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The I'-wave scattering length a~3——0.225 is reason-
ably close to the value a»=0.235 given by Orear" as
the one which fits the slope at low energies. The value
of as' and a13 are small and negative as expected. How-
ever, the value of a11 is much too large.

We estimated the changes that would occur if the
value of f'=0.1 were reduced to f'=0.08. The magni-
tudes of 8& and 53 both increase. The e8ect of D waves
decreases in magnitude but still increases the magni-
tudes of both 8~ and 83. The I'-wave scattering lengths
decrease to a33= 0.20, a31=a13=—0.042, and a11=—0.13,

respectively. In other- words, the qualitative behavior
of the quantities above is unchanged.

The present study indicates that relativistic disper-
sion relations with the assumption of the dominance of
the (3,3) resonance reproduces the experimental energy
dependence of the 5-wave phase shifts and the P-wave
scattering lengths reasonably well.
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The use of modified plane waves as initial- or final-state basis vectors in the calculation of transition
amplitudes for scattering problems is justified in a general manner by time-dependent and time-independent
methods. Expressions for the S matrix in terms of modified plane waves are derived for rearrangement col-
lisions. An equivalence theorem is obtained, by means of which the S matrix can be expressed in a variety of
alternative, forms.

I. INTRODUCTION
' 'N the quantum-mechanical calculation of transition
~ - amplitudes for scattering problems by means of
modified plane waves, a question arises concerning the
appropriate choice of continuum eigenfunctions for
describing ultimately free particles. This question
occurs already in the familiar case of ionization col-
lisions where it is well known that the correct choice of
modified plane wave for describing an ionized particle
is the ingoing-wave continuum eigenfunction. Another
well-known example is scattering by two potentials
where modified plane waves are used in order to take
advantage of the fact that the wave function could be
calculated exactly or to a good approximation if only
one of the potentials were acting. Problems of this

type have caused some difhculty in the past. '
An interesting physical discussion of the reason for

the occurrence of the ingoing-wave basis vectors for
final states of unbound particles has been given by
Breit and Bethe. ' The essential point is the fact that
it is the iegoAzg-wave solutions which merge with plane-

wave solutions at the time t=+ ~ at which the meas-

urement of the scattering is regarded as being made.
An elegant formal derivation, without approximation

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
/isions (Oxford University Press, New York, 1949).

2 Bethe, Maximon, and Low, Phys. Rev. 91, 417 (1953).' G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954). This
paper contains references to earlier treatments of particular cases,

and encompassing the case of explicitly time-dependent
interactions, has been given by Altshuler. ' Altshuler's
treatment is applicable to ionization collisions, but not
to scattering by two potentials, since he omits the term
in the transition amplitude arising from the inhomo-
geneous term of the integral equation for the scattering
wave function. On the other hand, a treatment given
by Park' is applicable to the example of scattering by
two potentials, but not to ionization, since he starts
from the matrix element for plane waves and assumes
that eigenfunctions of the same free Hamiltonian
describe both initial and final states. Three examples,
including examples of the two types mentioned above,
as well as the case of a pickup process, have been
treated by Gell-Mann and Goldberger. ' In each case
Gell-Mann and Goldberger have recourse, for justi-
fication of the expression for the transition rate for
true plane waves from which they start, to a time-
dependent theory which is unfortunately unnecessarily
cumbersome and somewhat obscure from the physical
point of view. No treatment has been given up to now
which is applicable to general rearrangement collisions.

The present paper aims to fill this gap and to provide
a general justification of the use of modified plane
waves on the basis of Inethods of the formal theory of

4 S. Altshuler, Nuovo cimento 3, 246 (1956).
~ D. Park, Nuovo cimento 3, 979 (1956).See also the treatment

of the case of scattering by two potentials given by B. A. Lipp-
mann, Ann. Phys. 1, 113 (1957).

'M. Gell-Mann and M, L. Qo]dberger, Phys, Rev, 91, 398
(1953).
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scattering. In Secs. II and III we treat, by time-
dependent and time-independent methods respectively,
a class of problems which includes as special cases the
examples of ionization and scattering by two potentials
mentioned above. In Sec. IV we treat rearrangement
collisions on a general basis and obtain new expressions
for the S matrix in terms of modified plane waves. An
equivalence theorem is obtained, which provides a
large class of alternative expressions for the S matrix.
It may be expected that this theorem will prove useful
in applications since it provides a variety of alternative
bases for the start of approximation calculations of
scattering amplitudes.

Concerning terminology and assumptions, we make
the following remarks. The S-matrix element for a
given scattering process is determined by specifying
the total Hamiltonian H, the total energy E, and the.
initial- and final-state basis vectors. By plane wave
basis vector we mean a non-normalizable eigenfunction,
of a self-adjoint operator K, such that all ultimately
free particles are described by plane wave functions.
The operator K is called a "free Hamiltonian. " If
bound particles are present, the plane-wave basis
vectors will also contain bound-state eigenfunctions,
so that the free Hamiltonian in general contains
interactions as well as kinetic energy operators. By
"unperturbed Hamiltonian" we mean a self-adjoint
operator Hp which may diRer from the initial- or final-
state free Hamiltonian, or both, by including additional
interactions such that some or all of the plane-wave
functions are replaced by asymptotically equivalent
ingoing- or outgoing-wave continuum eigenfunctions.
All interactions are assumed to vanish suKciently
strongly as the particles become infinitely distant from
each other and from external regions of force. Eigen-
functions of unperturbed Hamiltonians which cor-
respond to those of free Hamiltonians by having plane
waves replaced by asymptotically equivalent ingoing-
or outgoing-wave continuum eigenfunctions are called
"modified plane wave" basis vectors. We shall only be
concerned with modified plane-wave basis vectors in
which the continuum eigenfunctions are all of the same

type, either ingoing or outgoing; basis vectors in which
some of the continuum eigenfunctions are ingoing and
some outgoing will not occur. The definition of (true)
plane-wave basis vector employed here is, apart from
modifications in the case of indistinguishable particles,
the same as that adopted in a recent paper on multi-
channel scattering theory by Kkstein. ' The treatment
given here will be confined to distinguishable particles.

II. TIME-DEPENDENT THEORY

In this section we consider the case where the initial-
and final-state basis vectors are eigenfunctions of the
same unperturbed Hamiltonian Hp.

The time-dependent scattering wave function P(t)
' H. Ekstein, Phys. Rev. 101, 880 (1956),

which develops out of the initial state vector X(t) is
given by the explicit formula

pt
p(t) =X(t)+-~ e '"-' -VX(~)d~

—00

Here units are chosen such that A=1, and the total
Hamiltonian H and the unperturbed Hamiltonian
Hp=H —V are time-independent self-adjoint operators.
The first term of Eq. (1) describes the time development
of the initial state vector, representing a wave packet
of primary particles incident on the scattering system,
as if the interaction V were absent. Thus

~t
e iH(t ri VX

—(~)d—~
Z t0

X(t) +e iH teiH tpe—iH—ptbX (0) (3)

Now if X(0) is a normalizable superposition of outgoing-
wave basis vectors x,+,

we have'

x(0) =) c(a)x.+da,

$(0) —= I c(a)p,+da= lim e'H'&e "H&"x(0).
t0—+—oa

Therefore we can take the limit as tb—+—~ in Eq. (3),
which gives Eq. (1) with P(t)=e 'Hg(0). It can be
verified' that P(t) satisfies the Schrodinger equation in
the integral form

(6)

We compute the transition amplitude ab(t) which is
defined as the projection of the scattering wave function

' M. N. Hack, Phys. Rev. 96, 196 (1954), Kq. (15). The deri-
vation given in this paper can be generalized to the case of
modified plane waves without difficulty. The relation of P,+ to
p + is given in Eq. (20) below.' Substitution of the identity

1 pte' =e—iH( t—T) ——iHO( t—T) ~ -iHp( t—T') &~ —iK(T —T)d+—.
g e Ve dT

$ T

into Eq. (1), interchanging orders of integration with respect to r
and 7', and making use of Eq. (1) itself, leads to Eq. (6). This
identity can be proved by applying the operator i(d/dt) —II0 to
the left- and right-hand sides. The resulting expressions are equal,
so that since the identity clearly holds for t=7., it follows that it
holds in general by the uniqueness theorem for solutions of
differential equations,

X(t) =e—"'

O'X(0),

where X(0) must be chosen to describe the particular
scattering situation envisaged, so that in particular it
contains no admixture of purely bound eigenstates of
the operator Ho, if any exist.

In order to prove Eq. (1), we note that VX(t)
=[H—i(d)dt) jX(t), so that performing an integration
by parts,



1638 M. N. HACK

P(t) onto the plane-wave basis vector

(~)
—e ix—ty —e iE—sip (7)

ai, (t) = (Pi, (t),ti (t)) = (e"' "e ' "it b,x (0))

where it i, is an eigenstate of the final-state free Hamil-
tonian E with eigenvalue E&,. By Equations (2), (6),
and (7) and in view of the self-adjointness of Ho, we
have

formulas"

A+=x~++ VXb+,
Eb—H&ie

and satisfy the integral equations""

4 i+=xi++ Vpb+
Eb —Hp&ie

(17)

+— (e '~0'e"~"e ' "gi„VQ(r))d7 (g).
—00

It can be shown (Appendix) that the limit as 3—&~ of
a&(/) exists and has the value which is expected by
virtue of the second of the symbolic relations

Here and below, the limit as e approaches zero through
positive values is understood. We have also the eigen-
value equations

Hoxi, +=Eixi,", and Hi/i, " Ebg——i,
+ .(19)

Substitution of the second of Eqs. (17) and the first of
Eqs. (21),

lim eiHote —iEyty
t-++OO

Here, yb+ are the outgoing- and ingoing-wave eigen-
functions of Ho corresponding to pi, We .thus obtain

4.'=x.++ Vx.'
E,—H&ie

=x.++ Vig.+,
E —Hp&ie

(20)

(21)

ai, (~)= (xi, ,x(0))—i (xb (~),VQ(r))d7, (10) into the fundamental formula"

where Si,.= (fi,f.+) (22)

Letting
xb (&) e xb e xb (11) for the S matrix gives

x(~)~e "'x.', 0(&)~e "V'
we get for the S matrix

(12)
Si,.=

~
xb + Vxb,p+

)

Ei, H ie —)—

Si„=(xi, ,x,+) 2vrib(Ei, E,—) (xi, , VPg+—). (13)

The ingoing-wave basis vector yb is thus seen to appear
quite naturally and directly.

An alternative form of these expressions is obtained
by making use of Eq. (1) and carrying out a similar
calculation. The relevant symbolic relation is the second
of the pair

lim e*~'e 'E&iy, —
t—+Too

We obtain the alternative equivalent forms of Eqs.
(10) and (13):

ai (~)= (xb,x(0))—s (fq (7),Vx(7'))dr, (15)

and
S~.= (x~,x.+) 2~~~(Eb—E.) (A—,Vx') (16)

III. TIME-INDEPENDENT THEORY

In the present section we give the correspondirig
time-independent treatment for the case where the
initial- and final-state basis vectors are eigenfunctions
of the same unperturbed Hamiltonian Ho. In the fol-
lowing section we remove this restriction in order to
treat rearrangement collisions on a general basis.

The outgoing- and ingoing-wave scattering eigen-
functions fi,+ corresponding to the eigenfunctions xi,+

of the unperturbed Hamiltonian Hp. are given by the

= (x~,4.+)+— (Vx~ 4"+)
Eg E.+ie—

=
( xi,x.++ V4'.+ I

E, Hp+i, e )—
+— (xi,VP,+)

Ei, E,+i»—
1 1

=(x~,x')+i . +-
i Eg Ei,+re Eb E,+—i eI—

X (xi,VP.+), (23)
"M. Gell-Mann and M. L. Goldberger, reference 6, Eqs.

(4.7)—(4.9). Equations (17) and (18} dier from the usual ones
in that the modified plane-wave basis vectors yb+ appear instead
of the plane-wave basis vector pb. However, it was recognized by
Gell-Mann and Goldberger that the plane-wave basis vectors and
the modiaed plane-wave basis vectors lead to exactly the same
scattering eigenfunctions, i.e, ,

@b+=A+E . (&—Eb)yb
Eb —II&Ze

1
=Xb++E ~~. (&—&b)Xb+

"It may be necessary to introduce projection operators to
split o6 purely bound states of II0, if any exist at the energy Eb,
in order that the resolvent operator be well defined. An argument
similar to the one in the text can then be carried through and leads
to the same result.

"This important formula was. first given by Gell-Mann and
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(xb,x.+) =0.

IV. REARRANGEMENT COLLISIONS

(28)

The difhculty encountered in treating rearrangement
collisions is the fact that the initial- and final-state
basis vectors are in general not eigenfunctions of the
same unperturbed Hamiltonian Hp. However, an im-

portant theorem has recently been obtained which can
be used to overcome this diS.culty. " In the concise
formulation due to Lippmann, " the theorem asserts
that the outgoing- and ingoing-wave scattering eigen-
functions given by Eqs. (20) and (21) also satisfy
integral equations in terms of the resolvent of the
unperturbed operator H p'.

where

+1+ V~/ 6
E —Hp'&i&

&z6

(29)

(30)

and
Hp'+V'=Hp+V =H. (31)

Here Hp and Hp' are the initial- and final-state un-
perturbed Hamiltonians which diGer from the initial-

Goldberger, reference 6, Sec. III, Eq. (3.51). However, their
derivation was not sufficiently general to encompass rearrange-
ment collisions, and no use was made of the result. The formula
was used as a basis for the time-independent theory by M. N.
Hack, reference 8, and its applicability to rearrangement collisions
was shown by H. Ekstein, reference 7."S.Altshuler, Phys. Rev. 91, 1167 (1953); 92, 1157 (1953);
H. E. Moses, Phys. Rev. 91, 185 (1953);M. Gell-Mann and M. L.
Goldberger, reference 10; B. A. Lippmann, Phys. Rev. 102, 264
(1956).

'4 B. A. Lippmann, reference 13. We have stated the theorem
here in the form appropriate to modified plane waves.

Sb,——(Xb,X,+) —2zrib(Eb —E,) (Xb—,VP.+), (24)

which is just Eq. (13).
Similarly, by substitution of the first of Eqs. (20)

and the second of Kqs. (18) into Eq. (22), we obtain
Eq. (16) for the S matrix:

Sb, = (Xb,X,+) —2zrz5 (Eb
—E,) (Pb, VX,+) .(25)

Alternatively, the equivalence of (24) and (25) can be
seen directly by taking note of the reciprocity relation

(pb, Vx,+) = (xb, Vf +) (for Eb=E,) (26.)

In the case of scattering by two potentials, where the
initial- and final-state free Hamiltonians are the same
and Hp E+U——, the first term of (24) or (25) is just
the expression for the. S matrix as if only the potential
V were acting, and we have

(x X.+) =~(&—ib) —2 ~(E —E.) (4,~x.+) (27)

In the case of ionization we have, by virtue of the
orthogonality of the bound and continuum states of
the scattering system,

and hnal-state free Hamiltonians in the manner
described in the introduction. With the help of this
theorem, the treatment given in the preceding section
can be extended to the present case where the initial-
and 6nal-state unperturbed Hamiltonians are no longer
the same. By substitution of the second of Eqs. (32),

lb Xb + v'x~+',
Eg—H&ze

(32)

where

fb+' ——Xb++ Ugb+',
Eb—

H prize

~b Xb
Eg—Hp&ze

(35)

(36)

Substitution into Eq. (33) gives

Sb.——(Xb-,x.+)—2zri8(Eb —E.) (fb ', Vx.+), (37)

The equivalence of (34) and (37) can be seen directly
by taking note of the relations

(&.—,x.+) = (x -', l .+')

2zrib (Eb E—.) (xb ', (—V' —V]x-.+), (38)
and(,V'y. )—(y, V . ) =(,$V' —V) .+)

(for Eb ——E,). (39)

With the help of Eqs. (30) and (36), it is seen that the
first terms of Eqs. (34) and (37) vanish for Eb/E, and
indeed fail to vanish for E~=E only if the transition
amplitude (xb ',x,+) between the initial- and final-state
basis vectors has a singularity at E&=E . For rearrange-
ment collisions of the exchange type, it has been shown
that there is no singularity at E&=E,"so that in such
cases the first terms of Eqs. (34) and (37) can be
omitted.

The S matrix for rearrangement collisions can also
be derived time-dependently. For this purpose the
identity

~t
e iHD{i r) —

&
iH—O~(t—r)+ —

e imp'—(t r') (H H I)——
z4~

Xe ' " ' 'dz' (40)

is useful. Substituting this identity into the integral
equation (6) satisfied by f(t), interchanging orders of

and the first of Eqs. (29) into the fundamental formula
for the S matrix, "

Sb,=(gb ',P+), (33)

we obtain by a calculation similar to that of the pre-
ceding section the result

Sb,——(xb ',X,+') 2zrifi(E—b Eg) (x—b ', V'p, +). (34)

An alternative form of the S matrix is obtained by
making use of the first of Kqs. (20) and the second of
the relations (35),
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integration, and making use of Eq. (6) itself and Eq. corresponding to asymptotically equivalent choices of
(31), we obtain the time-dependent analog of the initial- and final-state basis vectors.
theorem described at the beginning of this section, i.e.,

APPENDIX

f(t) =X'(t)+— ' e '~0'&' '~V'P(r)dr
—00

(41) We examine the limit as t—+~ of the integral

I(t) = ~ e'e"(ibb, e '~"'—'&V/(r))dr, (44)

Making use of this result, we can derive Eq. (34) in a
manner similar to that used to obtain Eq. (13). Alter-
natively we can make use of Eq. (1) to derive Eq. (37)
as in the last paragraph of Sec. II.

Finally, we note that our results lead to an equi-
valence theorem" for the S matrix expressed in terms
of modi6ed plane waves. We obtain this theorem by
carrying out two auxiliary transformations. We
transform P,+ to the basis of an unperturbed Hamil-
tonian Hp corresponding to a different asymptotically
equivalent choice of modified plane-wave basis vector
for the initial state. " Similarly we transform P& to
the basis of an unperturbed Hamiltonian Hp' corre-
sponding to a different equivalent choice of modi6ed
plane-wave basis vector for the 6nal state. Here,
Ho+ V=Ho +V =H. We now make use of the theorem
described in the beginning of this section, in the same
manner as before, to derive the equations corresponding
to (34) and (37):

~~.= (x~ ',~.+') —2~i'(&~ —&.) (x~ ',V'4'- )
= (4-,x. )-2 i~(&~-&.) (O~-', Vx. ) (43)

We thus obtain a large class of alternative expressions
for the S matrix by making different choices Hp, Hp,
Hp, Hp, etc. , of unperturbed Hamiltonians corre-
sponding to asymptotically equivalent choices of initial-
and 6nal-state basis vectors. A particular choice of
basis vectors are, of course, the plane-wave basis
vectors.

These results also apply to the case treated in Secs.
II and III. In that case one obtains the alternative
forms of the S matrix [Eqs. (24) and (25) with xi, , I,+,
and V replaced by x&, x,+, and V] by making diferent
choices of unperturbed Hamiltonians, Hp, Hp, etc. ,

'5 For a related theorem, see H. Ekstein and K. Tanaka, Phys.
Rev. 104, 259 (1956)."This is a transformation of the type described in reference 10.
Clearly, by the relation stated there, if g + and g + are modified
plane waves corresponding to the same plane-wave basis vector
@,we have

j.f +=I ++ . (H —E )gE —H&ze

which occurs in Eq. (8). Making use of the completeness
of the scattering and bound eigenstates of the self-adjoint
operator Hp, we can write

I(t)= ~ dr dce' "(g y+)(x.+,Vf(r))e ' " '
t

+ I dr P eiEgi (itii yl) (yl VP( )r) eiei(t—ri (45)J „
Here the ~ sign denotes alternative expansions in
terms of either the ingoing- or outgoing-wave scattering
eigenstates, and the I& are the purely bound eigenstates
of Hp. As will be seen, the ingoing-wave expansion is
the more convenient, but both expansions lead to the
same result. The scattering eigenstates of Hp are related
to those of the 6nal-state free Hamiltonian, E=Hp —U,
by the familiar equations

x.+=4.+— U4.
E,—Hp&ie

=4.+ &x.+.
E,—E~ie

(46)

We now make use of the well-known relations

(e %xi

»m»m
I

4xWi»&

—2mib(g)
(47)

1
=lim lim~ iti„it,+. Ux.+ (e "'e' e'&'

E —Ei,&i» )

which are understood in the sense that the factor under
the limit signs is to be multiplied by a function which
is smoothly varying in the neighborhood of @=0 and
an integration over x performed before the limits are
taken. The upper and lower lines of the brace in (47)
refer to the & sign. Accordingly we have

lim (@i„x+)e 'ie' e"'

1=X. +E ~,. (II-E.)X.',
a

i.e., the P + corresponding to y ~ and y,+ are identical.

b (b —c)—2m-ib (Ei,
—E,) (Pi„U'x,+),

5(b c). — (48)
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The ingoing-wave choice of the expansion therefore
gives at once for the contribution of the 6rst term in

(45), in the limit as t—+po,

limit t +~,

f
e' e"(x +,Vf(r))dr+ dr grdce'~"

J

e'"'(xb, R(r) )dr (49) X (2pri8 (Eb—E,)P b, UX,+)(y,+,VP (r) )

e'~"(yb+, Vp(r))dr+ dr grdce' b'

We next examine the contribution from the bound
states x~. Inserting the expansion

X(2~i&(Eb—Hp)Uyb, y.+)(y.+,Vp(r)). (52)

P(r) = c(a)P.+e 'e"da
We may add a term with J'dc replaced by Pi

(50) and x,+ replaced by z& since this term is equal to zero.
Making use of the completeness, we therefore obtain

into the second term in (45) and performing the r
integration gives in the limit t—+~ a factor

e~&b~(&b+, Vf(r))dr+ I e'& '
J „

X (2rrib(Eb Hp) Uyb—, Vp(r))dr
~' (xi,VP +)5(Ei E,)c(a)d—a. (51)

"'"(x,V4 ( ))d (53)

Since x& is purely bound, it is permissible to make use
here of the self-adjointness of Hp between yi and P,+,
which gives (yi, Vf~+) = (yi, [H Hp]$,+) =—(Eu —K)
X (y~,p,+), so that (51) vanishes. Thus the bound states
make no contribution in the limit t—+~, so that our
result for I(~) is (49), in agreement with the second
term of Eq. (10).

Finally, we show that the alternative outgoing-wave
choice of expansion in (45) leads to the same result.
We make use of the upper line of Eq. (48) to obtain
for the first term of (45) with the + choice, in the

since, by (46),

yb —yb+= 2rri5(Eb Hp) Ugb .(54)

The result (53) is seen to be in agreement with (49).
We have in the above derivation for simplicity not

distinguished between the various types of scattering
states, but a separate treatment of the contributions
from the purely continuum and the mixed partly-bound,
partly-continuum scattering states leads to the same
result.

The first term of Eq. (10) can be derived in a similar
manner.


