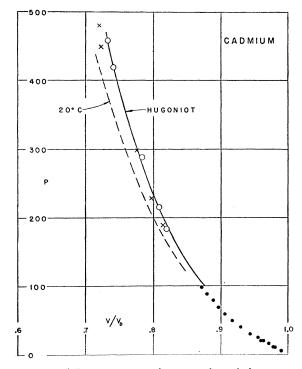
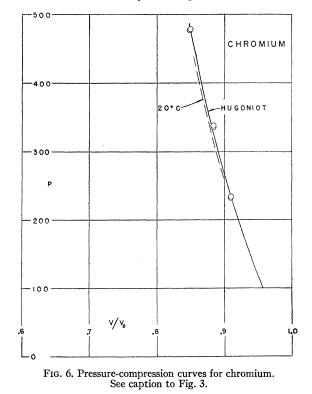



FIG. 5. Pressure-compression curves for cadmium. See caption to Fig. 3.

A few of the experiments reported in Table I were done without free-surface velocity measurements, so that only graphical solutions are listed. Iron and mag-

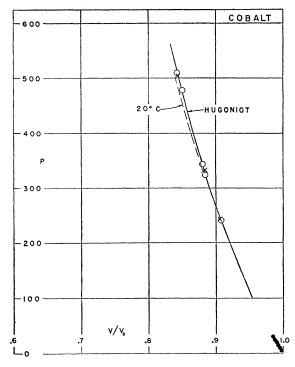


FIG. 7. Pressure-compression curves for cobalt. See caption to Fig. 3.

nesium experiments were performed without 24ST aluminum backer plates, so that only free-surface approximation solutions are reported.

C. Analytical Fits of Pressure-Volume Data

The Hugoniot curves which are drawn through the experimental points in Figs. 3-29 are reproduced by analytical fits of the form

$$P_H = A\mu + B\mu^2 + C\mu^3, \tag{5}$$

where

$$\mu \equiv (\rho/\rho_0) - 1 = (V_{0H}/V) - 1.$$

The values of A, B, and C for the various solids are listed in Table II. In reality this is a two-parameter fit, since the ratio B/A is determined theoretically by a method given in Sec. II. The two remaining parameters are then selected to fit the results of the present highpressure experiments. This procedure, as seen by inspection of the figures, gives a satisfactory fit of the present data, and it also forms a standardized extrapolation procedure from which rough comparisons will be made with the lower pressure data from static experimentation.

Finally, from the third mechanical conservation relation

$$E_{H} - E_{0H} = \frac{1}{2} (P_{H} + P_{0H}) (V_{0H} - V), \qquad (6)$$

it is seen that the specific internal energy E_H relative

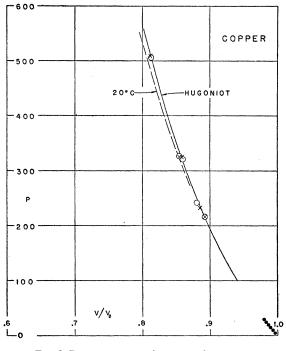


FIG. 8. Pressure-compression curves for copper. See caption to Fig. 3.

to the initial energy E_{0H} can be written (since $P_{0H} \doteq 0$)

$$E_H - E_{0H} = (A\mu^2 + B\mu^3 + C\mu^4) / [2\rho_0(\mu+1)].$$
(7)

Equations (5), (7), and Table II summarize all the experimental thermodynamic information which are available from the shock-wave measurements.

TABLE II. Analytical fits of Hugoniot curves, $P = A\mu + B\mu^2 + C\mu^3$, with pressure in kilobars.

Metal	A	В	С
Beryllium	1182	1382	C
Cadmium	479	1087	2829
Chromium	2070	2236	7029
Cobalt	1954	3889	1728
Copper	1407	2871	2335
Gold	1727	5267	0
Lead	417	1159	1010
Magnesium	370	540	186
Molybdenum	2686	4243	733
Nickel	1963	3750	0
Silver	1088	2687	2520
Thorium	572	646	855
Tin	432	878	1935
Titanium	990	1168	1246
Zinc	662	1577	1242
24ST aluminum	765	1659	428
Brass	1037	2177	3275
Indium	496	1163	02.00
Niobium	1658	2786	ŏ
Palladium	1744	3801	15 230
Platinum	2760	7260	0
Rhodium	2842	6452	ő
Tantalum	1790	3023	Ő
Thallium	317	938	1485
Zirconium	934	720	0

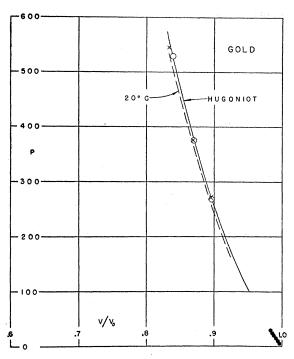
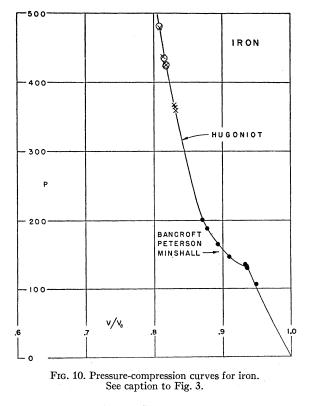



FIG. 9. Pressure-compression curves for gold. See caption to Fig. 3.

D. Zinc Single-Crystal Experiments

Two experiments with zinc single crystals were performed to determine whether observed compressions

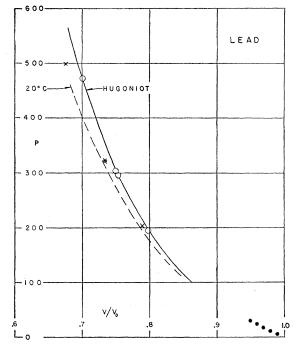


FIG. 11. Pressure-compression curves for lead. See caption to Fig. 3.

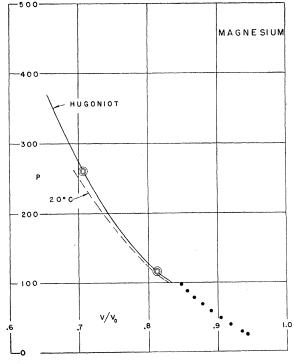


FIG. 12. Pressure-compression curves for magnesium. See caption to Fig. 3.

were dependent upon the crystal orientation. Three zinc crystals of known orientation (shock propagation directions along the C axis, along an A axis, and midway

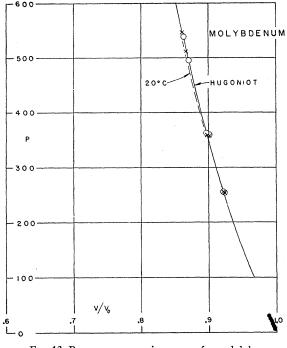


FIG. 13. Pressure-compression curves for molybdenum. See caption to Fig. 3.

between two A axes) were used in each shot. Shock velocity was measured for each crystal and shock strength was measured for the 24ST aluminum driver plate. The measured values were then used to determine pressure-volume points by the graphical solution method.

The total spread for the three zinc shock velocities in the high-pressure (414 kilobars) shot was 1%, and the corresponding spread for the low-pressure (200 kilobars) shot was 1.5%. Comparable scatters would be expected even if identical specimens were measured so that, within experimental error, one must conclude that results show no dependence of shock velocity (hence compressibility) upon crystallographic orientation. The measured shock velocities from each shot were averaged to obtain the value used in the graphical solutions. The data are listed under zinc in Table I and are also plotted in Fig. 19, where they exhibit good agreement with results obtained using ordinary cast polycrystalline zinc.

The shock wave results differ from the lower pressure static measurements⁵ which indicate a several-fold difference in compressibility depending upon whether the compression is parallel to the C axis or normal to it.

E. Discussion of Experimental Data

The probable error per data point, determined from the observed reproducibility, is 0.7% in shock velocity for a given free-surface velocity (about 1% in compression, $1-V/V_0$, at a given pressure). This estimate

⁵ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 189 (1949).

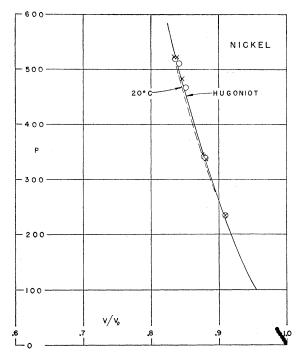
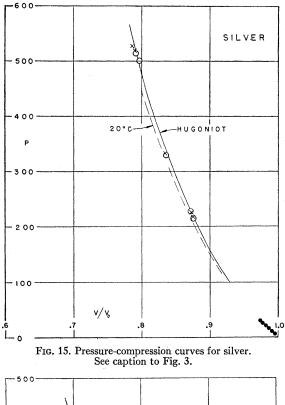
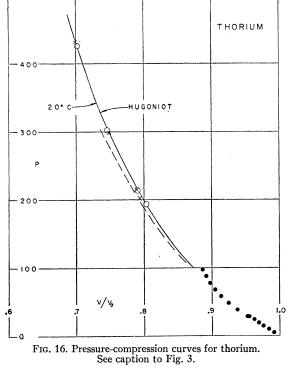


FIG. 14. Pressure-compression curves for nickel. See caption to Fig. 3.

does not apply, however, to the eight rare metals (In, Pd, Rh, Pt, Ta, Tl, Nb, Zr) at the bottom of Table I, the probable errors for which are approximately 3%in compression.

Previously reported¹ Hugoniot curves for 24ST aluminum, copper, and zinc are in substantial agreement with the present results. The present low-pressure (195-kilobar) zinc curve, however, indicates a 4%smaller compression than the previously drawn curve (Table III of reference 1). Similar comparisons of remaining data show agreement to 2% or better.

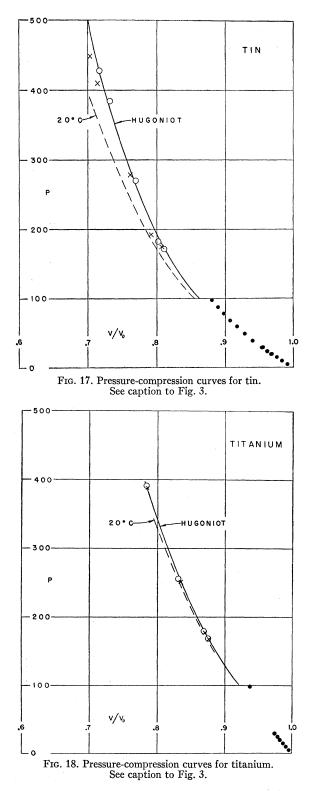

Present results may also be compared with shockwave data obtained by another Los Alamos group using an electrical pin-contactor method.² The agreement with their tabulated "recent data" (24ST aluminum data sufficient to determine the Hugoniot curve from 145 to 330 kilobars) is everywhere better than 1% in compression, and is sufficiently good to indicate freedom from sizable consistent error of either method.


Impurities for the elements studied were determined by spectrochemical analysis. Specimens whose impurities exceeded 0.2% are: cobalt (0.5% Ni, 0.05% miscellaneous), nickel (0.1% Co, 0.05% each Mg, Si, Mn, Fe), titanium (0.05% each Al, Si, Cr, Mn, Sn).

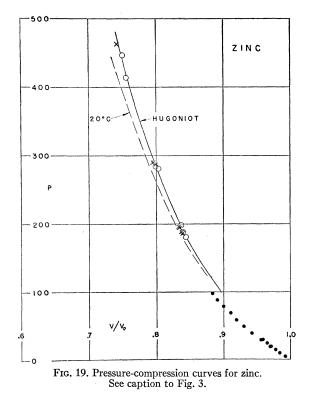
The brass composition was 60.56% Cu, 39.31% zinc. The 24ST aluminum composition was 93.0% aluminum, 4.5% copper, 1.5% magnesium, 0.6% manganese.

F. Guide to Data Figures

The points below 100 kilobars, plotted as solid black disks in Figs. 3 to 29, are statically determined pressure-



compression data taken from four articles by Bridgman.5-8


Except for the points around 400 kilobars, the iron

- ⁶ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55 (1948).

⁷ P. W. Bridgman, Proc. Am. Acad. Arts Sci. **76**, 9 (1945).
 ***** P. W. Bridgman, Proc. Am. Acad. Arts Sci. **74**, 425 (1945).

data of Fig. 10 are reproduced from a recent article by Bancroft, Peterson, and Minshall.9

II. EQUATION OF STATE

The purpose of the present section is to provide a complete thermodynamic description of all states neighboring the experimental Hugoniot curves. To this end, the Mie-Grüneisen equation of state is employed, for which the volume dependence of the Grüneisen ratio is determined using the Dugdale-MacDonald relation. These considerations lead to a complete P, V, E equation of state. This equation of state and available zero-pressure data then permit the calculation of remaining thermodynamic data of interest, and numerical results are tabulated for the various metals.

A. Theory

Mie-Grüneisen Equation of State

For the thermodynamic states of interest here, we shall assume that the thermal energy of a metallic crystal can be adequately described by means of a set of simple harmonic oscillators (the normal modes of the dynamical system) whose frequencies, ν_{α} , are functions only of volume. The internal energy, E, is then given by¹⁰⁻¹²

$$E = \Phi + \frac{1}{2} \sum_{\alpha} h \nu_{\alpha} + \sum_{\alpha} \frac{h \nu_{\alpha}}{e^{h \nu_{\alpha}/kT} - 1}, \quad \alpha = 1, \cdots 3N, \quad (8)$$

¹⁰ See, for example, J. C. Slater, Introduction to Chemical Physics (McGraw-Hill Book Company, Inc., New York, 1939), Chap. ХШ.

⁹ Bancroft, Peterson, and Minshall, J. Appl. Phys. 27, 291 (1956).

 ¹¹ F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York and London, 1940), Chap. III.
 ¹² M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954), Chap. II.

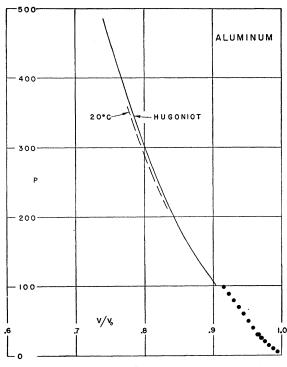


FIG. 20. Pressure-compression curves for 24ST aluminum. See caption to Fig. 3.

where Φ is the potential energy of the crystal with the particles at rest in their equilibrium positions, and the summation (\sum_{α}) is over the 3N normal modes of the crystal, N being the total number of atoms.

The pressure is given by

$$P = -\frac{d\Phi}{dV} + \frac{1}{V} \sum \gamma_{\alpha} \bigg\{ \frac{1}{2} h \nu_{\alpha} + \frac{h \nu_{\alpha}}{e^{h \nu_{\alpha}/kT} - 1} \bigg\}, \qquad (9)$$

where

$$\gamma_{\alpha} = -d \ln \nu_{\alpha}/d \ln V. \tag{10}$$

Equation (9) simplifies in two interesting cases. If all the γ_{α} are equal (the consequences of simplifying assumptions discussed below), these quantities may be factored from the summation as γ . Alternatively, in the classical limit, the energies of all oscillators are equal, so that these quantities may be factored and γ becomes the average of the γ_{α} . In either case Eq. (9) reduces to the equation of state of Mie and Grüneisen,¹³

$$P = -\frac{d\Phi}{dV} + \frac{\gamma}{V} E_{\rm vib},\tag{11}$$

where E_{vib} is the vibrational contribution to the internal energy. A rearrangement of the terms in Eq. (11) yields

$$P + \left\{ \frac{d\Phi}{dV} - \frac{\gamma}{V} \sum_{\alpha} \frac{1}{2} h \nu_{\alpha} \right\} = \frac{\gamma}{V} \sum_{\alpha} \frac{h \nu_{\alpha}}{e^{h \nu_{\alpha}/kT} - 1} \quad (12a)$$

¹³ E. Grüneisen, Handbuch der Physik (Verlag J. Springer, Berlin, 1926), Vol. 10, p. 22.

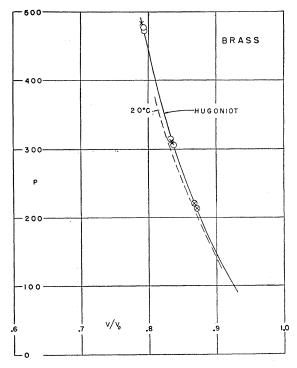


FIG. 21. Pressure-compression curves for brass, See caption to Fig. 3.

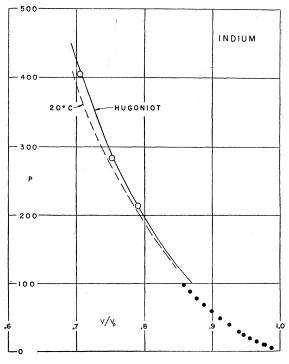


FIG. 22. Pressure-compression curves for indium. See caption to Fig. 3.

or $P - P_K = (\gamma/V)E_{\text{th}} = (\gamma/V)(E - E_K), \quad (12b)$

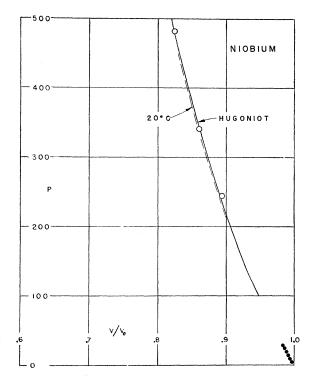


FIG. 23. Pressure-compression curves for niobium. See caption to Fig. 3.

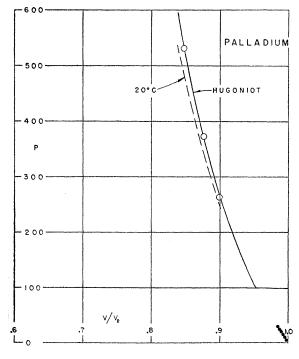
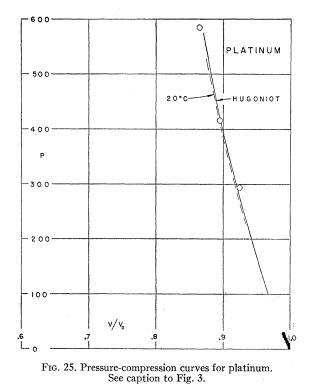



FIG. 24. Pressure-compression curves for palladium. See caption to Fig. 3.

where the subscript K refers to the quantities as a function of volume at 0°K. Grüneisen's ratio, γ , can be

expressed in terms of thermodynamic quantities by differentiating Eq. (12b). Since γ is a function only of volume,

$$\gamma = V \left(\frac{\partial P}{\partial E}\right)_{V} \equiv V \left(\frac{\partial P}{\partial T}\right)_{V} / C_{v}$$
$$\equiv -V \left(\frac{\partial P}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} / C_{v}$$
$$\equiv -V \left(\frac{\partial P}{\partial V}\right)_{S} \left(\frac{\partial V}{\partial T}\right)_{P} / C_{p}, \quad (13)$$

where C_v and C_p are the specific heats at constant volume and pressure, respectively. At zero pressure and room temperature γ can be evaluated from the measured values of the bulk modulus, thermal expansion coefficient, and specific heat; and for most metals the value so obtained lies between 1 and 3 (see Table III).

Equation (12b) can be rewritten in terms of any P, V, E curve, such as the experimental Hugoniot:

$$P - P_H = (\gamma/V)(E - E_H). \tag{14}$$

Determination below of the Grüneisen ratio $\gamma(V)$ then provides one with a complete P, V, E equation of state.

It is interesting to note, with respect to C_v , that the thermodynamic identity

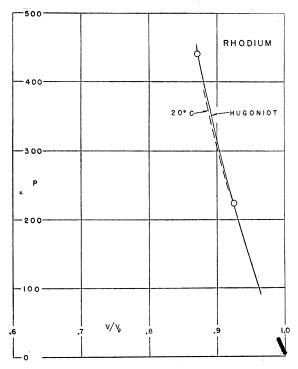


FIG. 26. Pressure-compression curves for rhodium. See caption to Fig. 3.

$$\left(\frac{\partial C_{v}}{\partial T}\right)_{s} = \frac{C_{v}}{T} + T\left(\frac{\partial P}{\partial T}\right)_{v} \left\{\frac{\partial}{\partial T}\left[\frac{C_{v}}{T(\partial P/\partial T)_{v}}\right]\right\}_{v}, \quad (15)$$

for γ a function only of volume, implies that C_v is a function only of entropy.

Grüneisen Ratio

Under the assumption that Poisson's ratio is independent of volume, Slater¹⁴ extended the Debye theory for an isotropic continuum to obtain

$$\gamma = -\frac{V}{2} \left(\frac{d^2 P/dV^2}{dP/dV} \right) - \frac{2}{3}.$$
 (16)

Dugdale and MacDonald¹⁵ proposed a modification of Slater's formula. Their result,

$$\gamma = -\frac{V}{2} \left(\frac{d^2 (PV^{\frac{2}{3}})/dV^2}{d(PV^{\frac{2}{3}})/dV} \right) - \frac{1}{3}, \tag{17}$$

follows for cubic lattices from the assumption that all of the interatomic force constants change the same (percentagewise) upon compression of the lattice.¹⁶

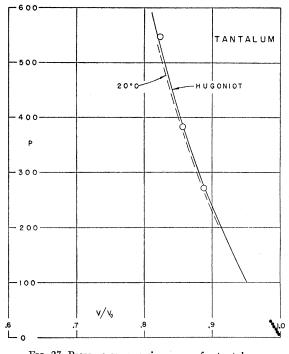


FIG. 27. Pressure-compression curves for tantalum. See caption to Fig. 3.

Equations (16) and (17) differ by 0.33 at P=0, with Eq. (16) indicating the larger value. For most metal P-V curves, the difference is less at higher pressure.

Quite recently, Barron^{17,18} extended the Born-von Kármán theory to an essentially exact calculation of the Grüneisen ratio for a few simple lattice models. His results show that the γ_{α} are far from equal, though equality of the γ_{α} is implied by the simplifying assumptions used to establish either Eq. (16) or Eq. (17). In the classical limit (the calculations indicate $T \gtrsim 0.3\Theta$, where Θ is the Debye temperature), the Mie-Grüneisen equation of state is again valid. Comparisons of the γ obtained from Eq. (16) or Eq. (17) with the hightemperature results by Barron indicate fair agreement, with the Dugdale-MacDonald formula, Eq. (17), more nearly reproducing Barron's results. [For example, a model of the NaCl lattice gives $\gamma = 2.3$ from Eq. (16), $\gamma = 2.0$ from Eq. (17), while Barron's calculations indicate $\gamma = 1.67.$]

At zero pressure, sufficient thermodynamic data exist to test the values of γ calculated from Eq. (16) or (17) against the thermodynamic values from Eq. (13). Slater^{19,20} and Gilvarry,²¹ using first and second derivatives of P obtained from Bridgman's data, have made extensive comparisons of the γ calculated from Eq. (16)

¹⁴ Reference 10, p. 239.

¹⁵ J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832 (1953).

¹⁶ Detailed in a forthcoming article "Compression of Solids by Strong Shock Waves" by Rice, McQueen, and Walsh, to appear in Solid State Physics, Advances in Research and Application (Academic Press, Inc., New York, 1957), Vol. VI. Zero-pressure tests of Eq. (17), results of which are summarized above, are also presented.

¹⁷ T. H. K. Barron, Ann. Phys. 1, 77 (1957). ¹⁸ T. H. K. Barron, Phil. Mag. 46, 720 (1955).

 ¹⁹ J. C. Slater, reference 10, Chap. XXVII.
 ²⁰ J. C. Slater, Phys. Rev. 57, 744 (1940).

²¹ J. J. Gilvarry, Phys. Rev. 102, 331 (1956).

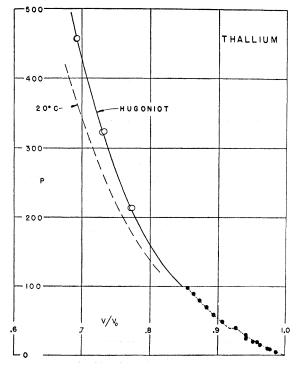


FIG. 28. Pressure-compression curves for thallium. See caption to Fig. 3.

with that from Eq. (13). For most metals the agreement is quite good. A similar comparison, using the present shock-wave data, has been carried out by the present authors.¹⁶ Such a test is of interest because the shock wave results limit properly at zero pressure to the desired adiabatic first and second derivatives; also the extended data region of the present experimentation should lead to better precision in the determination of second derivatives of P. The tests, which show less scatter than the previous work, indicate somewhat more success for the Dugdale-MacDonald formula, Eq. (17), than for Eq. (16), though both are in substantial agreement with the experimental results. The former reproduces the values of γ from Eq. (13) with an average error of 15%.

In the following calculations, an attempt is made to obtain the most accurate description of high-pressure states. Accordingly, the experimental thermodynamic properties, i.e., of specific heats, thermal expansions, and γ_0 , are employed along the zero-pressure isobars, and only the volume variation of γ is estimated by an empirical relation. The Dugdale-MacDonald formula, Eq. (17), is employed for this purpose. It is, of course, clear that the calculated values of γ , at high pressures, are not very accurate. In regard to calculated P-V curves, on the other hand, γ is used only to estimate the small offsets (typically 1% in volume) from the experimental Hugoniot and errors as large as 25% in the offsets (i.e., approximately 25% in γ) lead to uncer-

Metal	γ 0	A	В	С
Beryllium	1.17	-2.523	12.990	-31.851
Cadmium	2.27	13.417	-75.631	72.965
Chromium	1.08	10.965	-54.874	49.000
Cobalt	1.99	-5.906	26.354	-48.076
Copper	2.04	-3.296	10.493	-19.264
Gold	3.05	-21.876	115.18	-213.17
Lead	2.78	-8.406	22.791	-22.648
Magnesium	1.46	-2.078	4.621	-4.840
Molybdenum	1.58	-4.600	25.837	-61.398
Nickel	1.91	-8.007	35.275	-59.812
Silver	2.47	-5.670	19.334	32.891
Thorium	1.124	3.552	-14.223	15.552
Tin	2.03	9.4186	-52.133	66.016
Titanium	1.18	2.225	-9.904	11.052
Zinc	2.38	-6.087	18.626	-23.535
24ST aluminum	2.13	-7.245	24.707	-32.577
Brass	2.04	3.405	-26.304	38.692
Indium	2.238	-9.431	27.392	-26.186
Niobium	1.679	-5.882	26.261	-49.145
Palladium	2.183	26.824	-205.44	407.72
Platinum	2.627	-16.911	100.10	-216.84
Rhodium	2.265	-11.228	55.898	-109.85
Tantalum	1.689	-5.166	15.925	-18.991
Thallium	2.96	-3.617	2.264	-1.171
Zirconium	0.771	-0.449	0.285	-0.102

TABLE III. Analytical fits of Grüneisen ratios. $\gamma = \gamma_0 + A \mu + B \mu^2 + C \mu^3$.

tainties which are only comparable to probable errors in the experimental curves. Temperature increases, calculated along constant-entropy curves, reflect an error which is roughly proportional to the volumeaverage error in γ . The use of the correct γ_0 at normal

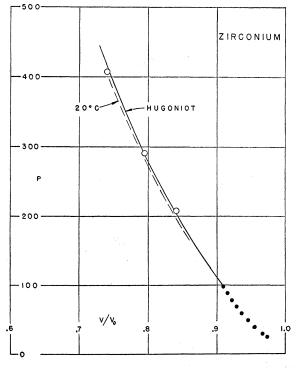


FIG. 29. Pressure-compression curves for zirconium. See caption to Fig. 3.

volume and an experimental additive term in the listed temperatures (T at P=0 on the adiabat through the point) then lead to temperatures which should be reliable to 10% or less of their centigrade values.

B. Calculations

Combining Eq. (17), which is assumed to be valid along the 0°K curve, with Eq. (14) yields the following equation for the pressure $P_K(V)$ at 0°K, in terms of the known Hugoniot curve, $P_H(V)$:

$$\frac{-\frac{1}{2}Vd^{2}(P_{K}V^{\frac{3}{2}})/dV^{2}}{d(P_{K}V^{\frac{3}{2}})/dV} - \frac{1}{3}}$$

$$= \frac{V(P_{H} - P_{K})}{\frac{1}{2}P_{H}(V_{0H} - V) + E_{0H} + \int_{V_{0K}}^{V} PdV}.$$
(18)

The initial conditions required for the integration of Eq. (18) are the specific volume, the compressibility at 0°K, $P_K=0$, and the specific internal energy, E_{0H} , at the foot of the Hugoniot (relative to an arbitrary zero energy at P=0, T=0°K). These quantities were obtained from rough extrapolations²² of available zero pressure data to 0°K. Zero-degree-Kelvin pressure volume curves, obtained by numerical integration of Eq. (18), are listed in Table IV. Analytical fits of the associated $\gamma(V)$ curves, which may now be obtained from either Eq. (14) or Eq. (17). are given in Table III.

Differentiating Eq. (14) gives

$$P_{A} = -\frac{dE_{H}}{dV} + (P_{H} - P_{A})\frac{d}{dV}\left(\frac{V}{\gamma}\right) + \frac{V}{\gamma}\left(\frac{dP_{H}}{dV} - \frac{dP_{A}}{dV}\right),\tag{19}$$

which is a first oddrer differential equation for an adiabat, $P_A(V)$, in terms of the known $P_H(V)$, $E_H(V)$,

 $[\gamma_{0H} + (d\gamma/dV)_{0H}(V_{0H} - V_{0K})][E_{0H} + \frac{1}{2}P_H(V_{0H} - V_{0K})] = V_{0K}P_H,$

where the first bracket is an approximate value for γ at V_{0K} . The compressibility at 0°K, $P_K=0$, was obtained from the derivative of Eq. (14) evaluated at $V=V_{0K}$:

$$V_{0K}(dP_K/dV)_{V=V_{0K}} = [P_H - E_H(d\gamma/dV) - \gamma(dE_H/dV)]_{V=V_{0K}}.$$

Approximate values of $d\gamma/dV$, necessary for the evaluation of each of the above relations, were obtained from Eq. (17), and the assumption that the right side of Eq. (17) can be determined using the adiabat through the foot of the Hugoniot curve. Consequent values of γ_0 and $d\gamma/dV$ are

$$\gamma_{0H} = B/A,$$

$$V_{0H} \left(\frac{d\gamma}{dV}\right)_{0H} = \frac{5}{2} \frac{B^2}{A^2} \frac{7}{6} \frac{B}{A} - \frac{3}{3} \frac{C}{-9}.$$

The first of these relations was also used in Sec. I to determine the values of B/A used in analytical fits of the experimental data.

and $\gamma(V)$. Equation (19) was integrated numerically to obtain serveral adiabats for each metal. Two of these, the adiabat which coincides with the foot of the Hugoniot and an adiabat which intersects the Hugoniot curve at a pressure near the upper limit of the experimental data, are listed in Table IV.

At constant entropy the thermodynamic identity

$$TdS = C_v dT + T(\partial P/\partial T)_V dV = 0$$

can be integrated to give temperature as a function of volume:

$$T = T_i \exp\left[-\int_{V_i}^{V} \frac{\gamma}{V} dV\right].$$
 (20)

Here the relation $\gamma = V(\partial P/\partial T)_V/C_v$ was used, and T_i is an initial temperature at some volume V_i on the adiabat. Values of T_i , V_i were obtained along P=0from available thermal expansion data. Equation (20) can then be used together with the adiabatic P-V curves determined above to obtain the temperature at any P-V point neighboring the Hugoniot curve. Resulting temperatures for pressure-volume points along two adiabats are listed in Table IV. Temperatures along the Hugoniot curve for each metal are also listed in Table IV and the 20°C isotherms are plotted in Figs. 3–29.

Calculated values of the ratio

$$\frac{U_{r}}{U_{p}} = \int_{0}^{P_{H}} (-dV/dP_{A})^{\frac{1}{2}} dP_{A} / [P_{H}(V_{0H} - V)]^{\frac{1}{2}}$$
(21)

(see Eq. 4 and associated discussion) are listed in Table V for the various solids. The denominator in Eq. (21) is the expression for the shock wave particle velocity corresponding to shock pressure P_H and is a consequence of Eqs. (1) and (2). The numerator²³ is the Reimann integral for the particle velocity due to the centered, simple rarefaction wave which relieves the pressure from P_H to zero, and is evaluated using the adiabat which intersects the Hugoniot curve at P_H . The refinements indicated by the present calculations cause a slight shift of the P, V points, plotted as \times 's in the figures, which were obtained by using Eq. (4). The corrections reduce the compression offsets (between the \times 's and the curves drawn through the graphical solutions) from an average magnitude of 1.1% to 0.7%.

It should be noted that three metals, lead, tin and cadmium, exhibit free-surface-approximation solutions which are in sizable disagreement with results obtained from the graphical solutions. The three are all lowmelting-point metals and are, indeed, the only metals (among those for which free-surface velocity measure-

²² The values of E_{0H} were obtained by integrating the Debye specific heat curve. Values of the initial volume, V_{0K} , were those which satisfied Eq. (14) evaluated at $V = V_{0K}$:

²³ See, for example, R. Courant and K. O. Friedricks, *Supersonic Flow and Shock Waves* (Interscience Publishers, Inc., New York, 1948). The present expression can be obtained from their Eq. (34.05).

$\sum P(\text{kilobars})$	0	100	150	200	250	300	350	400	450	500
Beryllium 0°K Hugoniot T_H Adiabat T_A	0.9982 1.000 20°C 1.000 20°C	0.9263 0.9277 50° 0.9276 45	0.8972 0.8990 70° 0.8987 55	0.8716 0.8725 97° 0.8728 64	0.8487 0.8503 127° 0.8493 74	0.8275 0.8299 168° 0.8284 82	0.8082 0.8110 213°			
Adiabat (309 kilobars) T _A	1.003 97°C	0.9301 129	0.9010 143	0.8742 155	0.8506 164	0.8299 181	0.8103 187			
Cadmium $0^{\circ}K$ Hugoniot T_H Adiabat T_A Adiabat	0.9764 1.000 20°C 1.000 20°C	0.8524 0.8742 210 0.8708 157	0.8188 0.8403 349 0.8339 213	0.7932 0.8141 515 0.8050 257	0.7716 0.7932 697 0.7819 297	0.7527 0.7752 895 0.7620 331	0.7364 0.7597 1111 0.7450 359	384	1563 0.7164 408	0.6972 0.723 1800 0.704 431
(318 kilobars) T_A	1.028 310°C	0.8976 559	$\begin{array}{c} 0.8568\\674\end{array}$	0.8244 784	0.7982 866	0.7763 945	0.7573 1014	0.7414 1072	0.7265 1125	0.713 1177
Chromium $0^{\circ}K$ Hugoniot T_H Adiabat T_A Adiabat (522 kilobars)	0.9969 1.000 20°C 1.000 20°C 1.003	0.9528 0.9561 39 0.9561 37 0.9595	0.9336 0.9373 54 0.9372 46 0.9410	0.9160 0.9202 73 0.9201 56 0.9238	0.9006 0.9050 96 0.9044 66 0.9081	0.8860 0.8908 126 0.8899 76 0.8933	0.8730 0.8779 161 0.8717 86 0.8798	0.8607 0.8658 199 0.8642 95 0.8674	0.8492 0.8548 242 0.8529 103 0.8560	0.8387 0.8447 291 0.8421 112 0.8449
	170°C	194	209	223	238	253	267	281	295	307
Cobalt 0°K Hugoniot T_H Adiabat T_A Adiabat (523 kilobars)	0.9931 1.000 20°C 1.000 20°C 1.005	$0.9500 \\ 0.9552 \\ 48 \\ 0.9552 \\ 45 \\ 0.9581$	0.9318 0.9368 65 0.9366 57 0.9392	0.9150 0.9200 86 0.9197 67 0.9221	0.9000 0.9050 109 0.9045 76 0.9065	0.8863 0.8915 134 0.8905 86 0.8926	0.8734 0.8782 166 0.8770 96 0.8792	0.8112 0.8160 202 0.8145 104 0.8165	0.8500 0.8551 241 0.8531 111 0.8551	$\begin{array}{r} 0.8395\\ 0.8450\\ 283\\ 0.8422\\ 117\\ 0.8447\end{array}$
T_A	120°C	155	171	185	199	211	224	235	245	254
Copper 0°K Hugoniot T_H Adiabat T_A Adiabat (504 kilobars)	0.9903 1.000 20°C 1.000 20°C 1.010	0.9337 0.9412 63 0.9408 57 0.9490	0.9109 0.9186 89 0.9180 73 0.9255	0.8908 0.8980 121 0.8974 85 0.9038	0.8732 0.8803 158 0.8781 99 0.8852	0.8571 0.8643 201 0.8625 111 0.8683	$\begin{array}{c} 0.8424\\ 0.8500\\ 255\\ 0.8472\\ 123\\ 0.8528\end{array}$	0.8290 0.8370 311 0.8334 134 0.8387	$0.8165 \\ 0.8249 \\ 373 \\ 0.8209 \\ 145 \\ 0.8255$	$0.8049 \\ 0.8137 \\ 444 \\ 0.8092 \\ 155 \\ 0.8143$
T_A	215°C	279	306	331	353	375	395 395	415	432	448 448
Gold $0^{\circ}K$ Hugoniot T_H Adiabat T_A	0.9900 1.000 20°C 1.000 20°C	0.9458 0.9521 65 0.9520 59	0.9277 0.9334 96 0.9331 74	0.9113 0.9167 121 0.9161 86	0.8966 0.9018 153 0.9014 97	0.8829 0.8882 200 0.8874 108	0.8707 0.8759 253 0.8744 117	0.8589 0.8643 311 0.8626 125	0.8480 0.8537 372 0.8514 133	0.8377 0.8438 443 0.8412 141
$\begin{array}{l} \text{Adiabat} \\ \text{(518 kilobars)} \\ T_A \end{array}$	1.009 235°C	0.9583 311	0.9382 338	0.9210 361	0.9053 383	0.8910 401	0.8779 419	0.8660 434	$0.8546 \\ 449$	$\begin{array}{c} 0.8441\\ 464 \end{array}$
Lead $0^{\circ}K$ Hugoniot T_H Adiabat T_A Adiabat	0.9762 1.000 20°C 1.000 20°C	0.8492 0.8623 228 0.8600 139	0.8113 0.8253 375 0.8203 179	0.7808 0.7958 609 0.7888 210	0.7558 0.7722 861 0.7628 241	$0.7340 \\ 0.7523 \\ 1150 \\ 0.7403 \\ 267$	0.7150 0.7348 1459 0.7206 289	0.6979 0.7191 1812 0.7034 310	0.6829 0.7051 2192 0.6878 329	0.6690 0.6930 2575 0.6736 360
(204 kilobars) T_A	1.020 249°C	0.8695 485	0.8288 563	0.7959 624	0.7696 682	0.7465 730	0.7266 773	0 7585 814	0.7426 854	0.7280 891

TABLE IV. Pressure-volume loci and associated temperatures (degrees centigrade). The first adiabat listed for each material coincides with the Hugoniot curve at 20°C, zero pressure. The second adiabat intersects the Hugoniot curve near the high-pressure limit of the experimental data. The pressure at which the second adiabat crosses the Hugoniot curve is given in parentheses.

$\searrow P(\text{kilobars})$	0	100	150	200	250	300	350	400	450	500
Magnesium 0°K Hugoniot	0.9985 1.000	0.8200 0.8300	0.7604 0.7712	0.7304 0.7432	0.6980 0.7123	0.6699 0.6861				-
T_H Adiabat T_A	20°C 1.000 20°C	$174 \\ 0.8278 \\ 74$	313 0.7670 131	487 0.7362 155	691 0.7032 176	923 0.6737 196				
Adiabat (229 kilobars) T _A	1.023 296°C	0.8395 447	0.7769 526	0.7450 576	0.7110 620	0.6816 660				
Molybdenum 0°K	0.9971	0.9636	0.9486	0.9347	0.9219	0.9096	0.8979	0.8870	0.8768	0.8670
$\begin{array}{l} \operatorname{Hugoniot} \\ T_H \end{array}$	1.000 20°C	0.9660 37	0.9510 49	0.9347 0.9369 62	0.9240 79	0.9090 0.9119 101	0.9002 125	0.8895 154	0.8794 188	0.8698
Adiabat T _A Adiabat	1.000 20°C	0.9659 35	0.9508 43	0.9368 49	0.9239 55	0.9117 61	0.8999 67	0.8890 72	0.8786 77	0.8685 83
(500 kilobars) T_A	1.002 139°C	0.9674 161	0.9522 171	0.9382 180	0.9250 189	0.9128 197	0.9011 205	0.8900 213	0.8799 221	0.8696 228
Nickel 0°K	0.9930	0.9551	0.9320	0.9151	0.8999	0.8855	0.8720	0.8599	0.8480	0.8370
Hugoniot T_H	1.000 20°C	0.9501 0.9501 43	0.9320 0.9367 61	0.9131 0.9197 79	0.8999 0.9042 101	0.8855 0.8900 125	0.8720 0.8769 150	0.8399 0.8643 181	0.8480 0.8530 217	0.8422
$\begin{array}{c} \text{Adiabat} \\ T_{A} \\ \text{Adiabat} \end{array}$	1.000 20°C	0.9500 43	0.9364 54	0.9195 63	0.9038 71	0.8890 79	0.8758 86	0.8633 93	0.8517 100	0.8401 106
Adiabat (508 kilobars) T _A	1.005 136°C	0.9588 171	0.9397 186	0.9220 199	0.9062 210	0.8918 221	0.8781 231	0.8653 241	0.8536 251	0.8423 259
Silver	0.0070	0.0000	0.0051	0.0724	0.0545	0.0100	0.0000	0.0000	0 50 40	0 5000
0°K Hugoniot <i>T_H</i>	0.9878 1.000 20°C	0.9202 0.9291 88	0.8951 0.9037 130	0.8734 0.8818 186	$0.8547 \\ 0.8632 \\ 255$	$0.8380 \\ 0.8470 \\ 326$	$0.8229 \\ 0.8322 \\ 417$	0.8090 0.8190 520	0.7960 0.8066 627	0.7833 0.7953 747
$\begin{array}{c} \text{Adiabat} \\ T_{\boldsymbol{A}} \end{array}$	1.000 20°C	0.9286 74	0.9028 96	0.8804 114	0.8612 131	0.8437 148	0.8279 168	0.8138 176	0.8006 189	0.7886 201
Adiabat (479 kilobars) T _A	1.017 314°C	0.9406 433	0.9133 483	0.8900 524	0.8697 560	0.8520 594	0.8353 627	0.8207 656	0.8074 682	0. 7980 708
Thorium										
0°K Hugoniot T _H	0.9920 1.000 20°C	0.8643 0.8727 122	0.8222 0.8310 227	0.7878 0.7979 377	$0.7594 \\ 0.7705 \\ 552$	0.7348 0.7473 752	0.7128 0.7274 969	0.6939 0.7099 1197	0.6767 0.6943 1419	0.6610 0.6806 1631
Adiabat T_A	1.000 20°C	0.8716 76	0.8283 101	0.7938 124	0.7647 145	0.7396 164	0.7176 181	0.6979 197	0.6802 212	0.6634
Adiabat (483 kilobars) T _A	1.035 802°C	0.8989 1003	0.8540 1095	0.8163 1183	0.7856 1263	0.7586 1339	0.7352 1405	0.7146 1467	0.6960 1525	0.6784 1581
Tin										
0°K Hugoniot T	0.9806 1.000 20°C	0.8439 0.8614 219	0.8068 0.8248 377	0.7778 0.7964 556	0.7540 0.7735	0.7334 0.7544 953	0.7159 0.7382 1139	0.7002 0.7240 1318		
T_H Adiabat T_A	1.000 20°C	0.8580 149	0.8183 198	0.7877 239	752 0.7622 275	0.7414 305	0.7229 332	0.7062 358		
Adiabat (205 kilobars) T _A	1.012 208°C	0.8710 415	0.8297 497	0.7970 569	0.7703 631	0.7479 683	0.7289 731	0.7120 773		
Titanium										
0°K Hugoniot	0.9944 1.000 20°C	0.9119 0.9170	0.8801 0.8857	0.8527 0.8587	0.8290 0.8354	0.8077 0.8148	0.7888 0.7964 394	0.7713 0.7809		• • •
T _H Adiabat T _A	1.000 20°C	65 0.9168 54	105 0.8851 70	155 0.8576 84	223 0.8334 97	302 0.8118 111	0.7921 123	491 0.7730 135		
Adiabat (340 kilobars) T _A	1.005 210°C	0.7222 266	0,8898 290	0.8618 314	0.8375 337	0.8155 359	0.7963 380	0.7776 400		2122 14

TABLE IV.—Continued.

∑ P(kilobars)	0	100	150	200	250	300	350	400	450	500
Zinc										
0°K Hugoniot	0.9800 1.000	0.8834 0.8960	0.8507 0.8633	0.8234 0.8363	0.8004 0.8140	0.7802 0.7942	0.7622 0.7767	0.7458 0.7615	0.7310 0.7482	0.7180 0.7360
T_H	20°C	119	187	272	369	482	609	747	900	1061
$\begin{array}{c} \text{Adiabat} \\ T_A \end{array}$	1.000 20°C	0.8949 96	0.8608 123	0.8328 147	0.8082	0.7875 189	0.7690 207	0.7522 224	0.7371 239	0.7232 254
Adiabat										
(404 kilobars) T_A	1.030 302°C	0.9126 479	0.8760 540	0.8456 593	0.8208 641	0.7985 681	0.7792 720	0.7619 756	0.7460 791	0.7318 821
Aluminum										
0°K Hugoniot	$0.9874 \\ 1.000$	0.8966 0.9045	0.8641 0.8716	$0.8362 \\ 0.8441$	0.8126 0.8210	0.7915 0.8008	0.7724 0.7824	$0.7553 \\ 0.7661$	$0.7400 \\ 0.7513$	0.7255 0.7380
T_H	20°C	94	153	223	308	405	518	637	770	909
Adiabat T_{A}	1.000 20°C	0.9036 78	0.8701 100	0.8422 119	0.8180 135	0.7961 150	0.7770 163	0.7594 177	0.7435 189	0.7288 201
Adiabat (513 kilobars)	1.034	0.9250	0.8886	0.8578	0.8319	0.8092	0.7892	0.7710	0.7543	0.7392
T_A	454°C	633	703	755	799	841	881	915	949	981
Brass								÷ =====		
0°K Hugoniot	0.9869 1.000	0.9140 0.9250	0.8876 0.8984	0.8649 0.8758	0.8453 0.8564	0.8283 0.8395	$0.8130 \\ 0.8250$	0.7990 0.8115	0.7864 0.7992	$0.7745 \\ 0.7882$
T_H	20°C	89	129	175	235	305	382	467	557	651
$\begin{array}{c} \text{Adiabat} \\ T_{A} \end{array}$	1.000 20°C	0.9244 73	0.8971 96	0.8739 118	0.8538 137	0.8360 155	0.8200 171	0.8056 187	0.7922 201	0.7803 215
Adiabat (446 kilobars)	1.014	0.9363	0.9081	0.8839	0.8620	0.8442	0.8277	0.8129	0.7991	0.7860
T_A	230°C	323	363	401	436	468	499	527	552	577
Indium										
0°K Hugoniot	$0.9801 \\ 1.000$	0.8604 0.8701	0.8210 0.8302	0.7880 0.7979	0.7600 0.7710	$0.7351 \\ 0.7478$	0.7135 0.7270	$0.6943 \\ 0.7087$	0.6769 0.6922	$0.6610 \\ 0.6774$
T_H	20°C	153	260	397	561	745	950	1179	1439	1710
Adiabat T _A	1.000 20°C	0.8687 99	0.8276 124	0.7939 144	0.7650 163	0.7400 181	0.7180 195	0.6983 210	0.6800 223	0.6624 233
Adiabat (474 kilobars)	1.002	0.8969	0.8507	0.8142	0.7833	0.7566	0.7336	0.7124	0.6936	0.6760
T_A	1.002	1055°C	1157	1242	1314	1381	1439	1495	1547	1593
Niobium										
0°K Hugoniot	$0.9951 \\ 1.000$	$0.9440 \\ 0.9476$	0.9226 0.9260	0.9032 0.9067	$0.8856 \\ 0.8894$	$0.8694 \\ 0.8730$	$0.8544 \\ 0.8582$	$0.8404 \\ 0.8449$	0.8271 0.8321	0.8148 0.8197
T_H	20°C	49	73	97	133	177	227	284	351	427
$\begin{array}{c} \text{Adiabat} \\ T_{\boldsymbol{A}} \end{array}$	1.000 20°C	$0.9475 \\ 45$	0.9256 55	0.9061 65	0.8885 73	0.8721 81	0.8566 89	0.8427 96	0.8296 103	0.8171 110
Adiabat		0.9526	0.9302	0.9104	0.8923	0.8756	0.8601	0.8459	0.8326	0.8200
(528 kilobars) T _A	1.006 287°C	335	358 358	377	393	409	424	439	452	465
Palladium										
0°K Hugoniot	0.9918 1.000	0.9422 0.9520	0.9233 0.9330	0.9071 0.9170	0.8930 0.9029	0.8808 0.8903	0.8696 0.8792	0.8596 0.8692	$0.8500 \\ 0.8600$	0.8410 0.8513
T_H	20°C	65	97	135	180	231	289	353	423	497
Adiabat T _A	1.000 20°C	0.9517 61	0.9326 79	0.9159 104	0.9011 125	0.8882 143	0.8766 159	0.8658 177	0.8556 192	0.8466
Adiabat (481 kilobars)	1.006	0.9587	0.9399	0.9230	0.9080	0.8941	0.8820	0.8710	0.8609	0.8512
T_A	1.000 187°C	24 6	278	311	343	375	403	429	454	477
Platinum					0.00		0.0075	0.0075		
0°K Hugoniot	0.9940 1.000	0.9632 0.9679	0.9500 0.9540	0.9377 0.9412	0.9260 0.9298	$0.9154 \\ 0.9190$	0.9052 0.9087	0.8959 0.8993	0.8868 0.8903	0.8779 0.8819
T_H	20°C	46	60	77	95	117	144	174	207	244
Adiabat T_{A}	1.000 20°C	0.9678 44	0.9539 54	0.9410 63	0.9292 71	0.9183 78	0.9081 85	0.8985 91	0.8891 97	0.8806 102
Adiabat (481 kilobars)	1.003	0.9697	0.9567	0.9429	0.9310	0.9199	0.9096	0.8999	0.8905	0.8819
(HOL KHODATS)	119°C	151	165	177	187	197	207	216	224	231

TABLE IV.—Continued.

$\searrow P(kilobars)$	0	100	150	200	250	300	350	400	450	500
Rhodium								· · · · ·		
0°K	0.9946	0.9642	0.9509	0.9380	0.9264	0.9156	0.9053	0.8958	0.8864	0.8778
Hugoniot	1.000	0.9683	0.9548	0.9419	0.9301	0.9191	0.9090	0.8992	0.8899	0.8812
T_H	20°C	42	54	69	85	104	127	153	181	218
Adiabat	1.000	0.9683	0.9545	0.9417	0.9299	0.9188	0.9081	0.8982	0.8889	0.8802
T_{A}	20°C	41	48	56	64	71	77	83	89	97
Adiabat										
(478 kilobars)	1.002	0.9698	0.9561	0.9432	0.9311	0.9200	0.9095	0.8998	0.8901	0.8811
T_{A}	106°C	133	144	155	165	173	181	189	197	204
Tantalum										
0°K	0.9952	0.9463	0.9273	0.9089	0.8921	0.8768	0.8622	0.8489	0.8363	0.8244
Hugoniot	1.000	0.9510	0.9307	0.9122	0.8955	0.8803	0.8657	0.8524	0.8400	0.8284
T_H	20°C	47	69	92	121	160	207	260	315	379
Adiabat	1.000	0.9510	0.9304	0.9119	0.8951	0.8795	0.8649	0.8510	0.8383	0.8264
$T_{\boldsymbol{A}}$	20°C	45	55	61	70	79	86	93	99	106
Adiabat										200
(540 kilobars)	1.005	0.9555	0.9345	0.9156	0.8983	0.8827	0.8680	0.8539	0.8411	0.8290
T_{A}	272°C	314	336	354	369	383	397	410	423	435
Thallium										
0°K	0.8446	0.8229	0.7850	0.7558	0.7314	0.7117	0.6937	0.6782	0.6642	0.6510
Hugoniot	1.000	0.8440	0.8063	0.7785	0.7558	0.7368	0.7203	0.7063	0.6940	0.6822
T_H	20°C	315	531	791	1079	1392	1719	2105	2447	2831
Adiabat	1.000	0.8387	0.7987	0.7672	0.7416	0.7200	0.7016	0.6849	0.6708	0.6578
T_{A}	20°C	192	248	293	333	367	398	425	450	473
Adiabat									100	110
(489 kilobars)	1.097	0.9072	0.8542	0.8142	0.7822	0.7557	0.7335	0.7141	0.6969	0.6817
TA	671°C	1383	1656	1181	2076	2247	2401	2534	2657	2769
Zironium										
0°K	0.9968	0.9068	0.8709	0.8394	0.8112	0.7860	0.7629	0.7420	0.7227	0.7049
Hugoniot	1.000	0.9098	0.8739	0.8421	0.8144	0.7894	0.7670	0.7420	0.7227	0.7049
T_H	20°C	55	92	143	214	298	395	503	616	737
Adiabat	1.000	0.9090	0.8733	0.8414	0.8131	0.7879	0.7646	0.7435	0.7244	0.7062
T_A	20°C	41	50	59	67	75	81	88	94	99
Âdiabat					0.		01	00	27	77
(459 kilobars)	1.008	0.9159	0.8792	0.8470	0.8182	0.7925	0.7690	0.7480	0.7281	0.7100
T_A	447°C	502	526	547	565	584	601	618	633	647
- A	TT/ U	JU2	520	J#1	505	304	001	018	033	647

TABLE IV.—Continued.

ments were made) for which the calculations indicate melting in the present experimental range. Shock waves just strong enough for incipient melting of lead, tin, and cadmium (initially at 20°C) are 245 kilobars, 225 kilobars, and 325 kilobars, respectively. For stronger shock waves, at least partial melting occurs as the material is relieved to zero pressure. Melting phenomena are not included in any of the calculations of the present paper.

24ST aluminum data for hydrodynamic applications are listed in Tables VI and VII. The calculations were carried out by the methods outlined above and did incorporate the refinement of the free-surface velocity approximation.

SUMMARIZING REMARKS

Shock-wave experiments were performed to determine Hugoniot curves to pressures of several hundred kilobars. The Hugoniot curves, the Mie-Grüneisen equation of state, and the Dugdale-MacDonald formula were then employed to calculate complete thermodynamic descriptions of the various metals, for states neighboring the experimental curves. The calculated offsets between the Hugoniot curves and neighboring P-V TABLE V. Ratio of the Riemann integral to the shock wave particle velocity, as a function of shock pressure.

Metal	100 kilobars	300 kilobars	500 kilobars
Beryllium	1.000	1.003	
Cadmium	1.005	1.031	melting
Chromium	1.000	1.000	1.001
Cobalt	1.000	1.003	1.008
Copper	1.001	1.005	1.012
Gold	1.000	1.006	1.016
Lead	1.009	melting	melting
Magnesium	1.005	1.027	montang
Molybdenum	1.000	1.001	1.002
Nickel	1.000	1.003	1.007
Silver	1.002	1.011	1.024
Thorium	1.001	1.010	1.022
Tin	1.003	melting	melting
Titanium	1.000	1.002	1.006
Zinc	1.004	1.022	1.042
24ST aluminum	1.003	1.015	1.030
Brass	1.001	1.009	1.019
Indium	1.008	melting	melting
Niobium	1.000	1.003	1.007
Palladium	1.000	1.004	1.009
Platinum	1.001	1.003	1.006
Rhodium	1.000	1.002	1.005
Tantalum	1.000	1.002	1.005
Thallium	1.014	melting	melting
Zirconium	1.000	1.001	1.003

Shock wave pressure P (kilobars)	Relative volume V/V0	Shock wave velocity U. km/sec	Shock particle velocity U_p km/sec	Sound speed C km/sec	Temper- ature T °C
100	0.9043	6.125	0.571	6.307	99
125	0.8873	6.305	0.712	6.497	125
150	0.8716	6.475	0.831	6.667	154
175	0.8573	6.640	0.947	6.825	187
200	0.8441	6.793	1.057	6.970	223
225	0.8322	6.940	1.165	7.106	264
250	0.8210	7.082	1.267	7.233	308
275	0.8104	7.220	1.368	7.348	356
300	0.8008	7.350	1.465	7.465	406
325	0.7912	7.476	1.561	7.624	460
350	0.7824	7.598	1.654	7.675	516
375	0.7740	7.718	1.744	7.771	576
400	0.7661	7.836	1.832	7.862	637
425	0.7585	7.950	1.920	7.948	702
450	0.7513	8.062	2.003	8.032	768
475	0.7445	8.171	2.082	8.112	837
500	0.7380	8.276	2.170	8.190	907

TABLE VI. Shock wave parameters for 24ST aluminum.

curves of interest are generally small, only a few percent in compression. Hence, despite the approximations inherent in the Mie-Grüneisen and Dugdale-MacDonald equations, errors arising in the P-V curves due to the calculations are probably only comparable to uncertainties in the experimental data.

The important question of equivalence for the shockwave results and laboratory pressure-volume data is perhaps best evaluated by examination of the data plots, Figs. 3 to 29. For most metals, the compatibility, if judged by downward extrapolation of the analytical fits, is quite good. This is especially true of comparisons TABLE VII. Pressure versus particle velocity curves for 24ST aluminum. Each number in parentheses is a particle velocity (km/sec) for the corresponding shock pressure (kilobars). Remaining numbers in a given column then trace out the associated cross curve (see Fig. 2 and Section IB).

P	Particle velocity									
0	1.165	1.655	2.098	2.576	2.945	3.380	3.680			
100	(0.571)	1.075	1.775	1,960	2.345	2.750	3.082	3.445		
150	0.342	(0.831)	1.285	1.707	2.100	2.493	2.833	3.188	3.613	
200	0.118	0.606	(1.057)	1.480	1.875	2.260	2.605	2.958	3.375	
250		0.400	0.848	(1.267)	1.662	2.042	2.394	2.744	3.130	
300		0.203	0.652	1.066	(1.465)		2.195	2.543	2.950	
350		0.008	0.465	0.880	1.280	(1.654)	2.010	2.352	2.688	
400			0.290	0.700	1.107	1.473	(1.832)	2.177	2.507	
450			0.120	0.527	0.935	1.302	1.662	(2.003)		
500	• • •			0.364	0.765	1.136	1.500	1.838	(2.170	

with the recent measurements to 30 kilobars by Professor Bridgman. Several of the static measurements to 100 kilobars, however, indicate compressions which are a few percent smaller than the corresponding shock wave results. In regard to the latter comparisons, it should be noted that the approximate nature of either of the present basic assumptions (thermal equilibrium and isotropy) would cause the shock wave results to indicate too little compression, and hence is not in the desired direction to account for the small observed offsets.

ACKNOWLEDGMENTS

The present effort was made possible only through the cooperation of a large number of people, most of whom are members of the GMX Division of the Los Alamos Scientific Laboratory.