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Treatment of the predictive aspect of statistical mechanics as
a form of statistical inference is extended to the density-matrix
formalism and applied to a discussion of the relation between
irreversibility and information loss. A principle of "statistical
complementarity" is pointed out, according to which the empiri-
cally verifiable probabilities of statistical mechanics necessarily
correspond to incomplete predictions. A preliminary discussion is
given of the second law of thermodynamics and of a certain class
of irreversible processes, in an approximation equivalent to that
of the semiclassical theory of radiation.

It is shown that a density matrix does not in general contain

all the information about a system that is relevant for predicting
its behavior. In the case of a system perturbed by random fluctu-
ating fields, the density matrix cannot satisfy any differential
equation because p(t) does not depend only on p(t), but also on
past conditions The rigorous theory involves stochastic equations
in the type p(t) = g(t,0)p(0), where the operator g is a functional
of conditions during the entire interval (O~t) The.refore a general
theory of irreversible processes cannot be based on differential
rate equations corresponding to time-proportional transition
probabilities. However, such equations often represent useful
approximations.

INTRODUCTION

' "N a previous paper' the prediction of equilibrium
~ ~ thermodynamic properties was developed as a form
of statistical inference, based on the Shannon' concept
of entropy as an information measure, and the sub-
jective interpretation of probabilities. The guiding prin-
ciple is that the probability distribution over microscopic
states which has maximum entropy subject to whatever
is known, provides the most unbiased representation of
our knowledge of the state of the system. The maxi-
mum-entropy distribution is the broadest one com-
patible with the given information; it assigns positive
weight to every possibility that is not ruled out by
the initial data.

This method of inference is extended in the following
sections (numbered consecutively from those of I), to
the density-matrix formalism, which makes possible the
treatment of time-dependent phenomena. It is then
applied to a discussion of the relation of information
loss and irreversibility, and to a treatment of relaxation
processes in an approximation equivalent to that of
the semiclassical theory of radiation. The more rigorous
treatment, corresponding to quantum electrodynamics,
will be taken up in a later paper.

Our picture of a prediction process is as follows. At
the initial time 5=0 certain measurements are made.
In practice, these will always represent far less than
the maximum observation which would enable us to
determine a definite pure"'„state. Therefore, we must
have recourse to maximum-entropy inference in order
to represent our degree of knowledge about the system
in a way free of arbitrary assumptions with regard to
missing information. As time goes on, each state of

' E. T. Jaynes, Phys. Rev. 106, 620 (1957).Hereinafter referred
to as I.

'C. E. Shannon, Bell System Tech. J. 27, 379, 623 (1948).
These papers are reprinted in C. E. Shannon and W. Weaver,
The Mathematical Theory of Commgmicatioe (University of Illinois
Press, Urbana, 1949).

sA very interesting quotation from J. W. Gibbs /Collected
8"orks (Longmans, Green and Company, New York, 1928), Vol.
II, p. 180j suggests the same basic idea. In discussing the inter-

the maximum-entropy distribution changes due to
perturbations that are in general unknown; thus it
"spreads out" into several possibilities, and our initial
knowledge as to the state of the system is gradually
lost. In the "semiclassical" approximation considered
here, the final state of affairs is usually one in which the
initial information is completely lost, the density matrix
relaxing into a multiple of the unit matrix. The pre-
diction of thermal equilibrium, in which the limiting
form of the density matrix is that of the Boltzmann
distribution with finite temperature, is found only by
using a better approximation which takes into account
the quantum nature of the surroundings.

It is of the greatest importance to recognize that in
all of this semiclassical theory it is possible to maintain
the view that the system is at all times in some definite
but unknown pure state, which changes because of
definite but unknown external forces; the probabilities
represent only our ignorance as to the true state. With
such an interpretation the expression "irreversible
process" represents a semantic confusion; it is not the
physical process that is irreversible, but rather our
ability to follow it. The second law of thermodynamics
then becomes merely the statement that although our
information as to the state of a system may be lost in a
variety of ways, the only way in which it can be gained
is by carrying out further measurements. Essential for
this is the fact, analogous to Liouville's theorem, that
in semiclassical approximation the laws of physics do
not provide any tendency for systems initially in
different states to "accumulate" in certain anal states
in preference to others; i.e., the time-development
matrix is unitary.

In opposition to the foregoing views, one may assert

action of a body and a heat-bath, he says "The series of phases
through which the whole system runs in the course of time may
not be entirely determined by the energy, but may depend on
the initial phase in other respects. In such cases the ensemble
obtained by the microcanonical distribution of the whole system,
which includes all possible time-ensembles combined in the
proportion which seems least arbitrary, will better represent
than any one tiTne-ensemble the effect of the bath. "
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that irreversibility is not merely a loss of human
information; it is an experimental fact, well recognized
long before the development of statistical mechanics.
Furthermore, the relaxation times calculated below are
not merely measures of the rate at which we lose
information; they are experimentally measurable quan-
tities expressing the rate at which physical systems
approach equilibrium. Therefore, the probabilities in-
volved in our calculations must be ascribed some
objective meaning independent of human knowledge.

Objections of this type have already been answered
in large part in I, particularly Sec. 4. However, we wish
to indicate briefly how those arguments apply to the
case of time-dependent phenomena. The essential fact
is again the "principle of macroscopic uniformity. " In
the first place, it has been shown that the only quantities
for which maximum-entropy inference makes definite
predictions are those for which we obtain sharp proba-
bility distributions. Since maximum-entropy inference
uses the broadest distribution compatible with the
initial data, the predictable properties must be char-
acteristic of the great majority of those states to which
appreciable weight is assigned. Maximum-entropy in-
ference can never lead us astray, for any quantity
which it is incapable of predicting will betray that fact
by yielding a broad probability distribution.

We can, however, say much more than this. We take
it as self-evident that the features of irreversible
processes which are experimentally reproducible are
precisely those characteristic of most of the states
compatible with the conditions of the experiment,
Suppose that maximum-entropy inference based on
knowledge of the experimentally imposed conditions
makes a definite prediction of some phenomenon, and
it is found experimentally that no such phenomenon
exists. Then the predicted property is characteristic of
most of the states appearing in the subjective maximum-
entropy distribution, but it is not characteristic of most
of the states physically allowed by the experimental
conditions. Consider, on the other hand, the possibility
that a phenomenon might be found which is experi-
mentally reproducible but cot predictable by maximum-
entropy inference. This phenomenon must be character-
istic of most of the states allowed by the experimental
conditions, but it is not characteristic of most of the
states in the maximum-entropy distribution. In either
case, there must exist new physical states, or new coe-
strairIts on the physically accessible states, not con-
tained in the presently known laws of physics.

In summary, we assert that if it can be shown that the

class of phenomena predictable by maximmm entropy in-

ference diversi n any way from the class of experimentally
reproducible phenomena, that fact wogld demonstrate the
existence of new laws of physics, not presently known.
Assuming that this occurs, and the new laws of physics
are eventually worked out, then maximum-entropy in-
ference based on the new laws will again have this
property.

From this we see that adoption of subjective proba-
bilities in no way weakens the theory in its ability to
give reliable and useful results. On the contrary, the
full power of statistical mechanics cannot be seen
until one makes this distinction between its subjective
and objective aspects. Once this is done, its mathe-
matical rules become a methodology for a very general
type of scientific reasoning.

'7. REPRESENTATION OP A QUANTUM-
MECHANICAL SYSTEM

We now develop a method of representing any state
of knowledge of a quantum-mechanical system, leaving
aside for the moment any consideration of how this
knowledge might have been obtained. Suppose that on
the basis of the information available we conclude that
the system may be in the "pure state" P& with proba-
bility w&, or it may be in the state f2 with probability
w2, etc. The various alternative possibilities f, are not
necessarily mutually orthogonal, but each may be
expanded in terms of a complete orthonormal set of
functions NI, .

(7.1)

This state of knowledge may be visualized in a geo-
metrical fashion by considering a complex function
space, whose dimensionality may be 6nite or infinite,
in which the state f, is represented by a point I'; with
coordinates aI,;, k= 1, 2, . .. At P;, place a weight m;;
thus the state of knowledge is described by a set (which
may be discrete or continuous) of weighted points;
such a set will be called an array. Since each of the
possible wave functions is normalized to unity,

we have
(7 2)

and all points I'; are at unit "distance" from the origin,
on the surface of the unit hypersphere.

If each of the possible states f; satis6es the same
Schrodinger equation,

ibad= Hf,

then as time goes on the function space as a whole is
subjected to a unitary transformation, so that all
"distances" and scalar products

remain invariant, and the entire motion of the array
may be visualized as a "rigid rotation" of the hyper-
sphere. An array with this behavior will be called
simple. A simple array is conceptually somewhat like a
microcanonical ensemble; it consists of points lying on
a closed surface which are subjected, in consequence of
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the equations of motion, to a measure-preserving
transformation which continually unfolds as t increases.

The transformation with time may be of a diGerent
type; much more interesting is the case where the
initial information is of the form: "The system may be
in state ip; with probability w;, and in this case the
Hamiltonian will be H;." Then diGerent parts of the
array are subjected to different rotations, and separa-
tions or interpenetrations occur. Such an array will be
called compo@rid It.arises, for example, when we have
a system consisting of two coupled spins in a strong
magnetic field, and we wish to describe our knowledge
of the state of one of them.

Consider a measurable quantity represented by a
Hermitian operator F; in state iP; its expectation value is

(7.5)

is the density matrix. The probability p(f) that a
measurement of F will yield the particular eigenvalue f,
is also expressible as an expectation value; de6ne the
projection operator 0 by Of= (y,1b) y, where q is the
corresponding normalized eigenfunction of F:Fy= fy
Then

From (7.5) it is seen that in general an infinite
number of diGerent arrays, representing diGerent mix-
tures of pure states, all lead to the same density matrix.
The most general discrete array which leads to a given
density matrix p corresponds to the most general
matrix A (not necessarily square) for which

p=AA~, (7.7)

the dagger denoting the Hermitian conjugate. An array
is uniquely determined by A, for from (7.2) and (7.5)
we have

Aa'=aa. 'to'~, Za~Aa'~ =re'.

To 6nd another array with the same density matrix,
insert a matrix U:

p (A U) (U
—iA t)

This has the form SB~ with A=AU if and only if U
is unitary; thus the group of transformations from one
array of e states to another of n states is isomorphic
with the group of unitary transformations in e dimen-
sions. These are not, however, transformations of the
wave functions iP;, but of the Probability rtormalized-
wave functions

+i=ipz~i~. (7.8)

where F„i, (N, FN~) ——are the matrix elements of F in
the uq representation. The average of (7.3) over the
array is

(7 4)

d=UpU ' (7.10)

with d „=d 6 „.If the eigenvalues d of p are non-
degenerate, only one such matrix U exists. The basis
functions of the new representation in which p is
diagonal,

~m= Z~ N~U~m (7.11)

are the orthogonal states which, when mixed with
probabilities d, lead to the given density matrix.

Suppose we have a density matrix p and a state y
which is considered a "candidate" for inclusion in a
minimal array which will lead to p. What is the proba-
bility pz(p) which should be assigned to &p in such an
arrayP To answer this, we first construct the orthogonal
array (v,d },and expand

Zm &mcm.

If this is to be equivalent to one of the columns of
(7.9), it is necessary that

Ic„l

pA m dm
(7.12)

This is uniquely determined by the density matrix and
the state q, regardless of which other states q; might
also appear in the array. "„".,The array probability p& is
in general diGerent from the measurement probability
(7.6), which is equal to

p~(~) =2- d-I c-I' (7»)

If we carry out the unitary transformation

Ci=g k, U;;,
and write

C'j= pipr ~

where p; is normalized to unity, then the array in
which state ip; has probability p; leads to the same
density matrix as the original array (iP;,w,}.Evidently
an array is determined uniquely by specifying a set
(0';}of probability-normalized states.

From an array (4';} of e states we can construct new
arrays of (6+1) states. Define 4„+&=—0; then new
transformations of the form (7.9) are possible, in which
U is a unitary matrix of dimensionality (ted+1). These
generate an infinite number of new arrays for which,
in general, all (1+1) states C; are different from each
other and from zero. The inverse process of contracting
an array to one of fewer states is possible if any linear
combination of the P; vanishes.

An array of e states will be called nzieinsal with
respect to its density matrix p if no array exists which
leads to p with fewer than e states. The states of an
array are linearly independent if and only if the array
is minimal.

In general, a given density matrix can be represented
in only one way as a mixture of orthogonal states.
Since p is Hermitian, there always exists a unitary
matrix U which diagonalizes it;



E. T. JAYNES

It is readily shown that psr &~p~, with equality if and
only if p is an eigenstate of p.

The representation in terms of orthogonal states is
important in connection with the entropy which meas-
ures our knowledge of the system. It might be thought
that for an array {ip;,w;) we could define an entropy by

S~———Q, w, lnw, . (7.14)

S= —Tr(p lnp). (7.16)

Since this could also be written as S= —(lnp), it is
the natural extension to quantum mechanics of the
Gibbs definition of entropy.

Equation (7.16) assigns zero entropy to any pure
state, whether stationary or not. It has been criticized
on the grounds that according to the Schrodinger
equation of motion it would be constant in time, and
thus one could not account for the second law of
thermodynamics; this has led some authors4 ' to propose
instead the expression

S= —Ze pat lnpt t, (7.17)

which involves only diagonal elements of p in the
energy representation, for which a "quantum-mechan-
ical spreading" phenomenon can be demonstrated. It
will be shown in detail below how the objections to
(7.16) may be answered. With regard to (7.17), we
note that it does not assign the same entropy to all
pure states; but von Xeumann' has shown that any

R. C. Tolman, The Prirtciples of Stotisticat Mechartics (Claren-
don Press, Oxford, 1938).

~ D. ter Haar, Elements of Statistical Mechanics (Rinehart and
Company, Inc. , New York, 1954).

6 J. von Neumann, Mathematische Grlndlagen der Quanten-
mechartih (Dover Publications, New Vorlr, 19431, Chap. V.

This, however, would not be satisfactory because the
m, are not in general the probabilities of mutually
exclusive events. According to quantum mechanics, if
the state is known to be P;, then the probability of
finding it upon measurement to be iP;, is

~ (P;pP;) ~'.

Thus, the probabilities z; refer to independent, mutu-
ally exclusive events only when the states P, of the
array are orthogonal to each other, and only in this
case is the expression (7.14) for entropy satisfactory.
This array of orthogonal states has another important
property; consider the totality of all possible arrays
which lead to a given density matrix, and the corre-
sponding expressions (7.14). The array for which (7.14)
attains its minimum value is the orthogonal one, which
therefore provides, in the sense of information content,
the most economical description of the freedom of
choice implied by a density matrix (Appendix A).

For the orthogonal array, the w; in (7.14) are
identical with the eigenvalues d; of the density matrix,
so for numerical calculation of entropy given p, one
would find the eigenvalues and use the formula

S= —Q, d; lnd;. (7.15)

In general discussions it is convenient to express this

pure state may be converted reversibly and adiabati-
cally into any other pure state.

Since, according to (7.4), knowledge of p enables one
to calculate the expectation value of any Hermitian
operator, it is tempting to conclude that the density
matrix contains all of our information as to the objective
state of the system. Thus, although many diGerent
arrays would all lead to the same density matrix, the
differences between them would be considered physi-
cally meaningless, only their second moments (7.5)
corresponding to any physical predictions. The concept
of any array as something separate and distinct from a
density matrix might then appear superQuous. That
this is not the case, however, will be seen in Sec. 13
below, where it is shown that the resolution of a
compound array into independent simple arrays may
represent useful information which cannot be expressed
in terms of the resultant density matrix.

8. SUFFICIENCY AND COMPLETENESS OF
THE DENSITY MATRIX

If a density matrix provides a definite probability
assignment for each possible outcome of a certain
experiment, in a way that makes full use of all of the
available relevant information, we shall say that p is
segciertt for that experiment. A density matrix that is
sufficient for all conceivable experiments on a system
will be called corrtp/ete for that system. Strictly speaking,
we should always describe a density matrix as sufficient
or complete relative to certain initial information.

The assertion that complete density matrices exist
involves several assumptions, in particular that all
measurable quantities may be represented by Hermitian
operators, and that all experimental measurements may
be expressed in terms of expectation values. Ke do not
wish to go into these questions, but only to note the
following. Even if it be granted that it is always possible
in principle to operate with a complete density matrix,
it would often be extremely awkward and inconvenient
to do so in practice, because it would require us to
consider the density matrix and dynamical quantities
as operators in a much larger function space than we
wish to use.

To see this by a simple example, consider a "molecular
beam" experiment in which particles of spin 2 are
prepared by apparatus A, then sent into a detection
system 8 which determines whether the spin is up or
down with respect to some chosen s axis. Assume, for
simplicity, that only one particle at a time is processed
in this way. A particle thus has, for our purposes, two
possible states I+ and I; our knowledge of the nature
of the apparatus A could be incorporated into an array
and its corresponding (2X2) density matrix, from
which we can calculate the probability of finding the
spin aligned in any particular direction. Thus, the
(2X2) density matrix adequately represents our state
of knowledge as to the outcome of any spin measure-
ment made on a single particle; i.e., it is a sufficient
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statistic for any such measurement. The question is,
does it also adequately represent our knowledge of the
ensemble of particles (assuming that the apparatus 2 is
"stationary, "so that each particle, considered by itself,
would be represented by the same density matrix).
More specifically, is it possible for apparatus 2 to
produce a physical situation which can be measured in
our detection apparatus, but for which the (2X2)
density matrix gives no probability assignments One
such property is easily found; the detecting apparatus
tells us not only the fraction of spins aligned along the
+s axis, but also the order in which spin up and spin
down occurred, so that correlations between spin states
of successive particles can be observed. Now all possible
such correlations can be described only by considering
the entire ensemble of 37 particles as a single quantum-
mechanical system with 2~ possible states, and therefore
a density matrix which is a sufhcient statistic for all
conceivable measurements on the spin system must
have 2~ rows and columns. ~ This, however, would
completely destroy the simplicity of the theory, and
in practice we would probably prefer to retain the
original (2X2) density matrix for predicting the results
of measurements on single particles, while recognizing
its insufficiency for other measurements which the same
apparatus could perform.

Q. SUBJECTIVE AND OBJECTIVE
INTERPRETATIONS

The topic of Sec. 8 is closely related to some of the
most fundamental questions in physics. According to
quantum mechanics, if a system is known to be in state

then the probability that measurement of the
quantity F will result in the particular eigenvalue f, is

(0);, where 0 is the projection operator of Kq. (7.6).
Are we to interpret this probability in the objective or
subjective sense; i.e., are the probability statements of
quantum mechanics expressions of empirically verifiable
laws of physics or merely expressions of our incomplete
ability to predict, whether due to a defect in the theory
or to incomplete initial information? The current
interpretation of quantum mechanics favors the 6rst
view, but it is important to note that the whole content
of the theory depends critically on just what we mean
by "probability. " In calling a probability objective,
we do not mean that it is necessarily "correct, " but
only that a conceivable experiment exists by which its
correctness or incorrectness could be empirically deter-
mined. In calling a probability assignment subjective,
we mean that it is not a physical property of any
system, but only a means of describing our information
about the system; therefore it is meaningless to speak
of verifying it empirically.

Is there any operational meaning to the statement

'This is a very conservative statement. It would be more
realistic to assume that all the coordinates of apparatus A must
also be included in the space upon which this complete density
matrix operates.

pi(fi) =2 .2 p(fifm. .f~)
f2 fx

(9.2)

but p&(f&) now refers speci6cally to system 1, and the
results of measurements on the other systems are
irrelevant to the question whether p&(f&) was verified.
We cannot avoid the difhculty by repeating all this 3I
times, because for that experiment the complete density
matrix would refer to all EM systems, and we would be
in exactly the same situation. Thus, the probability
statements obtained from a complete density matrix
cannot be verified.

In practice, of course, one will never bother with
such considerations, but will find a density matrix
which operates only on the space of a single system and
incorporates as much information as possible subject
to that limitation. The probability p(f) computed from
this density matrix is presumably equal to p&(f) in
(9.2). If the result f is obtained approximately Np(f)
times, one says that the predictions have been verified,
and p(f) is correct in an objective sense. This result is
obtained, however, only by renouncing the possibility
of predicting any mutual properties of di8erent systems,
and the record of the experiment contains some infor-
mation about those mutual properties.

that the probabilities of quantum mechanics are objec-
tive? If so, we should be able to devise an experiment
which will measure these probabilities, for example the
probability that a measurement of the quantity Ii will
give the result f. In order to do this, we will need to
repeat a measurement of Il an indefinitely large number
E of times, with systems that have all been prepared
in exactly the same way, and record the fraction of
cases in which the particular result f was obtained.
Which density matrix should we use to predict the result
of this experiments In principle, we should always use
the one which contains the greatest amount of infor-
mation about the ensemble of S systems; i.e., which is
complete. The apparatus which prepares them may be
producing correlations; thus the ensemble of E systems
should be considered as a single large quantum-
mechanical system. The probability statements which
come from the theory are then of the form, "the
probability that system 1 will yield the result f&, and
system 2 will yield the value f2, ~ ~, is p(f& fN)."
But then measurement of F in each of the E small
systems is not E repetitions of an experiment; it is
only a single experiment from the standpoint of the
total system. Clearly, no probability assignment can
be verified by a single measurement. Note that the
question whether correlations were in fact present
between different systems is irrelevant to the question
of principle involved; even if the distribution factors

p(f~" f~) =p~(f~) p2(f2) p~(f~) (9 1)

it remains a joint distribution, not one for a single
system. We can, of course, always obtain the single-
system probabilities by summation:
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Thus, we enunciate as a general principle: Empirical

veri+ability of a probability assignmelt, artd completeness

of the density matrix from which the probabilities were

obtained, are incompatible cortditiotss W.henever we use
a density matrix whose probabilities are verifiable by
certain measurements, we necessarily renounce the
possibility of predicting the results of other measure-
ments which can be made on the same apparatus.

This principle of "statistical complementarity" is not
restricted to quantum mechanics, but holds in any
application of probability theory; in a very funda-
mental sense no experiment can ever be repeated, and
the most comprehensive probability assignments are
necessarily incapable of verification.

If an operational viewpoint' " is to be upheld con-
sistently, it appears that the probabilities computed
from a complete density matrix must be interpreted in
the subjective sense. Since this complete density matrix
might be a projection operator corresponding to a pure
state, one is led very close to the views of Einstein"
and Bohm" as to the interpretation of quantum
mechanics.

Entirely diBerent considerations suggest the same
conclusion. A density matrix represents a fusion of two
diGerent statistical aspects; those inherent in a pure
state and those representing our uncertainty as to
which pure state is present. If the former probabilities
are interpreted in the objective sense, while the latter
are clearly subjective, we have a very puzzling situation.
Many different arrays, representing diferent combi-
nations of subjective and objective aspects, all lead to
the same density matrix, and thus to the same predic-
tions. However, if the statement, "only certain specific
aspects of the probabilities are objective, " is to have
any operational meaning, we must demand that some

experiment be produced which will distinguish between

these arrays.

10. MAXIMUM-ENTROPY INFERENCE

The methods of maximum-entropy inference de-

scribed in I may be generalized immediately to the
density-matrix formalism. Suppose we are given the

expectation values of the operators Ii~ .Ii; then the

density matrix which represents the most unbiased

picture of the state of the system on the basis of this

much information is the one which maximizes the

entropy subject to these constraints. As before, this is

accomplished by finding the density matrix which

P. W. Bridgman, T'he Logic of modern Physics I,
'The Mac-

Millan Company, New York, 1927).' P. A. M. Dirac, The Principles of Qgaatum Mechanics (Claren-
don Press, Oxford, 1935), second edition, Chap. I.IHans Reichenbach, Philosophic Iioundati ons of Quantum
Mechoeics (University of California Press, Berkeley, 1946).

"Albert Einstein Philosopher-Scientist, edited by P. A. Schilpp
(Library of Living Philosophers, Inc. , Kvanston, 1949), pp.
665-684.

's D. Bohm, Phys. Rev. S5, 166, 180 (1952); S9, 458 (1953).

unconditionally maximizes

lnZ. (10.3)

The maximum-entropy density matrix is then

p=expL-)~p1-)w. tFr- -) F ] (10.4)

which is correctly normalized (Trp= 1) by setting

Xp
——lnZ, (10.5)

and the corresponding entropy becomes

5=Xp+Xr(Fr)+ +X (F„). (10.6)

Use of (10.5) and (10.6) enables us to solve (10.3) for
the Xg.'

If the operator PI, contains parameters o.;, we 6nd as
before that the maximum-entropy estimates of the
derivatives are given by

lnZ. (10.8)

For an infinitesimal change in the problem, X~ is the
integrating factor for the kth analog of infinitesimal
heat;

(10.9)
with

(10.10)

Ail of these relations except (10.2) and (10.4) are
formally identical with those found in I, the IiI, now
being interpreted as matrices instead of functions of a
discrete variable x.

The de6nitions of heat bath and thermometer given
in I remain applicable, and the discussion of experi-
mental measurement of temperature proceeds as before
with the difference that maximization of entropy of the
combined system now automatically takes care of the
question of phase relations. We have two systems 0.

&

and 0-2, with complete orthonormal basis functions
u„(1), sz(2), respectively. A state f; of the combined
system 0 =0.&&02 is then some linear combination

ll, (1,2) =g u„(1)s„(2)a„„.

H P; occurs with probability w;, the density matrix is

(ash It Its'h') =2'w;a. s.a;*=(a.sa;s *)

in which the X; are Lagrangian multipliers. The result
may be described in terms of the partition function

Z(Xr. . X )=TrIexp( —)rrFr — . —X~F )], (10.2)

with the A. & determined by
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An operator 8(1,2) has matrix elements

(Nkl /IN'k')=
~

I ~(1)vp*(2)g(1,2)N„.(1)vp (2)drgdr2

and its expectation value is

(BI=Tr(po) = 2 (Nklpl~'k')(~'k'ISIS)

with
Z(X) =Zg(X)Z2(lw, ),

Z, (X)=Tr exp( —),H&),

Zm(X) =Tr exp( —XH2).

(10.14)

(10.15)

"P. R. Halmos, Finite Dimensional Vector Spaces (Princeton
University Press, Princeton, 1948), Appendix II.

An operator F» which operates only on the coordinates
of system 1 is represented in the space of the combined
system by a direct product matrix, " t$&= F&X1, with
matrix elements

(~kl 6&I ~'k') = (~IF&I ~')~».

Similarly, for an operator F2 of system 2, we obtain
$2=1XF2, and

(~kl g, l~'k') =~„„.(klF, lk').

Consider, as before, the system of interest o-», and a
thermometer o-2. Let their Hamiltonians be H», H2,
respectively. In the function space of the combined
system o-, these Hamiltonians are represented by

@g——BgX1, @2——1XB'2. (10.11)

The available information now consists of a given
(measured) value of (H2), and the knowledge that
energy may be transferred between o-» and o-& in such a
way that the total amount is conserved. In practice
we never have detailed knowledge of the weak-inter-
action Hamiltonian @q2 of a type that would~tell us
which transitions may in fact take place and which
will not. Therefore we have no rational basis for
excluding the possibility of any transition between
states of o. with a given total energy, and the most
unbiased representation of our state of knowledge must
treat all such states as equivalent, in their dependence
on energy. Any other procedure would amount to
arbitrarily favoring some states at the expense of others,
in a way not warranted by any of the available infor-
mation. Therefore only the total energy may appear in
our density matrix, and we have to find that matrix
which maximizes

S—X(@g+g)2), (10.12)

subject to the observed value of (H2). The matrix
involved in (10.2) and (10.4) now factors into a direct
product:

exp[—X(@~+@g)]=(e "~')X(e "~') (10.13)

so that the partition function reduces to

&»=H»X &X &,

Q2= 1XH2X1,
Sg=GgX1X1,

5'i= F&X1X1,
$3=1X1XF3,

and the density matrix that provides the most unbiased
picture of the state of the total system is the one that
maximizes

s—~(Ii+82)—u(6~+ 5'3)—~(@~) (1o 1&)

We now find the factorization property

exp[ —~(Ii+82)—p(6~+ 83)—~@i]
=[e "~& &~& "0']X[e " 2]X[e &~&], (10.18)

so that once again the partition function and density
matrix factor into independent parts for the three
systems:

Z(Xp, ~)=Z&(Xp, ~)Z2(X)Z3(p), p=p&Xp2Xp»

and the pieces of information obtained from o-2, o-3 are
transferred into p» without interference.

11. INFORMATION LOSS AND IRREVERSIBILITY

In classical statistical mechanics the appearance of
irreversibility can always be traced either to the
replacement of a one-grained probability distribution
by a coarse-grained one, or to a projection of a joint
probability distribution of two systems onto the sub-
space of one of them. Both processes amount to a loss,

Similarly, the density matrix (10.4) is the direct product

exp( —XH~) exp( —XH2)
p= X ——— =pi Xp2. (10.16)

Z, P.) Z, P,)

Because of the absence of correlations between the two
systems, it is true once again that the function of the
thermometer is merely to tell us the value of the
parameter X in p», and the properties of the thermometer
need not be considered in detail when incorporating
temperature measurements into our theory.

An important feature of this theory is that measure-
ment of averages of several noncommuting quantities
may be treated simultaneously without interference.
Consider, for example, three interacting systems o.=o.»

Xo.2Xo-3, where o-» is the system of interest, and o2 is a
thermometer. Some physical quantity F, represented
in the space of o-» by the operator P», and in o.3 by I'3,
can be transferred between o-» and o-3 in such a way that
the total amount is conserved. F» could stand for
angular momentum, volume, etc., and need not com-
mute with H». In addition suppose that a quantity
(G~) is measured directly in 0.~, where G& does not
necessarily commute with either H» or Ii». Now the
available information consists of the measured values
of (G~), (H2), and (F3), plus the conservation laws of F
and H. The various operators are now represented in
the space o- by direct product matrices as follows:
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whether voluntary or not, of some of the information
which is in principle available. The former is often
justified by the very persuasive argument that the
mathematics would otherwise be too complicated. But
mathematical difhculties, however great, have no
bearing on matters of principle, and this way of looking
at it causes one to lose sight of a much more important
positive reason for discarding information. After sufh-
cient "stirring" has occurred, two diGerent fine-grained
distributions will lead to predictions that are macro-
scopically the same, diQ'ering only in microscopic
details. Thus, even if we were good enough mathema-
ticians to deal with a fine-grained distribution, its
replacement by a coarse-grained one would still be the
elegant method of treating the prediction of macro-
scopic properties, because in this way one eliminates
irrelevant details at an early stage of the calculation.

In quantum mechanics, as in classical theory, the
increase in entropy characteristic of irreversibility
always signifies, and is identical. with, a loss of infor-
mation. It is important to realize that the tendency of
entropy to increase is not a consequence of the laws of
physics as such, for the motion of points of an array is
a unitary transformation prescribed by the Schrodinger
equation in a manner just as "deterministic" as is the
motion of phase points in classical theory. An entropy
increase may occur unavoidably, due to our incomplete
knowledge of the forces acting on a system, or it may
be an entirely voluntary act on our part. In the latter
case, an entropy increase is the means by which we

simplify a prediction problem by discarding parts of
the available information which are irrelevant, or nearly
so, for the particular predictions desired. It is very
similar to the statistician's practice of "finding a sufh-

cient statistic. "The price we must pay for this simplifi-
cation is that the possibility of predicting other proper-
ties with the resulting equations is thereby lost.

The natural way of classifying theories of irreversible
processes is according to the mechanism by which
information is lost or discarded. In most of the existing
theories we find that this consists of the repetition, at
regular intervals, of one of the following procedures.
Suppose we wish to find the expectation value of the
quantity Ii; in the representation in which F is diagonal
it reduces to

(F)=Tr(pF) =Q„p„F„„. (11.1)

Since only the diagonal elements of p contribute, (F)
can be calculated as well by using the density matrix
p', where

The process of replacing p by p' will be called removieg
coherelces, and is clearly permissible whenever all the
quantities which we wish to calculate are diagonal
simultaneously. It is readily verified that removal of
coherences represents loss of information: S(p')) S(p),
with equality if and only if p= p'.

The second procedure by which information may be
discarded is an invariant operation, exactly analogous
to its classical counterpart. Consider two interacting
systems 0-& and 0-2. As already noted, an operator Ii&
which operates only on the variables of 0-& is represented
in the space of the combined system 0.=0.&X0-2 by the
direct product matrix tgq=F~X1. The expectation
value of any such operator reduces to a trace involving
only the space of 0-&.

(Fg) = Tr(p Sg) =Tr(pgFg), (11.3)

where p& is the "projection" of the complete density
matrix p onto the subspace 0.~, with matrix elements

(B I py I
I') =Py(sk

I p I
s'k). (11.4)

Similarly, we can project p onto a.2, with the result

(&Ip~I&')=E (N&IpI~&')

and for any operator P2 of system 2 we can define
$2—1XFg, whereupon (F&)=Tr(pg9) Tl (p2F9).

In the projection onto o-&, the parts of p that are
summed out contain information about the state of
system 0-2 and about correlations between possible
states of o-~ and o-2, both of which are irrelevant for
predicting the average of FJ.

The operation of removieg correlations consists of
replacing p by the direct product p&Xp2, with matrix
elements

(&&
I p&x p2 I

~'~') = (&
I p~ I

&') (& I p2 I
&') (ll 5)

and the expectation value of any operator composed
additively of terms which operate on 0-~ alone or on 0-2

alone, is found as well from (piXp2) as from p. The
removal of correlations also involves a loss of informa-
tion; the entropy after removal of correlations is addi-
tive and never less than the original entropy:

S(piXp~) =S(pi)+S(p2) &S(p),

with equality if and only if p= p&Xp2.
These remarks generalize in an obvious way to the

case of any number of subsystems; to remove correla-
tions from a density matrix p operating on the space of
three systems o-=g-&Xa2X0-3, project it onto each of the
0-;, and replace p by the direct product of the projections:

~p&Xp2X p3.

If an operator F2 operates only on the space of a-2, its
matrix representation in the 0- space and expectation
value are given by

$=1XF2X1, (F2)=Tr(pg)= Tr(p2F2).

Most treatments of irreversible processes in the past
have been based on the removal of coherences in the
energy representation, and the resulting concept of
"occupation numbers" EI„proportional to the diagonal
elements pj, ~ in this representation. One then introduces
a transition probability per unit time ) &„,which usually,
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but not always, "'~ conforms to the assumption of
"microscopic reversibility" X& =) „&, and equations of
the form

dXs/dt=Q ('Ap E X„—pXs) (11.7)

are the starting point of the theory. The existence of
time-proportional transition probabilities is not, how-
ever, a general consequence of quantum mechanics, but
involves assumptions about the type of perturbing
forces responsible for the transitions, and mathematical
approximations which represent a loss of information.
That information is lost somewhere is seen from the fact
the entropy, as calculated from (11.7), is in general an
increasing function of the time, while that obtained from
rigorous integration of a Schrodinger equation is neces-
sarily constant. The nature of the information-discard-
ing process in (11.7), as well as a clear statement of the
type of physical problems to which equations of this
form are applicable, can be appreciated only by starting
from a more fundamental viewpoint.

12. SUBJECTIVE H THEOREM

In the remainder of this paper, we consider a certain
approximation, which might be called the "semi-
classical theory of irreversible processes, " since it is
related to a complete theory in the same way that the
semiclassical theory of radiation" is related to quantum
electrodynamics. The system of interest 0. is treated as
a quantum-mechanical system, but outside inQuences
are treated classically, their effect on 0- being represented
by perturbing terms in the Hamiltonian which are
considered definite if unknown functions of the time.
It is of interest to see which aspects of irreversible
processes are found in this approximation, and which
ones depend essentially on the quantum nature of the
surroundings.

Let the Hamiltonian of the system be

H=Hp+V(t), (12.1)

where Hp is stationary and defines the "energy levels"
of the system, and V(t) represents the perturbing effect
of the environment. Suppose that at time t' we are
given information which leads (by maximum-entropy
inference, if needed) to the density matrix p(t'). At
other times, the effect of the Hamiltonian (12.1) is to
carry out a unitary transformation

p(t) = U(t, t')p(t') U(t. t')-'
= U(t, t')p(t')U(t', t), (12.2)

where the time-development matrix U(t, t') is deter-
mined from the Schrodinger equation (with &tt= 1)

(12.3)

'4 J. S. Thomsen, Phys. Rev. 91, 1263 (1953).
'z R. T. Cox, Statzstzcal Mechanzcs of Irreeerszble Change (Johns

Hopkins Press, Baltimore, 1955).
'6L. I. Schi8, Quantum 3Eechaeics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949).

with U(t, t) =1.The entropy

S(t) = —Trg(t) lnp(t) j (12.4)

S(P )=—Q P lnP—. (12.7)

Equation (12.6) has an evident intuitive content;
the entropy of a system is a measure of our uncertainty
as to its true state, and by applying an unknown signal
to it, this uncertainty will increase, but not bymore
than our uncertainty as to the signal. The maximum
increase in entropy can occur only in the following
rather exceptional circumstances. The totality of all
possible states of the system forms a function space S.
Suppose that our initial state of knowledge is that the
system is in a certain subspace Sp of S. If the pertur-
bation V' '(t) is applied, this is transformed into some
other subspace

S.= U(-) S„
and the maximum increase of entropy can occur
only if the different subspaces S are disjoint; i.e.,
every state in S must be orthogonal to every state
in Stt if csWP. From this we see two reasons why the
increase is usually less than the maximum possible
amount; (a) it may be that even though Vt~&(t) and
Vttz& (t) are different functions, they nevertheless produce
the same, or nearly the same, net transformation U in
time (t—t'), so that our knowledge of the anal state
does not suBer from the uncertainty in the perturbation,

is unchanged by a unitary transformation, and therefore
remains constant regardless of the magnitude or time
variations of V (t) Co.nsider, however, the circumstance
that V(t) may not be known with certainty; during
the time interval (t'~t) it may have been the operator
Vo&(t) with probability P&, or it may have been Vt'& (t)
with probability I'2, ~ ~, etc. Then our state of knowl-
edge of the system must be represented by a compound
array, which is a fusion of several simple arrays corre-
sponding to the different Vt &(t), and which are subject
to different rotations. At time t, the density matrix
will be the average of the matrices that would result
from each of the possible interactions:

p(t)=Q P Ut &(t,t')p(t') Ut&(t', t), (12.5)

and the transformation p(t') —+p(t) is no longer unitary.
We might also have a continuous distribution of
unknown interactions, and therefore an integration
over 0., or more generally there might be several
parameters (cs& n„) in V(t), with probability distri-
bution P(a~ . .n„)des&. . .dn„. We will understand the
notation in (12.5) to include such possibilities. Our
uncertainty as to V(t) will be reflected in increased
uncertainty, as measured by the entropy, in our
knowledge of the state of system o-. It is shown in
Appendix A that, in case e is discrete, there is an upper
limit to this increase, given by the following inequality:

S(t') &S(t)&S(t')+S(P.), (12.6)
where
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=S(0). At times when they are completely separated,
we have S(t)=S(0)+S(P ), and in case of partial
overlapping the entropy assumes intermediate values.

s
S(0) + S(Po)

FIG. 1. Illustration of the subjective H theorem.
(a) The array. (b) The resulting entropy curve.

and (b) our initial uncertainty may be so great that no
such disjoint subspaces exist regardless of the nature
of the V' '(t). The extreme case is that of complete
initial ignorance; p(t ) is a multiple of the unit matrix.
Then, no matter what is done to the system we cannot
acquire any additional uncertainty, and the entropy
does not change at all.

Equation (12.6) corresponds closely to relations that
have been used to demonstrate the second law of
thermodynamics in the past, and it will be called the
"subjective H theorem. " The inequalities hold for all
times, positive or negative; given the density matrix at
time t'=0, our uncertainty as to the perturbing signal
V(t) affects our knowledge of the past state of the
system just as much as it does the future state. We
cannot conclude from (12.6) that "entropy always
increases. " It may fluctuate up and down in any way
as long as it remains within the prescribed bounds. On
the other hand, it is true without exception that the
entropy can at no time be less than its value at the
instant t' for which the density matrix was given.

Figure 1 represents an attempt to illustrate several
of the foregoing remarks by picturing the array. The
diagram represents a portion of the surface of the unit
hypersphere upon which all points of the array lie. '~

The interior of a circle represents a certain subspace
S,(t) which moves in accordance with the Schrodinger
equation. Separated circles represent disjoint subspaces,
while if two circles overlap, the subspaces have a
certain linear manifold of states in common. The infor-
mation given to us at time t'=0 locates the system
somewhere in the subspace So. The two possible inter-
actions V&'~(t), V&'&(t) would induce rigid rotations of
the hypersphere which would carry So along two diGer-
ent trajectories as shown. The lower part of the diagram
represents the resulting entropy curve S(t). If the
subspaces Sr, Ss coincide at some time tr, then S(tr)

'7The representation is necessarily very crude, since a con-
tinuous 1:1mapping of a region of high dimensionahty onto a
region of lower dimensionality is topologically impossible. Never-
theless such diagrams represent enough of the truth to be very
helpful, and there seems to be little danger of drawing funda-
mentally incorrect conclusions from them.

13. INFORMATION GAME

A typical process by which the subjective H theorem
can lead to a continual increase of entropy, and which
illustrates the essential nature of irreversibility, may
be described in terms of a game. We have a sequence of
observers 8&, 82, 83, ~ -, who play as follows. At the
beginning of the game they are given the possible
Hamiltonians H =Ha+ V&~'(t) and the corresponding
probabilities P . At time I~, observer 8~ is given a
density matrix p&(t&). He computes from (12.5) the
density matrix pr(t) which represents his state of
knowledge at all other times on this basis, and the
corresponding entropy curve S&(t). He then tells ob-
server es the value which the density matrix pt(ts)
assumes at time f2, and gives no other information.

Os now computes a density matrix ps(t) which
represents his state of knowledge at all times, on the
basis of the information given him, and a corresponding
entropy curve Ss(t). He will, of course, have ps(ts)
=pr(ts), but in general there will be no other time at
which these density matrices are equal. The reason for
this is seen in Fig. 2, in which we assume that there are
only two possible perturbations V&'), V&2&. The infor-
mation given to 8& locates the system somewhere in
the subspace $0 at time t». At a diferent time t2, this
will be separated into two subspaces Sr(ts) and S2(ts),
corresponding to the two possible perturbations. For
simplicity of the diagram, we assume that they are
disjoint. At any other time t3, the array of 8& is still
represented by two possible subspaces S&(ts), S&(ts).
Observer 82, however, is not in as advantageous a
position as 8&., although he is given the same density
matrix at time t2, and therefore can locate the subspaces
Sr(ts) and S,(ts), he does not know that Sr(ts) is associ-
ated only with the perturbation V"', S&(t&) only with
V&'). Therefore, he can only assume that either pertur-
bation may be associated with either subspace, and the
array representing the state of knowledge of 82 for
general times consists of four subspaces.

FIG. 2. The informa-
tion game. The array
of observer 1 at times
t1, t2, t3 is represented by
solid circles. The array
of observer 2 includes
also the portion in
dashed lines.
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The game continues; 82 tells 83 what the density
matrix p2(t3) is, and 63 calculates kis density matrix
p3(t) (which, at general times other than t3, must be
represented by eight possible subspaces), and the
entropy curve S3(t), , and so on.

The subjective H theorem applied to the eth observer
gives

p (t)=p(2323'~G(t, t') ~kk')p .(t'), (13.5)

or,

where
p(t) =G(t, t')p(t'), (13.6)

This could also be written in another kind of matrix
notation as

S-(t-) &S-(t)&S (t-)+S(S-)
while from the rules of the game,

(13.1) (NN'
i G(t, t')

i
kk') = U„2(t,t') U„2 *(t,t') (13.7)

is the direct product matrix

S,(t„)=S„(t„) (13.2) G= UXU*. (13.8)
Therefore, we have

Si(ti) &S2(t2) &S3(t3)& . . (13.3)

Note that no such inequality as t&& t2&t3& ~ ~ need
be assumed, since the subjective B theorem works as
well backwards as forwards; the order of ilcreasilg
er3troPy is the order il which information was trartsferred,
a23d kas eothigg to do with a23y temporal order

An important conclusion from this game is that a
density matrix does not in general contain all of the
information about a system which is relevant for pre-
dicting its behavior; even though 8~ and 82 had the
same knowledge about possible perturbations, and
represented the system by the same density matrix at
time t2, they were nevertheless in very different positions
as regards the ability to predict its behavior at other
times. The information which was lost when 8~ com-
municated with 82 consisted of correlations between
possible perturbing forces and the diGerent simple
arrays which are contained in the total compound
array. The eGect of this information loss on an ob-
server's knowledge of the system was not immediate,
but required time to "develop. " Thus, it is not only
the entire density matrix, but also the particular
resolution (12.5) into parts arising from different simple
arrays, that is relevant for the prediction problem.

For these and other reasons, an array must be
considered as a more fundamental and meaningful
concept than the density matrix; even though many
diferent arrays lead to the same density matrix, they
are not equivalent in all respects. In problems where
the entropy varies with time, the array which at each
instant represents the density matrix as a mixture of
orthogonal states is difFicult to obtain, and without
any particular significance. The one which is resolved
into simple arrays, each representing the unfolding of
a possible unitary transformation, provides a dearer
picture of what is happening, and may contain more
information relevant to predictions.

The density matrices p„(t) determined by the succes-
sive observers in the information game may be repre-
sented in a compact way as follows. Consider 6rst the
case where there is only a single possible perturbation,
and therefore p undergoes a unitary transformation

In (13.4) p is considered as an (EXP) matrix, while in
(13.6) it is a vector with 1P components, and G is an
(1P)&1P) matrix. It is readily verified that G has the
group property

G(t, t')G(t', t")=G(t,t") (13.9)

where
p(t)=B(t t)p(t),

g(t, t') =Q P G' '(t, t')

(13.10)

(13.11)

The essential feature of the irreversibility found in the
information game is that g(t, t') does 23ot possess the
group property (13.9):

B(t t )B(t t )&8(t t ) (13.12)

for on one side we have the product of two averages,
on the other the average of a product. If (13.12) were
an equality valid for all times, it would imply that g
has an inverse g '(t, t') = 8(t', t), whereupon (13.10)
could be solved for p(t'),

p(t') = B(t' «)p(t).

But then, the subjective B theorem would give

S(t)&S(t'), from (13.10);
S(t') &S(t), from (13.13).

(13.13)

In the general case g(t, t') may be singular.
The density matrices of the successive observers are

now given by

Pi(t) = g(t, ti)Pi(ti),

P2(t) = 8(t t2) B(t2 ti)Pi(ti),

P3(t) g(t t3) g(t3 t2) g(t2, ti)P1(tl),

(13.14)

in consequence of the same property possessed by U.
The advantage of writing the transformation law in

the form (13.6) is that, in the case where there are
several possible perturbations V' &(t), the transforma-
tion with time (12.5) cannot be written as a similarity
transformation with any "averaged U matrix, " but it
is expressible by a 6 matrix averaged over the distri-
bution P:

p(t) = U(t t')p(t') U '(t t'). (13.4) in which the information game is exhibited as a Markov
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14. STEP-RELAXATION PROCESS

In the preceding section, the information game was
interpreted in the "passive" sense; i.e., we assumed
that a certain one of the perturbations V&~&(/) was the
one in fact present, and this same one persisted for all
time. The diferent observers then represent diferent
ways of looking at what is in reality only one physical
situation, their increasing uncertainty as to the true
state being due only to the incomplete transmission of
information from one observer to the next.

The game may equally well be interpreted in the
"active" sense, in which there is only one observer,
but at each of the times t», t2, t3, , the perturbation
is interrupted and a new choice of one of the V& '(t)
made in accordance with the probability distribution
I' . Although it is not required by the equations, it is
perhaps best at this point, merely to avoid certain
teleological distractions, to assume that

t»&tg&t3& (14.1)

At each of these times the observer loses exactly the
same information that was lost in the communication
process of the passive interpretation, and his knowledge
of the state of the system progressively deteriorates
according to the same Eqs. (13.14) as before. The
density matrix which represents the best physical
predictions he is able to make is then

t»&t&tg
t2&t&t3

t„&t&t„+».

This is a continuous function of time, since

p-(~ ) =p-i(~-).

(14.2)

In the following we consider only the case where p
operates on a function space 0 of finite dimensionality
E. The maximum possible entropy of such a system is

(14.3)

which is attained if and only if p is a multiple of the
unit matrix:

P n=&»~ k:. (14.4)

From this fact and (13.3), it follows that the sequence
of values S(t„) must converge to some definite final
entropy:

lim 5(t„)=5„&5,„. (14.5)
'+~00

To investigate the limiting form of the density matrix
as t—+~, some spectral properties of the transformation
matrices are needed. Let g stand for any one of the

"J.L. Doob, Ann. Math. 43, 351 (1942).
"W. Feller, ArI, Ietroductiorr, to Probability Theory arjd its

happ/icatiorIs

(John YViley and Sons, Inc. , New York, 1950).

chain, ""the ordering index giving the sequence of
information transfer rather than a time sequence.

TQT '= (14.9)

(1PX1P) step transformations g(t„,'t i) operating in
the direct product space rXo.=o', and x, y be any
vectors of E' components upon which g can operate.
Instead of denoting the components of x, y by a single
index running from 1 to g2, we use two indices each
running from 1 to E, so that x, y may also be interpreted
as (1VXÃ) matrices operating in the space 0. We
define inner products in the usual way by

(x,y) = P x„&*y„I,——Tr(xty). (14.6)
n, k=»

Since g is not a normal matrix (i.e., it does not com-
mute with its Hermitian conjugate), we may not assume
the orthogonality, or even the existence of a complete
set, of its eigenvectors. However, every square matrix
has at least one eigenvector belonging to each eigen-
value, so that as x varies over all possible directions,
the set of numbers

g(x)
—= (x,bx)/(x, x)

includes all the eigenvalues of g. Writing

x.= U~-&xU&-)-»

it is readily shown that (x,x )= (x,x). From (12.5)
we have

gx=g~ I'~x„
and therefore

~(x, gx) [
= [P P.(x,x.) ~&g S.~(x,*.)~

&Q P,((x,x) (x,x )jl= (x,x),

where the Schwarz inequality has been used. We
conclude that for all x,

Ig(x)l & 1 (14.7)

with equality if and only if x =x for all 0,. This is
evidently the case if x is a multiple of the unit matrix;
thus (14.4) is always an eigenvector of g with the
eigenvalue unity. Only in exceptional circumstances
could g have any other eigenvalue of magnitude unity;
this would require that some x other than (14.4) must
exist which is invariant under all the unitary transfor-
mations U~ &.

By a similar argument, one can derive a slightly
weaker inequality than (14.7):

(gx, gx) & (x,*), (14.8)

which shows that Trg (t„)j is a non-increasing function
of e, which must converge to some definite Anal value.

From these relations several features of the long-time
behavior may be inferred. First consider g to be
brought, by similarity transformations, to the canonical
form
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where each A; contains all those, and only those, terms
which arise from the eigenvalue X;. If X; is nondegener-
ate, A; is simply the number X;. If X; is an m-fold
multiple root of ~g—F1~=0, then A; may be the
(m&(m) diagonal matrix X,1, or it may have one or
more "superdiagonal" terms"

0 0
0 ); 1 0

Aj 0 0 y 0 (14 10)

limp(t )=lY '1, (14.12)

independently of p(0). The information contained in
the initial distribution becomes completely lost, and
the limiting entropy is the maximum possible value
(14.3). In practice, this would be the usual situation.

(b) If g has more than one eigenvalue with
~
X;~ = 1,

the density matrix does not necessarily approach any
fixed limit. Nevertheless, the entropy S(t„)must do so.
Therefore, by an argument like that of Appendix A,
the ultimate behavior must be one in which a certain
similarity transformation is repeated indefinitely. For
example, this ultimate transformation could consist of
a permutation of the rows and columns of p. In this
case, traces of the initial information are never lost,
and the limiting entropy is less than lnS.

These results correspond closely to those of the theory
of long-range order in crystals, ""in which one intro-
duces a stochastic matrix which relates the probability
distribution of one crystal layer to that of an adjacent
one. The existence or nonexistence of probability
influences over arbitrarily long distances depends on
the degeneracy (in magnitude) of the greatest eigen-
value of this matrix.

~ S. Lefschetz, Lectures on Differential Equations (Princeton
University Press, Princeton, 1946), Chap. I."J.Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).

~ G. F. Newell and K. W. Montroll, Revs. Modern Phys. 25,
ss3 (&9s3).

The simplest type of step-relaxation process to describe
is the one in which all of the matrices g(t„,t„ i) are
equal; i.e., t„=e7-, and each of the possible pertur-
bations V&~&(t) is periodic with period r The .general
conclusions will be the same regardless of whether this
is the case. We now have

p(t ) =8"p(0).1 (14.11)

and those parts of the canonical form Tg"T-' arising
from the eigenvalue X=O are annihilated in a finite
number of steps, while the sections A," for which
0& ~X;~ &1 are exponentially attenuated. Thus, the
situation as e—&~ depends only on those A;" for which

~
X;~ = 1. There are two possibilities:

(a) The ergodic case. If g has only one eigenvalue
with ~X;~ =1 [which must therefore correspond to the
eigenvector (14.4)], the sequence (g"}converges to the
projection onto (14.4); i.e.,

is not a6'ected by which particular sample of the
function V~ i(t) is involved in (15.1); i.e., if we were to
insert instead the values assumed by V&~&(t) in some
other equal time interval (t'+~t+r), the average

F';=+.P.F[V~.&(t+r)] (15.2)

would be independent of v.. Conversely, if

p' a—p'a

for all functionals and all values of v, this implies that
V(t) has exactly the same statistical properties after
any time translation, so that V(t) must be a stationary
stochastic process. Under these conditions the expres-
sion (15.1) will not be affected by averaging it over all
time translations;

1 r
F™=F'= lim —

~ Q P F[Vi &(t+r)]dr. (15.3)
g-+oo 2y'J

Our ergodic assumption is that in this formula the
averaging over I' is redundant; i.e.,

F =F'= lim F[V(t+r)],~~ 2T~
(15.4)

in which the parameter n may be dropped.
The preceding paragraph was written in a conven-

tional kind of language which made it appear that a
substantial assumption has been introduced; one whose
correctness should be demonstrated if the resulting

15. PERTURBATION BY A STATIONARY
STOCHASTIC PROCESS

We now investigate the change in our knowledge of
the state of a system for which the perturbing Hamil-
tonian V(t) is a stationary random function of time.
Certain aspects of irreversible processes may be de-
scribed in terms of such a model, although we will 6nd
that other essential features, such as the mechanism by
which thermal equilibrium is established, require better
approximations in which the quantum nature of the
perturbing forces is taken into account.

In classical statistical mechanics an ergodic hypoth-
esis facilitated the mathematics by allowing one to
replace time averages by ensemble averages. We now
find the reverse situation; that calculation of g(t, t') is
facilitated by an ergodic principle that enables us to
replace the "ensemble average" (13.11) by a time
average, and then to make use of correlation func-
tions and the Wiener-Khintchine theorem. In Eq.
(13.10), G& i(t, t') may be regarded as a certain func-
tional F[U& &(t)] of V& '(t), which depends on the
values assumed by this operator in the time interval
(t'~t) The .statement that V(t) is a stationary sto-
chastic process implies that the average of this func-
tional
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theory is to be valid. Such conventional modes of
expression, however, do not do full justice to the
situation as it is presented to us in practice. To see this,
we need only ask, "What do we really mean by the
functions V& &(t) and the probabilities P?" In most
cases there is only one function V(t). Knowledge of the
statistical properties of V cannot then be obtained by
observing the frequency with which the particular
function V& &(t) appears in an ensemble of similar
situations, because no such ensemble exists. By the
probability P we could mean only the average fre-
quency, over long periods of time, with which a con-
6guration locally like V( & occurs in the single function
V(t). The means by which the probabilities P are dined
already involve a time aver-aging procedlre. Therefore
(15.4) is not an assumption at all; it is merely the
natural way of stating a fact which is expressed only
awkwardly by (15.1). Equation (15.4) carries out in a
single step both the averaging procedure in (15.1) and
the process by which the V( ) and I' are determined.

The problem is thus reduced to a calculation of
g(t, t') = 8(t—t'), where

pT

g(t) = hm
~ PU(t+r, r) X U*(t+r, r) jdr. (15.5)

P-+oo 2Pj

The exact evaluation of g(t) would require a rigorous
solution of the Schrodinger equation (12.3) for arbitrary
V(t). In practice one must resort to approximate solu-
tions at this point, and it is fortunate that in many
practical situations g(t) is determined to a good
approximation by the use of second-order perturbation
theory. The characteristic feature of such problems is
found by noting that although g(t, t') does not in
general possess the group property (13.12), an equality
of this form may be approximately correct for certain
choices of times, provided the perturbation is weak
and has a short correlation time. Thus, suppose that
t"&t'&t, and we try to represent g(t, t") by a product

B(t t )=B(t t )8(t t ) (15 6)

The approximation involved in (15.6) consists of the
discarding, at time t', of mutual correlations which
were built up in the time interval (t"~t') between
possible functions V(t) and the corresponding simple
arrays. If V(t) is a weak perturbation, it can change
the state of the system only slowly, and a long time is
required for any strong correlations to develop. How-
ever, if the time 7., over which appreciable autocorre-
lations persist in V(t) is very short compared to (t' t"), —
the mutual correlations discarded were actually accumu-
]ated only during an interval ~. just prior to t, and will
be relatively unimportant; thus (15.6) may be a very
good approximation. . On the other hand, it will never
be an exact equality, because the values of V(t) just
prior to t' will necessarily have some influence on its
behavior just after t', whose eGect is lost in the approxi-
mation.

These considerations lead to a means for approximate
calculation of g(t —t'). Divide the time interval (t' +t-)

into n equal intervals: (t t'—)=nr, and set

8(t—t')=LB(r) j"- (15.7)

we have approximately

dp/dt Kip (15.9)

E» has )V' eigenvalues P;, one of which must be zero
since K~ annihilates (14.4). By an argument like that
leading to (14.7) one shows that Re(X;)&0. Thus each
element of p will relax to a Anal state according to a
superposition of exponentials exp(X;t), with several
diGerent relaxation times in general.

The right-hand side of (15.9) is generally a poor
approximation to the instantaneous time derivative of

p, but gives only the average rate of change over the
period r. Similarly, the matrix E» resembles a time
derivative of g; in the following section we present
reasons for expecting that a slightly diGerent de6nition
of Kq will render (15.9) more accurate as far as giving
the long-term drift is concerned.

10. EXACTLY SOLUBLE CASE

In the case where the perturbation V(t) commutes
with Ho, it is possible to evaluate (15.5) exactly without
use of perturbation theory. This case is a very special
one, since the perturbation causes no transitions but
only a loss of coherences; nevertheless it has found some

If 7.))r„this is a good approximation, and if in addition
it is possible to choose z short enough so that the change
of state during time ~ is given adequately by second-
order perturbation theory, this leads to a feasible
method of calculation. Kith this approximation, the
theory is reduced in its essentials to that of the step-
relaxation process of the preceding section.

The most important feature of the final solution can
be seen directly from (15.7). The change of state with
time has a simple "stroboscopic" property: if we
observe the density matrix only at the instants t =ms,
we see the approach to equilibrium take place in a
stepwise exponential fashion, describable by relaxation
times. This result is already guaranteed by the nature
of the approximation in (15.7) quite independently of
any further details, and in particular independently of
any assumptions concerning the level spacings of the
system. However, the level spacings are important in
determining the appropriate form of the solution. For
example, if the correlation time 7, is extremely short
compared to all characteristic times of the system, we

may, while satisfying the condition ~))7-„still have
~coj, ~~r&&1 for all transitions frequencies co~~. In this
case, the change in p during time 7. is very small, and
(15.7) may be replaced by a linear differential equation
with constant coeScients. Thus, dedning E» by

(15.8)
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t

=bq~bj, ~
e'"""" exp i g g t" dt", 16.2

where coA, I,=coj, —&of„and

fs s(t) = Vs (t)—Vs(t) (16.3)

applications in the theory of pressure-broadening of
spectral lines"' and exchange narrowing" in para-
magnetic resonance.

The perturbing forces represented by V(t) often
arise as a superposition of many small independent
sects, and in this case the central limit theorem of
probability theory shows that the distribution of V(t)
will be Gaussian. Furthermore, in most applications
one will not have enough information about V(t) to
determine any unique objective probability distribu-
tion; we may know, for example, only the average
energy density, therefore the mean-square value, of the
perturbing 6elds, plus a few features of their spectral
density. Maximum-entropy inference would then be
needed in order to represent our knowledge of V (t) in
a way free of arbitrary assumptions. Since a Gaussian
distribution has maximum entropy for a given variance,
one should always use a Gaussian distribution if the
available information consists only of the 6rst and
second moments. In the following we consider only the
Gaussian case.

The Hamiltonian has matrix elements

II):l(t) [o)s+Vy(t) jets[. (16.1)

The solution of (12.3) for the time-development matrix
is substituted into (15.4) to give

FIG. 3. Region of inte-
gration in Eq. (16.5).
Appreciable contribu-
tions to the integral
come only from shaded
part.

is the autocorrelation function of f(t). A short calcu-
lation shows that for a Gaussian function with variance
o (t), the average required in (16.2) is

(eig) e—tv(t) (16.7)

and thus the exact solution (13.10) of the relaxation
problem is

ps (t) —e
'

I'c s&p (0)e s sl &) (16 g)

Since 0 1,1,=0, the diagonal elements of p are unchanged,
but the o6-diagonal elements relax to zero in a manner
described by (16 5) 's

We assume that there exists a correlation time ~,
such that the correlation function (16.6) is essentially
zero whenever ) r~)r, . The region of integration in
(16.5) may be represented by a square as in Fig. 3,
and it is seen that although o (t) necessarily starts out
proportional to t' for small t, it approximates a linear
function of time when t) r.. The function o (t) therefore
has the form of Fig. 4, and for $& r, it reduces to

f(t) = f(t )dt (16.4)

is a real Gaussian random function with mean value
zero (by definition, since any constant Part of V may The quantity
be included in B()).So also, therefore, is the function

g (t)—2m.I(0)[t—stj.

r"
I(o))= I ~(t)e '"'dl-

2m~ „

(16.9)

(16.10)

where we have dropped the subscripts for brevity.
The probability distribution of g(t) is determined by
its second moment

FIG. 4. The function
0-(t).

where

p
T

p(T) = lim f(t+r) f(t)dtr 2ZJ

(16.5)

(16.6)
c

"P.W. Anderson, Phys. Rev. 76, 647 (1949).Earlier references
are given in this paper.~ S. Bloom and H. Margenau, Phys. Rev. 90, 791 (1953).

~~ P. W. Anderson and P. R. gneiss, Revs. ;Modern Phys. 25,
269 (1953).

2' In some cases it may be possible to evaluate (16./) directly
even though (g') does not exist. For example, we may have
f(t) =constant, with probability distribution p(f)df Then (16.7).
is a Fourier transform, and with Lorentzian p(f) we obtain a
decay law exactly exponential for all times.
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FIG. 5. Slip effect
caused by discarding
correlations. The ap-
proximate solution is
represented by the
solid line, while the
dashed line is the
exact solution.

is the spectral density of f(t) for frequency &o, and r« is
a short time somewhat less than r„ indicated on Fig. 4.
Thus when t&r., the relaxation process goes into an
exponential damping, the element p~I, having a relax-
ation time TI,I, , where

1/~'« =~1"«(O). (16.11)

Note that although the Anal formulas involve only the
spectral density at zero frequency, the condition that
p(t) should be very small for III) r. implies certain
conditions on I(a&) at other frequencies. It. is required
not only that I(&u) be large over a band width r, '
of frequencies, but also that it be a suKciently smooth
function of frequency. Discontinuities in I(~) produce
oscillations in p(t) and 0 (t) which may persist for long
periods, rendering (16.9) inaccurate.

It is of interest to compare the exact solution (16.8)
with the one which would be obtained using the
approximation of (15.7). Here we stop the integration
process of (16.5) after each interval ~, throw away
mutual correlations between p and V(t), and use the
density matrix thus obtained as the initial condition
for the next period. The resulting o (~) is illustrated in
Fig. 5. It is seen that the approximation "slips behind"
the exact solution by a time delay r~ each time the
mutual correlations are discarded.

There is an apparent paradox in this result. It seems
natural to suppose that any mathematical approxima-
tion must "lose information, " and therefore increase
the entropy. However, we find the relaxation process
taking place more rapidly in the exact treatment than
in the approximate one: S «(~))S.»,o (~). Thus, the
approximation has not "lost information, " but has
"injected false information. "The reason for this can be
visualized as follows. Suppose that at time t=o the
array consisted of a single point, i.e., a pure state. At
later times it will consist of a continuous distribution of
points filling a certain volume, which continJ ally
expands as t increases. It is very much like an expanding
sphere of gas, where strong correlations will develop
between position and velocity; a molecule near the
edge of the sphere is very likely to be moving away
from the center. This corresponds roughly to the
correlations between diGerent states of the array and

different possible perturbing signals V(t). Now suppose
that in an expanding gas sphere these correlations are
suddenly lost; the set of velocities existing at time r is
suddenly redistributed among the molecules at random.
Then a molecule near the edge is equally likely to be
moving toward or away from the center. The general
expansion is momentarily interrupted, but soon resumes
its former rate.

This paradox shows that "information" is an unfortu-
nate choice of word to describe entropy expressions.
Furthermore, one can easily invent situations where
acquisition of a new piece of information (that an
event previously considered improbable had in fact
occurred) can cause an increase in the entropy The
terms "uncertainty" or "apparent uncertainty" come
closer to carrying the right connotations.

Note that, if we were to use the slope of the appl oxl-
mate curve in Fig. 5 just before time 7., instead of the
average drift over period r, to calculate the relaxation
time, we would obtain a more accurate value whenever
r& rc.

where
dp/dt= K«p,

d

Eat)«, '

(17.1)

(17.2)

will give a slightly more accurate long-term solution
than will (15.9). The evaluation of g(~) using pertur-
bation theory is in essence identical with the treatments
of nuclear spin relaxation given by Wangsness and
Bloch,"Fano, ' y Ayantp and Bloch. ' "Only a brief
sketch of the calculations is given here, although we
wish to point out certain limitations on the applica-
bility of previous treatments.

One solves the equation of motion. (12.3) by use of
time-dependent perturbation theory, retaining terms
through the second order. The result of substituting
this solution into (15.5) is expressed compactly as
follows. De6ne a matrix q (t) whose elements consist of
all correlation functions of VI,~, V~ ~ .

(kk'I q (t t') I»') =(Vg,g(t) Vp «*(~—')), (17.3)

in which the average is taken over all time translations.
y(t) has the symmetry properties

(»'I ~(~) I«') =(»'I ~(~) I»')*=(~'~l'( —~) I~'&) (» 4)

We assume again that there exists a correlation time

~7 R. K. VVangsness and F. Bloch, Phys. Rev. 89, 728 (1953)."U. Pano, Phys. Rev. 96, 869 (1954).~ Y. Ayant, J. phys. radium 16, 41j. (4955).~ F. Bloch, Phys. Rev. 102, 104 (1956).
F. Bloch, Phys. Rev. 105, 1206 (1957).

1'7. PERTURBATION THEORY APPROXIMATION

Returning to the general case, we conjecture that a
similar situation to that just found will occur: i.e., that
the di6'erential equation



I NFORMATION THEORY AND STATISTICAL MECHAN I CS 187

r. such that all components of ip(t) are essentially zero
whenever t) r, . In this case the "partial Fourier
transforms" of p, dered by

(17.5)

are independent of r. Finally, we introduce the symbols

(kk'~ «') =(kk'(C (~"i")~«') = («'~ kk')*. (17.6)

In terms of these quantities, we obtain

(kk'~ g(,) t«')=e-'-»"{~..t..„.
—tr -q( - )Z (PPlk' ') —~'-V( -)Z (k IPP)

+q(,„—~,.„.)L(kk'~ «')+(~'~~ k'k) j}, (17.7)

p (t) e izzo tp (t)e
—izzo t (17.13)

and attempts to describe the relaxation process by a
linear diGerential equation with constant coefficients,
satisfied by the slowly varying p(t). This is not always
possible, however, for Eqs. (15.5) and (15.7) hold only
in the original Schrodinger representation. If Ho is
diagonal, the matrix gz which gives the change of state
in the interaction representation,

be chosen so long that the formulation (17.8) in terms
of a difFerential equation breaks down. In this case a
diGerent approach, used by Wangsness and Bloch,"
may be attempted. Here one removes the rapid time
variations of p due to Ho by transforming to the inter-
action representation, in which the density matrix is.

where
q(id) = (e'"'—1)/i'. p(t) = Bz(t,t') p(t'), (17.14)

In the case of extremely short correlation time, so that
~orr, „v~&&1, as assumed in (15.9) and (17.1), g(orrt; )=r
for all transition frequencies orr, „, and (17.7) leads to
the diGerential equation

prr, +forrr, pry ——P {((kk'~«')+ (zt'I
~

k'k) jp„„.
n, nz

—(« i
k'I') pr, „—(kl

i
I'I')p„}. (17.8)

This case of perturbation by extremely wide-band
"white noise" applies to many cases of nuclear spin
relaxation in liquids, " its condition of validity being
that the correlation time (roughly, period of molecular
rotation) is short compared to the Larmor precession
periods.

In the approximation of (17.8) the quantities
(kk'~«') are real if q(t) is real, as will usually be the
case:

is related to the previous g by

(kk'
~
gz(t+ ~, t)

~

«')
—ei(~ra —~r '~'r e ~ra' (kk

~
g(&) «') (17 15)

so that although g is a function only of (t—t'), this is
not in general true of gz. Consequently an approxi-
mation of the form (15.7) cannot be valid in general
for gz. However, it is seen that those elements of gz
for which

an= I 'n' (17.16)

depend only on (t—t'). Therefore, if by any means
one can justify discarding elements of gz not satisfying
(17.16), this method will work. Referring to (17.7), it
is seen that the elements which satisfy (17.16) are just
the "secular terms" which increase proportional to r,
while the unwanted terms are the oscillating ones.

'Therefore if the time r is suf6ciently long, and the
level spacings are such, that the quantities

The neglected terzn is small, since by hypothesis ip(t)
is very small before sin(or„r, t) attains an appreciable
magnitude. Equation (17.9) is rr times the "mixed
spectral density, " at frequency or r, , of Vz„(t) and
Vr, „(t). To interpret (17.8) we transfer all terms
containing pl, ~ to the left-hand side

p~L.+
I

+iorr, r,
~
p~r, ——"driving forces. " (17.10)

(T~z, i

+an —+I zn

are either large compared to unity, or zero, for all
combinations of levels, the secular terms will be much
larger than the oscillating ones and we obtain the
approximate diGerential equation

~pI a = P {b(orr,„—orp „)I (kk'
~

«')
n, n'

+(I'Nik'k)jp. —b(orr, )(«ik'rt') pg.

The relaxation times TI,I, are given by

1/&» =Vr,+sr Vr~, —
where

v.=Z.(kk
I PP),

p»!= (kk
i
kk )+ (k k

i
k k) . (17.12) 8pr, r,./Bt= 2rrbr p. Q„Ir „(or„r)(p„—pr r ), (17.18)

—8(orth'„) (kN
~

I'e') p„g }. (17.17)

If there is no degeneracy and the density matrix is17.11

initially diagonal, (17.17) reduces to

If the correlation time 7., is not short compared to
the periods (orr, „) ', then the time of integration v must

~ Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

where
F00

Ir,„(or)=— e '"'(kk
~
p(t) ~

«)dt (17.19)
2m~
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is the spectral density, at frequency ~, of Vk„(t)
Equation (17.18) is to be compared to (11.7); we have
a time-proportional transition probability satisfying the
condition of microscopic reversibility. Note, however,
that this result depends entirely on the assumptions as
to spectral properties of V(k) and the various approxi-
mations made, which ensured that oK-diagonal elements
of p would not appear. From the definition (15.5) of g
it follows that, in the case that p(0) is diagonal, the
rigorous expression for diagonal elements at time I, is

„.(~) =P„(lU.„(~,0) I )~„„(o)
=g.Xk„(i)P„„(O), (17.20)

so that in general the transition probabilities Xk (t) are
neither time proportional nor symmetric. " On the
other hand, the so-called ) -hypothesis, "if stated in the
form

gk &k.(~) =Q.4 (~)=1,

is always satis6ed in this semiclassical theory, in
consequence of the unitary character of U.'4

In (17.17) we may again transfer all terms containing

pI, I, to the left-hand side":

so that the contributions of the level widths 7~, 7~ to
the rate of relaxation are not independent. Due to the
terms yI, I, the uncertainty in energy yI, is diGerent from
the reciprocal of the mean lifetime of state k against
transitions. The predicted line widths are, of course,
the reciprocals of the relaxation times TI,I,.

The symbols (kkl pp) may be expressed in terms of
the spectral density of Vk„(t) Inv. erting the Fourier
transform (17.19) and substituting the result into
(17.5), (17.6), we obtain

P" Ik„(&O)dry

(kk I pp) =sIk~((o„k)+iP, (17.24)
J 6)—CO&y

where I' stands for the Cauchy principal value. Thus
the level widths depend on the spectral density at the
transition frequencies, while the level shifts depend
mainly on the manner in which the spectral density
varies near the transition frequencies. This can be
stated in simpler form in the usual case where Vk~(t)
=Qk~f(t), where Qk„ is constant, and f(t) is a real
random function. Let q (/) be the autocorrelation func-
tion of f(t); then the level widths and level shifts are
proportional to the cosine and sine transforms of p(t):

~pea
+ +s(~~k ~rek') Pkk'

-TI A.
"

= "driving forces, " (17.21)

where (17.11)holds, but in place of (1'7.12) we now have

yk+ iR)k ——Q„(kk I PP). (17.22)

yk=& IQkr I' cos(m»t) y(t)dt,
u 0

Rok=+IQk„l'
~

stn((ok, t)p(t)ch.
y 0

(17.25)

The quantities yj, and bcoI, are defined to be real. Ke
interpret these relations as follows. In consequence of
the random perturbations, the energy of state k is
uncertain by an amount yk (in frequency units), and
in addition its average position is shifted by an amount
5coI,. Because of this uncertainty in energy, diferent
possible states of the array drift out of phase with each
other, and the off-diagonal element pqI, tends to relax
to zero with a relaxation time TI,~ . The term

(Vkk(t) Vk k (0))dh (17.23)

corrects for the fact that there may be correlations
between the "instantaneous level shifts" Vkk(t), Vk k (t)

~ A trivial exception occurs if the system has only two linearly
independent states, for a {2X2) unitary matrix necessarily
satisfies ( U~s

~

=
~

Us& ~s. This is not true in any higher dimension-
ality.

3'The possibility that X&„ is not proportional to t may lead in
some cases to a di6erential equation for p with time-dependent
coefficients, analogous to Eq. (2.24) of reference 31."If there is no degeneracy and the level spacing is the most
general type for which there is no relation of the form co7,„=coI,
for k&k', the right-hand side of (17.21) is zero for all off-diagonal
elements pI,q .

From this we see that the level shifts will be small
compared to the level widths if p(/) becomes vanish-
ingly small before sin(cuk„t) reaches its first maximum.
This, however, is just the condition for validity of
(17.8). Thus, whenever the correlation time ~, is so
long that (17.17) is required instead of (17.8) one may
expect appreciable level shifts.

If the quantities coI,„r are of order unity, neither of
the differential Eqs. (17.17), (17.8) is applicable. In
fact, it is clear already from the rigorous expression
p(t) =g(t, t')p(t') that in general a relaxation process
cannot be described by any diGerential equation, for
the rate of change of p does not depend only on its
momentary value, but is a functional of past conditions
during the entire interval (3'~i). Thus, the formulation
in terms of differential equations is fundamentally
inappropriate. It is convenient in those special cases
where it can be justi6ed, because of the easy interpre-
tation in terms of relaxation times and level shifts.
However, the quantities necessary for comparison with
experiment can always be inferred directly from (17.7),
the validity of which does not depend on the magni-
tudes of the quantities col, 7."

The symmetry of the transition probabilities given
by (17.18) arises only because the Vk„(t) are here
considered numbers. If in better approximation one



I NFORMATION THEORY AN 0 STATI STI CAL MECHAN I CS 189

takes into account the quantum nature of the sur-
roundings, they must be considered as operators which
operate on the state vector of the perturbing system 0.2

(the "heat bath"). Then, as shown by Ayant, " the
definition of correlation functions (17.5) remains valid,
provided the brackets are now interpreted as standing
for the expectation value taken over the system 0-2,

and the differential Eq. (17.8) or (17.17) then repre-
sents an approximation in which mutual correlations
between the two systems are discarded at intervals z,
in the manner of (11.5). One now finds that the proba-
bilities of upward and downward transitions are no
longer equal. In the treatment of Ayant, the question
of equality of these transition probabilities is reduced
to the question whether the spectral density of the
perturbing forces is the same at frequencies (+~o) and

(—co). This is correct provided one always defines the
perturbing terms to be real, as in (17.25); note, how-

ever, that the symmetry of transition probabilities in
(17.18) does not require that the spectral density of
Vq„(t) be an even function of frequency. It is suflicient
if the spectral density of Ui, „at frequency (+co) is
equal to that of V q at (—~), and this is always the
case if V is Hermitian.

If one assumes a Boltzmann distribution for the heat
bath and neglects the eGect of the system of interest 0~

in modifying this distribution, the solution of (17.17)
tends to another Boltzmann distribution corresponding
to the same temperature. ""Treatment of this case
and that of "secular equilibrium" from the subjective
point of view will be considered in a later paper.

18. CONCLUSION

The foregoing represents the 6rst stage of an attempt
to provide a new foundation for the predictive aspect
of statistical mechanics, in which a single basic principle
and method applies to all cases, equilibrium or otherwise.

The phenomenon of nuclear spin relaxation is a
particularly good one to serve as a guide to a general
theory of irreversible processes. It is complicated enough
to require most of the techniques of a general theory,
but at the same time it is simple enough so that in

many cases the calculations can be carried out explicitly.
Nuclear induction experiments, in which the predictions
af the Bloch-Wangsness theory'""" are verified down
to 6ne details, "provide a good illustration of many of
the above remarks. Here the experiments are performed
an samples containing of the order of 10"nuclei, and
one measures the time dependence of their total mag-
netic moment when subject to various applied 6elds.
In the theory, however, one usually calculates a density
matrix pi(/) which operates only in the function space
of a single spin, or of some small aggregate of spins such
as those attached to a single molecule. The possibility
of predicting mutual properties of diGerent spin units
is therefore lost.

'6 J. T; Arnold, Phys. Rev. j.02, 136 (1956); W. A. Anderson,
Phys. Rev. 102, 151 (1956).

It would, however, always be better in principle to
adopt the "global" view in which the entire assemblage
of spins in the sample is the system treated. To the
extent that diferent molecular units behave independ-
ently, the complete density matrix p thus obtained
would be a direct product of a very large number of
matrices. However, this would hardly ever be true
because some correlations between diferent spin units
would be expected. Thus, the question is raised whether,
and to what extent, predictions made only from p~

can be trusted. At 6rst glance it seems that they could
not be, for in most cases the density matrix pi(t) differs
only very slightly from a multiple of the unit matrix,
and thus represents a very "broad" probability distri-
bution. According to the discussions of maximum-
entropy inference in I and the introduction to the
present paper, it would appear that this is a case where
the theory fails to make any definite predictions, so
that unless the probabilities in p~ could be established
in the objective sense, the calculations of Sec. 17 would
be devoid of physical content.

The thing which rescues us from this situation is, of
course, the fact that the experiments refer not to a single
spin unit, but to a very large number of them. We must
not, however, jump to the obvious conclusion that the
"law of large numbers, "or the central limit theorem, "
automatically restores reliability to our predictions.
To do so would be to make the logical error of the
experimenter who thought that he could add three
significant figures to his measurements merely by
repeating them a million times. The correctness of the
usual calculations can be demonstrated without explicit
reference to the laws of large numbers, by application
of the principles of Sec. 11.This is, in fact, the example
par exoeltence of how much a prediction problem can be
simpli6ed by discarding irrelevant information.

Suppose that we had solved the problem from the
global viewpoint, obtained the complete density matrix
p(t), and demonstrated that it gave a sharp distribution,
and therefore reliable predictions, for the total magnetic
moment M=Mi+M2+. +M~. Then the only thing
of further interest would be the value of (M). According
to Sec. 11, this can be calculated as well from the direct
product matrix

p&Xp2X -. Xp~,

where pI, is the projection of p onto the space of the kth
system. If the small systems are equivalent, the (Mi)
are all equal, and thus we obtain

(M) =Tr(pM) =&V Tr (piMi).

This equation is exact regardless of whether correlations
exist. Thus, if pi embodies all of the available information
about a single spin system, the predictions of total moment, '

of 1V systems obtained from it are jus( as reliaMe as are
those obtained from the global density matrix p. We cannot
estimate this reliability from p~ alone; loss of that
information is part of the price we had to pay for
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simplification of the problem. If correlations between
different spin units are strong, it will of course be very
dificult to obtain p~ without first solving a larger
problem. Thus, in practice one will obtain only an
approximate value of p~, however, a one percent error
in the calculated value of (Mi) leads only to a one
percent error in (M).

APPENDIX A. SUBJECTIVE H THEOREM

Consider the density matrix (12.5) with t'=0; at
any particular time there exists a unitary matrix V(t)
which diagonalizes p(t), so that (12.5) may be written
in terms of the diagonal matrices,

combination of nt, n for which d„(0)Wd (t). If p(0) is
nondegenerate, this means that the eigenvalues d (t)
must be a permutation of the d„(0).

The second of the inequalities (12.6) follows from
the fact that for any given density matrix p, the "array
entropy" Sz of Eq. (7.14) attains its minimum value,
equal to S= —Tr(p lnp) for the orthogonal array. To
prove this, let the orthogonal array be the one with S
states, where the state e„has probability d„, and let
{f,w } be any other array with M states, where
3f&E, which leads to the same density matrix. The
two arrays are related by a transformation of the form
(7.9)

d(t)=P I' W d(0)W (A.1) 4'mivm* =Z a vndn' Ueyn,

where
W = V(t)U& &(t,0)V '(0) (A.2)

is a unitary matrix. The eigenvalues d (t) of p(t) are
thus related to the eigenvalues of p(0) by

d„(t)=Q „B„„d„(0),
where the quantities 8 form a doubly
matrix:

B .=P B =1.

(A.3)

stochastic

(A.4)

The first of the inequalities (12.6) is then proved as
follows:

S(t)—S(0)=g„d„(0)lnd (0)—g„d (t) lnd„(t)
=P„.B„„d„(0)ln[d„(0)/d„(t) j

&Z B-Ld-(0)—d-(t) j=0. (A 5)

Here use has been made of the fact that lnx& (1—x '),
with equality if and only if x=1. Thus, the equality
sign in (A.5) holds if and only if B =0 for each

where U„„is an (MXM) unitary matrix, and we de6ne
d„=—0, S&+&3'. From this and the orthogonality of
the v„ it follows that

ivy Qn Cm+d~q (A.6)

where C „=
~
U „~' is a doubly stochastic matrix, and

thus by the previous argument (A.5),

5&Sg. (A.7)

Now in the case considered here, let p (0) be represented
by its orthogonal array {v„(0),d„(0)}.At time t, the
density matrix (12.5) is represented by the array in
which the state

P..(t) = Ui.i(t,0)v„(0)

has probability n „=P d„(0).The array entropy is thus

S~(t)= —P w „inn „=S(0)+S(P)=const, (A.8)

which, together with (A.7), proves the theorem.


