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nucleon number rather than strangeness quantum
number "

There seem to be good reasons why it is very dificult
to discover experimentally this family of weakly
interacting heavy bosons, at present and also in the

"The author owes his thanks to Dr. C. N. Yang for suggesting
that the 8 meson and the X meson might have nucleon number
one and zero, respectively.

near future, because members of this family have
only very weak interactions with all other families
and have very short lifetimes.

ACKNOWLEDGMENT

I would like to express my gratitude to Professor
Robert Oppenheimer for his kind hospitality at the
Institute for Advanced Study.

PH YSI CAL REVI EW VOL UM E 108, NUMBER 6 DECEMBER 15, 1957

Solutions of the Static Theory Integral Etluations for Pion-Nucleon
Scattering in the One-Meson Approximation*

GEQRGE SALzMAN, University of Rochester, Rochester, Sea York

AND

FREDA SALzMAN, Rochester, Sew York

(Received July 15, 1957)

Numerical solutions of the one-meson approximation of the
Low equations for elastic pion-nucleon scattering in the 6xed-
nucleon, extended-source theory are obtained with a Gaussian
cutoff function. The validity of the method requires that the
scattering amplitudes have no zeros in the complex plane other
than at s=&1. The functions obtained for the (3,3) and (1,1)
states satisfy the Low equations within the accuracy of the
method, but the (1,3) and (3,1) states are only approximately
given. This difficulty with the (1,3) and (3,1) states is correlated
with the development of a zero in the corresponding scattering
amplitude well before physically interesting values of the param-
eters (coupling constant and cutoff) are reached.

A best fit to the (3,3)-state data up to 170-Mev pion laboratory

energy requires a coupling constant, f', less than 0.08. The
solution is consistent with the (3,1)-state data, but gives a
(1,1)-state phase shift of larger magnitude than experiment
appears to permit.

It is found that the cutoff function does not prevent strong
interactions at very high energies. Their occurrence appears to
be a property of the static model. The contributions of such
interactions to various static-theory calculations is briefly dis-
cussed. It is shown that in the p-wave part of the relativistic
dispersion relations, where there is no cuto8 function, if use is
made of the low-energy data, then the very high-energy contri-
butions of the static theory are replaced by recoil terms of order
ii/M.

1. INTRODUCTION

' 'HE formulation of the p-wave part of the pion-
nucleon interaction proposed by Chew and Low'

has been applied to a number of problems, including
elastic pion-nucleon scattering, ' photoproduction of
mesons, ' pion production in meson-nucleon collisions, '
and calculation of the electromagnetic properties of
nucleons. ' Because of the degree of success that approxi-
mate methods have given in this theory, particularly
in predicting the pion-nucleon resonance in the (3,3)
state Lisotopic spin ss, spin —,'j, it is of interest to obtain
a solution of the Low equations for the scattering
amplitudes. These equations are coupled to an infinite

set of equations for other processes, and in principle
the entire set should be solved simultaneously. How-

* Supported in part by the U. S. Atomic Energy Commission.' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
~ G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).' Saul Barshay, Phys. Rev. 103, 1102 (1956); N. Fukuda and

J. S. Kovacs, Phys. Rev. 104, 1784 (1956); J. Franklin, Phys.
Rev. 105, 1101 (1957).

4 H. Miyazawa, Phys. Rev. 101, 1564 (1956); F. Zachariasen,
Phys. Rev. 102, 295 (1956); S. Fubini, Nuovo cimento 3, 1425
(1956);S. Treiman and R. G. Sachs, Phys. Rev. 103, 435 (1956);
G. Salzman, Phys. Rev. 105, 1076 (1957).

ever, in the one-meson approximation the scattering
equations reduce to a set of three coupled equations
which involve only the three scattering functions. We
describe here results obtained in an attempt to find that
solution of these three equations which is analytic in
the coupling constant. '

The method of solution consists of an iterative
procedure applied to the integral equations for the
functions inverse to the scattering amplitudes. ' These
equations are valid if the scattering amplitudes have
no zeros in the complex plane, other than thost at
s= ~ j., which is the case for sufficiently small values of
the coupling constant. It has been conjectured' that
this condition is maintained for values of the coupling

' These equations possess a large number of solutions, only one
of which is analytic in the coupling constant. This was shown for
both the charged and neutral scalar-meson theories by Castillejo,
Dalitz, and Dyson, Phys. Rev. 101, 453 (1956), who 6rst called
attention to the nonuniqueness of the solution. Klein has shown,
Phys. Rev. 104, 1136 (1956), that by taking appropriate linear
combinations of the three scattering functions a set of equations
is obtained which is equivalent to the original three equations,
and whose solutions are generalized Wigner R functions. By this
means the proof of nonuniqueness can be extended, as stated by
Klein, to the symmetric pseudoscalar p-wave meson theory.

6 G. F. Chew, Encyclopedia of Physics (Springer-Verlag, Berlin,
to be published), second edition, Vol. 43.
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constant large enough to provide physically interesting
solutions, that is, solutions with the correct (3,3)-state
resonance.

The neglect of nucleon motion in the static model
implies of course that this theory must be regarded as
provisional, and cannot be expected to agree with
experiment for energies beyond the (3,3) resonance
region. The low-energy part of the solution is compared
with the experimental data in Sec. 6. Neglect of nucleon
energy assumes that strong interactions do not occur
at very high energies. The behavior of the high-energy
part of the solution, although not of experimental
interest, is thus important in determining the self-
consistency of the static model, as is discussed in Secs.
5 and 7. The eGect of nucleon recoil in modifying the
static theory results is briefly examined in Sec. 8.

2. METHOD OF SOLUTION

Following the notation of Chew and Low, we intro-
duce functions h (z), with a=1, 2, and 3 for the (1,1),
(1,3) and (3,1), and (3,3) states respectively. In the
one-meson approximation, and for real values co of s,
h (z) satisfies the equation

where the effective range is

1 I'" Imhp((v')
Q(8.p+A p) da&'.7P ~, Gl'

and

(4d)

(uh ((u) 1
= 1+ da)' ImLhi(a)')

37l f
+h2(co') —2h»(»0') j. (4e)

The function g (z) is defined by

=Z 73-p
g-( —z) gp(z)

(6a)

g-(z) =
zh. (z)

For small enough values of the coupling constant
and cutoff, h (z) will have no zeros and no poles other
than that at z=0. In this case g, (z) satisfies the alge-
braic (crossing) relation

1 1" lb. (~') I'
h (z) =—+— d(o'p"it'(p')

1 CO S

Ihp(~') I'
+PA p

p ice-+z

where

(—1 2 8)
(&.p) =-;I

'I, 8 2 —1)'
(6b)

, (1)
and, for real values & of s, satisfies the integral equation

where z +~+i » for co—)1, and z~s& i» for—»0 &—1,

(&.) =3f'I —1 1,'
E+2j'

—8
(A p)=-', —2 7 41;

4

(2a)

(2b)

z t
" p"v'(p') X H. ((o')

g (z)=1—— ' dko' +, (7)
co 4) z G7 +z

where z +co+i » for co)—1, zoo i» for cu &——1, and

BaPXP
&-(~)=- lg-(-~) I'Z—

lgp(~)l'

cot8. (cu) for &u) 1, (9a)

~= (1+p')* is the pion energy ar'= (1+p")' i', c, and rom Eqs. (3), (5), and (7) it follows that
the pion rest mass are set equal to 1;f' is the unrational-
ized, renormalized coupling constant; v'(p) is the cutoff
function; h (a&) is related to the phase shift 8 (~) by

expLib (~)) sin5 (&o)
h ((o) = for &o) 1.

p'"(p)
(3)

Several properties of h (cu) that are immediate
consequences of Eqs. (1) and (2) are

Img (co) =0 for —1&co&1,
Img (co) = —X p'v'(p)/o) for a))1,

Img (—~) =H (a)p'v'(p)/co for co)1,
I g-(~)j-=o=1—~r-,

(9b)

,p""(p')
r.=- d~' P.+a.(~')),

M
(9c)

(4c)
and

h (—u) =P A php(cu) for all a&,

where the effective range, as defined by Chew and Low,I h~~ —0 f t 4a) ls

Imh (»0) =p'e'(p)
I
h (ar) I') 0 for»») 1, (4b)

&uh ((o)

»=o
=1+cof ,p" '(p')

g (~)=1+—
i d(o' P..—H (co')j. (9d)

CO
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In place of Eqs. (7) and (8), the iteration procedure
is applied to Eqs. (7) and

(10)

I.5—
I.O—
05—

l5—

I f~ 0.08—a 3 P=3

which equation follows immediately from Eqs. (6) and
(8). With g (—co) explicitly eliminated, only positive
values of ra need be considered in Eq. (7). For f'=0,
g (co) =1. This is taken as a trial solution. From Eq.
(10) we then have H '(co) = —P 8 sky. H 0(&o) is then
used in Eq. (7), from which Reg '(&o) is obtained.
Equations (9b) and (10) then provide H '(a&) from

g '(co), and the process is repeated until the difference
between g "(s&) and g

" '(~) is negligible.
This procedure, in which only positive values of co

occur, has the advantage that H (a&) does not occur
in a principal value integral. This feature contributes
to very rapid convergence. It has a disadvantage that
is discussed in the next section.

The Gaussian cutoG function,

e'(p) = exp( —p'/P'),

is used, where E' is the cutoG. The integration range,
1&&'&158', is used for the integrals, which are numeri-
cally evaluated at each net point, co=0, 8, 4, ~, 158',
in the iteration range 1&or&15-,'. Simpson's approxi-
mation, with intervals D~'= 8 =d, is used, except for
the two intervals adjacent to the net point co'=co in
the principal-value integral. This contribution,

is obtained by making a Taylor expansion of f(co')
about cu. For the smooth function f(&u'), the first two
terms of the expansion give a satisfactory approximation
to the integral. The integration range is extended to
168' for the principal value integral, so that even for
values of co close to 158 this integral is accurately given.
The accuracy of the numerical calculations is limited
by Simpson's approximation and by the neglect of
contributions to the integrals from beyond the inte-
gration range. These contributions are discussed in
Sec. 4.

This iteration scheme proves to be strongly conver-
gent, requiring in general only four or five iterations.
The functions to which it converges, g (a&), are shown
in Fig. 1 for f'=0.08 and for several cutoff values.

3. DISCUSSION OF PROCEDURE

Solutions of Eqs. (7) and (10) need not satisfy the
crossing condition, Eq. (6). This actually occurs for the
solution of physical interest, obtained with J'=0.08
and 8=7, as is discussed in Sec. 5. However, if g (co)

is an analytic solution of Eqs. (7) and (10) which
satisQ. es the crossing condition and has no zeros in the

LO-
" G5—

0.0—

3

L5—
~ LO-

0.5—
Qo—

-05—

a I

complex plane, then [X /(erg (or))j is a solution of Eq.
(1).It is therefore not unreasonable to expect to obtain
solutions of Eq. (1) by the iterative procedure em-
ployed, for small enough parameter values. This expec-
tation is supported by the following two facts: First,
Eqs. (7) and (10) and Eqs. (7) and (8) lead to the
same g '(co) for cv&1, if the same trial function, g '(&o)
= 1, is used; and second, g '(ru) is very close to the con-
verged function, g (a&), obtained by iteration of Eqs.
(7) and (10).This condition is satisfied by the functions
of Figs. 1(a) and 1(b).

The character of the functions changes as the cuto8
is increased from 4 to 5 in the sense that the asymptotic
value of g2(co) is no longer equal to that of the other two
states. This change in the behavior of g2(co), shown in
Fig. 1, is maintained as the cuto8 is increased. From
Eqs. (4e) and (5) it follows that if g (~) is not inde-
pendent of n, then P. /(cog (co))j cannot satisfy Eq. (1).
In these cases we also And that the asymptotic values
of g (co) do not satisfy the crossing condition.

Along with this change in the asymptotic behavior of
g2(co), we observe the appearance of a zero of [X2/
(&og2(ar)) j on the negative real axis. More explicitly, we
find that Re@,2/(Mg2(cu))) has a zero at cu —5 both
for P= 4 and 8=5. However, for P=4, ImP2/(~g2(+))$
has a zero slightly above co= —5, while for X=5 this
zero has moved down to co= —7. This indicates that
there is a critical cutoG value, between 4 and 5, at
which P2/(cug2(co))) has a zero on the negative real
axis at co —5.

It appears very likely, on the basis of the evidence
discussed so far in this section, that the functions
[X /(~g (co))j for cutoffs below the critical value are
solutions of Eq. (1), although the functions obtained
for these values have not been so tested. If this is the
case, then there are no zeros of [X /(cog (co))) for cutoBs

I t I I t t t t I t I I I I I t

0 2 4 6 8 IO I 2 l4 I 6
co(IN UNITS OF p, )

Fxc. 1. Iterative solutions of Eqs. (7) and (j.0) obtained with
several diferent cutoG values. There is a radical change in the
behavior of the ex=2 state function induced by changing the
cutoff, P, from 4 to 5.
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Fin. 2. The iterative solution of Eqs. (7) and (10) obtained with f'=0.08
t ol tdtop e o very high energies, with high-energy corrections included.

below the critical one. Furthermore, if the zero of hs(s)
continues to be present above the critical cutoG, then,
since this requires that Eq. (7) be modified in the cr= 2
state, it is sufhcient to explain the abrupt change in
the character of the functions that are obtained as the
cutoG is increased from 4 to 5.

Despite this diQiculty, which appears to be present
only in the +=2 state, it is still possible to obtain
reasonably good functions for the (1,1) and (3,3) states
above the critical cutoG. This is because of the small
extent to which the 0.=2 state couples into the equations
for the (1,1) and (3,3) states, as is seen by examination
of Eqs. (2a), (6b), (7), and (10). The presence of the
principal-value integral in Eq. (7) also tends to suppress
the relative importance of gs(or). In Sec. 5, where we
examine the degree to which Eq. (1) is satisfied by
the functions obtained for I' = 7, it will be seen that the
functions for the (1,1) and (3,3) states are in fact given
very well.

4. BEHAVIOR AT VERY HIGH ENERGY

Solutions of physical interest are obtained with values
of f' in the range 0.08—0.10, and with f'P 0.6. A
typical one, that for f'=0.08 and P=7, is considered.
This solution consists of the functions shown in Fig. 2
in the range 1(or(15sr. It follows from Eq. (9a) that
a resonance in 8 (or), sin'cr (or) = 1, occurs when Reg (cd)
=0. In addition to the (3,3) resonance, lrss(2. 16), there
are two other resonances in the iteration range, loess( 5)
and lr'»( 7), and a second lr'» resonance at a very high
energy co =~,.

In order to determine the extent to which this
solution satisfies Eq. (1), we must first obtain Reg (or)
for values of co beyond the iteration range. There are
non-negligible contributions to h (or) from the lrii(or, )

where

( cr'ai Ar ) 1
+

~ora or ora+or) cdad(ora)

d(or.)= Reg, (or' )
de

and use is made of the fact that for or' co ))P, Imgi(or' )
is extremely small. This resonance gives no contribution
in Eq. (7) because the factor H (or') in the integrand is
completely well behaved at cd'=or, and goes as Xi/8 i.

There is, however, a contribution to Regi(c0), which
comes from a very high energy co'=co»co„due to the
factor

~ P Bip/gp(or')
~

' of Hi(or' ). To see this, let

1/gi( —~) =2 &ip/gc (~) for ~&1 (12)

where gi( —or) is used to distinguish this function from
the gi( —or) defined by Eq. (7). At cd&,

Re[1/gi( —ors)]=Or and Im[1/gi( —ors)] tr'(ps).

resonance, where Regi(or, ) =0 and Imgi(or) trs(p, ).
These come from an extremely small interval e about
co, and, for values of co outside of this interval, are
given by

1 QN+6

6 Reh (or) =—
J

dor'p"s'(p')
j h, (or') ('

Alo, e

eral ~al
x] +

ce or +or)

X~ ~"+' 1 p b.i -+
~r aa,—a or (or —or or +or/

Img, (~')
X

[Regi (or' )]'+[Img, (or')]'
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The fact that ReL1/gr( —c0)] vanishes at a value of
co&ao follows from the equation

2 8
Re- + +

g&(—a&) 9 «gr(~) «g2(ce) Regs(~)

where the approximation, Reg (co)))
~
Img (a&) 1, is

extremely good for values of co even slightly greater
than ~,. Since Regr(ru) increases from 0 at co, to

Regs(oo) at oo, the function ReL1/gt( —~)], which
increases from negative to positive values, must have
a zero beyond a&,. Again, the contribution to Reg&(ce)
comes from an extremely small interval e about ~&,
and is given by

p(lb+6 p su2(p )Q~((e )
A Regr((o) = —— Cko'

7I ~ ra& s — co (ce +Gl)

FIG. 3. The asymp-
totic values of g (~) ob-
tained with f'=0.08 and
a cutoff E=7, calculated
by Eq. (9d), and the
common asymptotic val-
ue, P /((oh (u)))g„„,
calculated by Eq. (4e).
On the left are the
uncorrected values, ob-
tained if the integrals
are cut off at 16; on the
right the high-energy
corrections are included,
as discussed in Sec. 4.
The very high energy
resonance in h&(&o) must
be taken into account to
get the good agreement
for the (1,1) and (3,3)
states shown on the
right-hand side.

I.29P -g,(). I.29P

0.292
p 0.155

&a,(~).P.S24
-g,{c)) P.266

~ p

VERY HlGH ENERY CONTRIBUTIONS
OMITTED; INCLUDED p, p ps— 2.547

where

Cdb+ 8

dM

cob c cu (co +co)

)
os((os+a))D(cps)

(13)

ImL1/gr( —(o')]
X

(«Li/gr( —~')])'+ IImLI/gr (—~')]}'

A correction is also made to g&(a&). At c0'=15,sthe
integrand for the (3,3) state in Eq. (7) is not yet
negligible. This "tail correction" is added to the
Reg&(re) obtained by the iteration and extrapolation
procedure. The corrected function is shown in Fig. 2.
This small negative correction is again found to be
unimportant in the iteration range, and only becomes
significant at very high energies. Its maximum eGect is
to change Regs(oo) from 0.292 to 0.266, a 9% decrease.

D(os) = Re
dM gr( M ) ca'=res

The g functions are extrapolated to the asymptotic
region by using the solutions obtained from the iteration
procedure. The following values are obtained from these
functions:

co = 98, d(ce,) =0.0018,
(14)

ces= 142, D((os) =0.042.

Even if 5 Reg&(ot) is small, this may change the values
of co, and co& considerably because at these high energies,
the slopes dLReg (ce)]/d&o are very small. However,
the values of A Reh (a&) and A Reg&(a&), as given by
Eqs. (11), (13), and (14), although only approximate,
are not likely to be signiicantly changed, because d(cv, )
and D(&vs) are larger at lower values of re, and ~s,
respectively.

The correction B, Regr(ce) is added to the gr(o&)

obtained by the iteration and extrapolation procedure.
The corrected function is shown in Fig. 2. In the range
1&m& 158 the correction is completely negligible. Even
if this correction is included in the iteration process,
the results in the iteration range are almost identical
with those obtained here. However, at higher energies
the correction becomes significant, and at m= ~, it
changes Regr(~) from 0.155 to 0.324. The main effect
of this contribution is to alter the very high energy
behavior, in particular, it reduces the energies ~, and
ces, and it increases the asymptotic value of Regr(o&).

S. AGREEMENT WITH THE LOW EQUATION

In this section the values of P. /(&ag (~))] and h (or)
obtained from them with Eq. (1) are compared. As
mentioned in Sec. 3, P, /(cog (&o))] cannot satisfy Eq.
(1) exactly because g (~) is not independent of cr, as
is shown in Fig. 2. The near equality of g&(oo) and

g, (~) is consistent with the conjecture that the func-
tions for the (1,1) and (3,3) states are good solutions of
Eq. (1). In addition, comparison of g (—1) obtained
from Eq. (7) and g, (—1) obtained from the crossing
condition, Eq. (12), shows that these values are in
close agreement for the (1,1) and (3,3) states, as follows:

CX r (—1) C (—1) Difference
1 0.549 0.555
2 0.734 0.614 18%
3 1.835 1.826

It is also found that the values of P. /(cog (ce))]
and h (~) agree closely in the (1,1) and (3,3) states
both at co= ~ and co=0. The asymptotic value,
P. /(ceh (cv))]„=„,is shown in Fig. 2. The extent of the
agreement with gr(~) and gs(0o) is remarkable in view
of the large contribution, A Reh (a&), in Eq. (1) from

. The eRect of the very high energy contributions,
A Reg (+) and A Reh (&o), in improving the agreement
of the asymptotic values is shown in Fig. 3.

The values of the eRective ranges obtained from
Eqs. (9c) and (4d), denoted by r and r ' respectively,
are given in Table I. Again, there is good agreement in
the (1,1) and (3,3) states. The values of r do not
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.25-

.20—

.I5—

.IO—

a cs2
Reh, (7)
Reh, (7)

-l5—
0

I

l5

satisfy the equation

4rr+rs+4rs 0, ——(15)

which follows from the crossing condition; however,
the values of r ' must automatically satisfy Eq. (15).
If it is assumed that r& and rs are correct, then Eq. (15)
gives rs ———0.304, which agrees with rs' to within 5%.

The values of the functions ReP, /(cog (c0))) and
Reh (co) are also compared at cd=1, 4, and 7. In Fig. 4
the solid curves are the functions Re+ /(cog (co))) and
the solid circles are the values of Reh (a&). All the points,
except the one labeled Rehr(7), lie close to the appro-
priate curve. In Table II the contributions to Reh (co)

5.0-'

I I

5 IO

(g(IN UNITS OF p, )

Fro. 4. The junctions Re@ /(ceg (ce))j obtained with f =0.08
and a cutoQ P=7, shown as solid curves. The solid circles at
ce=1, 4, and 7 are the values obtained for Reh (ce) by Eq. (1),
using II lc /(cdg (ce))joe for Ih (ce) I' to evaluate the integrals.
The contributions from the very high energy resonance in the
(1,1) state are included.

are labeled A, Born term; B, integration range; and C,
very high energy. At co=1 the Born term is the single
largest contribution in each state; however, the other
terms must be included to give the close quantitative
agreement that is obtained.

At cd=4 and co= 7 the Born term, A, is of the same
order of magnitude as 8, but of opposite sign in each
case. This cancellation between A and 8 further
enhances the relative importance of the very high
energy term, C. The continued close agreement in the
(3,3) state, which at co=7 represents the almost com-
plete cancellation of the three terms, each of much
greater magnitude than the result, is strong conhrma-
tion that in this state the contribution from the inte-
gration range is given with considerable accuracy, and
also that the very high energy contribution is rather
well given.

The percentage difference is greatest in the (1,1)
state at co=7. However, this is seen to be due to the
importance of the very high energy contribution in this
state, which is almost constant at these energies, and
which accounts for the approximately energy-independ-
ent difference in this state, as given in the last column
of Table II. The difference is 20% of the very high
energy contribution. A 10% increase of 6 Reh (cd)

would give improved agreement in the (1,1) and (3,3)
states; however, at this point the remaining differences
are of the same order as the 0.=2 state contributions,
and further reinement would require a better solution
than is now available.

6. LOW-ENERGY BEHAVIOR OF THE SOLUTION
OF THE ONE-MESON APPROXIMATION

The solutions obtained for values of f' in the range
0.08—0.10 and for f'E 0.6 are characterized by a
resonance ass(ceo), where ces is in the neighborhood of
2.16. For the (3,3) state, the energy dependence of
Regs(cd) is reasonably approximated by the linear

expression suggested by Chew and Low,

2.5
cothss(ce) 1——,

COO

(16)

2.0

l.5

G5;

0.0

TABLE I. The efFective ranges r~ obtained from Eq. (9c) are
compared with those, r~', from Eq. (4d) in the second, third, and
fourth columns. The remaining four columns show the importance,
in calculating r, of including contributions other than that of the
(3,3) state resonance region. VVe write r~'=x +y~+s . x is the
contribution from the (3,3) state in the range 1&co'&3.5, y con-
tains all other contributions from the range 1&co'&158, and s
is the contribution from the very high energy resonance in the
(1,1) state at or'=or~. The ratio (y~+s~)/x~ is small in the +=2
state because of the cancellation between y2 and s2.

1 1 I f I I f

-2.5 -2.0 -L5 -I.Q -0.5 0.0 0.5 I.O
cu (IN UNITS OFp )

t I I

I.5 2.0 2.5

FIG. 5. The functions Reg~(w) are shown as curved solid lines.
The straight solid lines shown for positive co are the eRective-
range plots, 1—cur . The functions for negative co are obtained
from Eq. (6a). The dashed straight line is the linear plot 1—(cd/cep)
with coo- 2.16.

ra

1 —0.439
2 -0.210
3 +0.515

ra'

—0.418
-0,319
+0.500

Differ-
ence

4.9% —0.292 —0.063
41% —0.292 —0.079
3% +0.365 +0.083

Zgg

Pa+Za
&a

—0.063 0.43
+0.052 0,09
+0.052 0.37
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in the range 1&co&coo. This is shown by the dashed
straight line in Fig. 5 for the particular function under
discussion, that of Fig. 2.

The experimental points' s shown in Fig. 6(a) are in
very close agreement, for pion laboratory energies up
to 170 Mev, with an energy dependence given by

(p'/to*) cot8ss(to*) =9.00—4.17'*&(0.38—0.2 leo*), (17)

where co~ is the total pion energy plus the nucleon
kinetic energy, in the center-of-mass system. In the
no-recoil limit, co*~co. If the linear approximation of
Eq. (16) is then 6tted to the experimental values, with
e'(p) taken as 1, the minimum and maximum values
obtained for f' are 0.080 (with toe=2. 14) and 0.087
(with &op= 2.17).

From Fig. 5 it is seen that Regs(to) deviates from
linear energy dependence in that d'LRegs(to) j/dros is
positive above the threshold, +=1. This behavior is
typical of the class of solutions under discussion.
Comparison of the experimentally determined values
of (p'/co*) cot8ss(to*) with the function (1/Xs) Regs(to) is
shown in Fig. 6(a) for two coupling constants, f'=0.08
(with P=7) and f'=0 10(w.ith P=6), with to taken
equal to to*. Of the two values, the f'=0.08 curve is in
better agreement with the experimental points. A best-
6t determination of the parameter values has not been
made, but it is apparent that better agreement up to
170-Mev pion lab energy is obtained for a coupling
constant smaller than 0.08. The Chew-Low plot thus
gives larger values of f' than is obtained for a best fit
solution of the (3,3)-state data up to 170 Mev.

The experimental point at 220 Mev is seen to lie
below the theoretical curve. In general, as the energy
increases beyond roe the function (1/X,) Regs(to) lies
increasingly above the straight line of Eq. (17),whereas
the experimental points fall below it. The theoretical

TABLE II. Comparison of the function Re@ /(cog~(a&))7 and
the functions Reh (co) obtained from them by a single iteration
of Eq. (1).In each state at each of the energies better agreement
is obtained with the inclusion of the very high energy contribution,
C, than without it, and in almost every case the magnitude of C
is much larger than the remaining diRerence.

Born
term

A

Inte-
gration
range

B

Very
high

energyc

Real
part of
P rx/

Reha {co) (omega {co))j
A+B+C D

Differ-
ence

A+B
+C-D

1 -0.2133
1 2 -0.0533

3 0.1067

0.0582 0.0136 -0.1415 —0.1383 —0.0032
0.0150 -0.0027 -0.0410 -0.0439 0,0029
0.0904 0.0053 0.2024 0.2032 —0.0008

1 —0.0533 0.0257 0.0139 -0.0137 —0.0117 —0,0020
4 2 -0.0133 0.0089 —0.0026 —0.0070 —0.0075 0.0005

3 0.0267 -0.0359 0.0052 -0,0040 -0.0038 —0.0002

1 -0.0305 0.0123 0.0143 -0.0039 -0.0006 -0.0033
7 2 —0.0076 0.0053 —0.0025 —0.0048 -0.0040 —0.0008

3 0.0152 -0.0182 0.0051 0.0021 0.0027 —0,0006

' These values are taken from J. Orear, Nuovo cimento 4, 856
(1956).' G. Puppi, Proceedings of the Sixth Annual Rochester Conference
on High-Energy Nuclear Physics, 1956 (Interscience Publishers,
Inc., New York, 1956), Sec. I., p. 18.

IO-

2

&7
tP

9

OMev)4~

-l9

-2I

ED

K

a27 Mev) ~-3.84

curve of Fig. 6(a) indicates the broad resonance at
ass((os) which is characteristic of static theory calcu-
lations, ' in contrast to the narrow resonance determined
experimentally.

The other p-wave phase shifts are not known well
enough for a detailed comparison to be made, but they
should be small in the range 1&+&no. "The points
(ps/&o*) cotiisr(co*) obtained with Puppi's values' of
8»(co*) are shown in Fig. 6(c), without the quoted
errors. They are not inconsistent with the curve
(1/Xs) Regs(&o) for f'=0 08 in view . of the extreme
uncertainties attached to them. The theoretical values
of Brt and 3s shown in Figs. 6(b) and 6(c) are obtained

G. Chew, Phys. Rev. 95, 285 (1954); F. Salzman and J. N.
Snyder, Phys. Rev. 95, 286 (1954);Friedman, Lee, and Christian,
Phys. Rev. 100, 1494 (1955).

so H. L. Anderson Proceedhlgs of the Sixth Artmstot Rochester
Conference on High-Energy Nuclear Physics, lftl56 (Interscience
Publishers, Inc. , New York, 1956), Sec. I, p. 20. From the formula
given here, BII (170 Mev) = —3.3 . A more recent Qt to the pion-
proton scattering data (private communication from Professor
Anderson) by Metropolis and Anderson using an energy depend-
ence of the Chew-Low type for the p waves also leads to small
Sr& and Su(=bs&) in the range 1(ro&coo, e.g., Su (170 Mev) =3.1'.

I I. I

0;5 I.O l.5 2,0 2.5 KO (d"

I I I I I I I I

0 50 IOO l50200 300 EK gAg)

FIG. 6. The functions (1/) ~) Reg~(oo) are shown as curved solid
lines, plotted with or taken equal to co*. The experimental points
shown in Fig 6(a) ar.e taken from Orear, ' and those in Fig. 6(c)
from G. Puppi.
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Reg ((u) 1—a)r, (18)

where r is defined by Eq. (9c). The effective range
curves for the f'=0.08 solution are the solid straight
lines shown in Fig. 5. Because the effective-range curve
for the (1,1) state differs appreciably from Regi(ei), the
slopes in the physical region will not in general satisfy
Eq. (15).

Equation (18) is obtained from Eq. (7) by com-
pletely neglecting co in the integrals. An approximation
that does not entirely ignore + in the integrals is given
by Chew. ' It is based on the observation that the
complete g equation, including inelastic processes,
may be written

g (s) =1 rs+f' s—' Z(z), -
s' r" 1

~

Img (co') Irng (—(o')
Z (s) = ——' dko'—

' —s +s

where in addition to the three effective ranges, r, there
are three other constants, P, which are also to be
determined from the experimental plots. The factor
1/eo" in the integrand of Z (s) insures that the im-

portant contributions to the integral come from low
values of co', where the cross section is principally
elastic. Then Img (&e~') are approximated by the
expressions given in Eqs. (9b), which are exact in the
range 1&co'&2. Further approximations, also based on
the presence of the 1/ei" factor, are the replacement of
H (co') by H (0) =H '= —g B o)s and of o'(p') by 1.
These substitutions give

s f p )i H
g~(s)~= ~l dei', +

7l 1 GO CO 8 CO

The validity of this approximation depends on H (au )
being close to H ' for low values of co'. For the solution
obtained we find that Hs(~') is a sharply peaked func-
tion in the region 1&m &2, as is indicated in Fig. 5
by the nonlinear behavior of Regs(e~) for e~ in the
neighborhood of —1.5. Also Hss=ssf'= —)is, whereas

the Hs(~') obtained in the solution has the same sign
as X2 and is of comparable magnitude.

"Ashkin, Blaser, Feiner, and Stern, Phys. Rev. 101, 1149
(1956) give 811(170 Mev) =O'. H. Anderson and M. Glit ksman,
Phys. Rev. 100, 268 (1955) give S»(165 Mev) = —10.6'.

from the equation,

(p'/e~*) cotb ((o') = (1/)~.) Reg ((o),

with co taken equal to &o*. The value —9.8' for 5i, (170
Mev) appears to be of too large magnitude, but may
fall within experimental limits. ""Decreasing the value
of f' reduces the magnitudes of the small phase shifts.

The effective range approximation suggested for low
energies by Chew and I,ow is expressed by

'T. LOW-ENERGY BEHAVIOR WITH
INELASTIC PROCESSES

In Sec. 5 it was shown that improved agreement
between ReL)I. /(~g (ei))] and Reh (~) is achieved by
inclusion of the very high energy contribution. One
may still question whether this contribution, and in
fact the entire contribution to the integrals from the
energy range beyond the cutoff, is not just a feature of
this particular solution. To show that this is a property
of the static model for parameter values 1' 0.08 and
P 7, it is convenient to write the equation for the
(1,1) state as follows:

Rehi(e~) =X(cu)+ I'(e~)+Z(e~),

16 1 t
s s o.sr(ei')

X(cu) =—+— ' de~'

ei 9 4n'" i p'v'(p') (e~'+ei)

o i"(ei')~11

F'(e&) =P — d~o'

4 '&, p'o'(p') (2—~)

1 1 „ii o.iT(ei ) 8&sT(ei )+ ' ded

9 4rs" i p'o'(p') ((o'+e~)

os'(~')16
+— ' d&d

9 4s'" s.s p'o'(p') (e~'+o))

(19)

Z(e~) =
4X'411

o.i (ei')

P'o'(P') (~' ~)—
1 1 t" o.ir(e~') —8os (e~')+16o.s (e~')

+— dM

9 kr'~ g). P'o'(P') (~'+~)

o r((a) 1
Imls. (ei) =

4 Pe'(P) &-P'e'(P)

1 |
) Reh. (ei) (

&-
2 A .p'o'(p)

(20a)

(20b)

The maximum cross section occurs for purely elastic,
resonant scattering.

In order to satisfy Eq. (20b) it is necessary for the
large negative Xi/a& term to be largely canceled by the

where 0 is the total cross section, inelastic included,
for scattering in the n state and P means the principal
value of the integral. In the elastic region,

o '=o. r= (4s./p') sin'5. ((u),

and h (ei) is given by Eq. (3). X(e&) consists of the
Born term and the contribution of the (3,3)-state
resonance. I'(e&) consists of the other contributions that
may be expected in the static theory, and Z(e&) consists
of all higher energy contributions.

In general, r ~=Ã cr ', where X &1.The following
inequalities are then obtained from the unitarity
condition:
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positive terms in Eq. (19). The following qualitative
argument shows that the amount of this cancellation
from Z(co) attains a near minimum, and non-negligible
value in the numerical solution.

First, the (3,3)-state resonance integral in X(co) is
well approximated by

it appears that the combined effect of Nv''(p) in in-
equalities (20a) and (20b) may give inequality (23) as
strong as the one-meson approximation with the larger
cutoff.

It is of interest to g.ote that the phenomenological
approach, in which it is assumed that

1 t
3 5 sin'c133((u')

p'v'(p') ((o'+c0) 2.0+co
(21) den' — )) dc@'

~'p'~'(p') "i ~'p'~'(p')

where 833(+') 90' for co' in the range 2.1 to 3.5.
Equation (19) may then be written as

Rehi(co) =
0.213 0.124

+ — +I (-)+Z(-), (22)
2.0+%

where f' is taken as 0.08. From Eqs. (20b) and (22) it
follows, since E & j., that

7'(cd)+Z(&v) &0.018 for 2.8 &co &5.0. (23)

Second, consider the contributions to Y(&u). There is a
broad resonance in hi(co') in the range 5.5&a&'&9. The
resonance in h3(co') continues up to co' 7, and the
negative h2(co') term in F'(&u) is negligible. The only
other significant contribution possible to V(&o) is from
the range c0'&5 in the principal-value (P.V.) integral.
However, any appreciable change in the energy de-
pendence of hi(co') in this range requires a larger Z(c0)
in order to maintain inequality (23). To see this, we
note that F'(co)+Z(a&) is very close to the minimum
allowed by Eq. (23) for most of the interval, and
Z(ao) 0.014. This value of Z(cu) requires that the P.V.
integral be positive up to ~ 5, even with the maximum
allowed values for the other terms in F(a&).

Any decrease in Z(co) must be compensated for by an
increase in the P.V. integral. Since the integrand of this
integral is close to its maximum value for co' 5, an
increase in the P.V. integral at ~ 5 requires that the
integrand be smaller in the range 1&co'&5. However,
this in turn implies a decrease in the P.V. integral at
c0 1, that is, less cancellation of Xi/co in the neighbor-
hood of threshold, and consequently a larger magnitude
for 8ii(~) in this region. Since even with 8ii(1.75) only
—9.5' the integrand is about as large as it gets for any
&a', an increase of

~

8ii(a&')
~

in this region would increase
the integrand there, and decrease the P.V. integral at
co=5, which contradicts the original premise. Z(~) then
cannot be decreased everywhere, in particular at ~ 5,
where its value, 0.014, is of the same magnitude as that
of the (3,3) resonance term, 0.018.

From Eqs. (19), (20b), and (22) it follows that an
increase of either f' or e'(p) strengthens inequality (23),
assuming the (3,3) resonance term remains unchanged,
and in this case Z(au) must be even larger than found
above. However, it has been conjectured that the
solution of the complete Low equation requires a
smaller cutofF to give the (3,3) state resonance than is
needed in the one-meson approximation. In this case

is not in agreement with the results obtained here,
where the (1,1) state integral amounts to 54% of the
(3,3) state resonance integral. The importance of in-
cluding contributions other than that of the (3,3) state
resonance in a calculation of the effective ranges is
shown in Table I, where the other contributions from
the integration range are labeled y, and the contri-
butions from the very high-energy resonance, 5»(c0,),
are labelled s . It is seen that y and s are non-
negligible compared to the (3,3) state resonance con-
tribution, and must be included for the close agreement
betweenr ' andr .

In calculating the electromagnetic properties of
nucleons, integrals similar to these occur. Inclusion of
the (1,1) state contribution increases the isotopic vector
part of the anomalous magnetic moment. Its inclusion
enhances the already too large isotopic scalar part of
the anomalous moment, and the charge density. Such
contributions are extremely unreliable in the static
theory because they come from energies at which
nucleon recoil, higher partial waves, and other inter-
actions are important.

8. RELATIVISTIC CONTRIBUTIONS

As a first approximation of recoil effects on the p-wave
phase shifts, we consider the p-wave part of the expan-
sion in powers of 1/M' of the relativistic dispersion
relations for pion-nucleon scattering, s where I/M is
the ratio of pion to nucleon mass. The appropriate
linear combinations of these equations for real values
co of s, are

X 3f' 1 t" 1 1
h (z)=—+ 5 i+— d(u' Imh (o)') +-

z M ~", .~'—z M

Imh p (&u')

+Q A.p I, (24)
M +z

where z—&~+is for &u) 1, cd and p are the total energy
minus the nucleon rest energy and the pion momentum
respectively, in the center of mass, and terms up to
order 1/M are included. In the elastic region,

h (co)=exp[i' (co)jsin5 (&o)/p'. (25)

In the limit 1/M~O, Eq. (24) reduces to the static
theory equation except for the absence of a cutoff
factor, This rules out the possibility of very high-energy
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3f' 16 1 I'" oesr(co')
X„(co)=—+ +— d&o'

co M 9 4n'" t p'(co'+co)

(26)

The (3,3) resonance integral is evaluated using Ander-
son' s" values for ass(to) up to to=2.7 and the value of
a r(sr+,p) given by Piccioni, "from 2.7 to 3.5. The result,

1
t
" o see(co') 0.068

dc' 1

4m'4 i p'(co'+to) 2.0+to

is very close to the result found from the static theory
solution, Eq. (21). Equation (26) may then be written,
for f'=008, as

—0.2j.3 0.122
+0.036+ +X„(co). (27)

co 2.0+to
Rehg(to) =

The constant recoil term is about 90% of the. (3,3)
"0.Piccioni, Proceedirtgs of the Sixth Auuual Rochester Cost

fereuce ort High Euergy Eucle-ar Physics, i%56 (Interscience
Publishers, Inc. , ¹wYork, 1956), Sec. lV, p. 8.

contributions of the kind discussed in Sec. 4, and also
acts to reduce generally the contributions of the high-
energy parts of the integrals.

To determine the extent to which the recoil terms
can replace very high-energy contributions in the (1,1)
state equation, we write in analogy to Eq. (19)

Rehg(co) =X„(co)+g„(to),

resonance contribution at co= i, and is larger than the
sum F(1)+Z(1) of Eq. (22), which in the static theory
corresponds to X„(1).

In this case the inequality ~Reh&(to)
~
&1/(2p') is

satis6ed by Eq. (27) with X,(co) set equal to zero up to
5, but for higher energies X,(to) must be negative.

To illustrate the importance of the recoil term, we note
that even if X„(co) is taken equal to zero in Eq. (27),
one obtains 8q~(2) = —8.5', which is of smaller magni-
tude than given by the static theory. It is also found
that in the (3,3)-state equation, the recoil term more
than replaces the very high energy contribution of the
static theory.
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