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Vacuum Polarization Effects in Proton-Proton Scattering*t'
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The problem of vacuum polarization scattering of protons by protons is treated to Grst order in the
vacuum polarization interaction. The phase shifts caused by the interaction are calculated, and the cor-
responding addition to the p-p scattering matrix is constructed. The phase shifts are calculated using
Coulomb wave functions as the unperturbed wave functions. The corresponding addition to the p-p scatter-
ing matrix is then constructed, including exactly the Coulomb phase shift factors expL2f (Or, —os)] appearing
in the series representation of the scattering amplitudes. Other electromagnetic and relativistic modifications
of the Coulomb scattering amplitudes are also examined in the limit of low energies. Numerical results
are given for the vacuum polarization contributions to the p-p scattering cross section over the energy
range 1.4—4.2 Mev. It is found that vacuum polarization scattering may easily be confused with nuclear
P-wave scattering.

1. INTRODUCTION AND NOTATION
' PROTON-PROTON scattering experiments provide

a powerful tool for the study of the forces between
nucleons. The theoretical interpretation of such experi-
ments has been studied extensively. ' ' The scattering
data are normally analyzed in terms of the Coulomb
scattering amplitudes, ' modified by the phase shifts
of the asymptotic two-body wave functions.

It appears probable that the main contributions to
the p-p di6erential scattering cross section up to about
40 Mev arise from Coulomb forces plus nuclear inter-
action in the 'S state."While small P- and D-wave
phase shifts have been observed at the higher energies,
and some indications of P wave scattering have been
found also below 10 Mev, ' the low-energy cross sections
were not sufficiently well known until recently' to
allow a definitive analysis to be made. New experi-
ments, ' show definite deviations from pure S wave plus
Coulomb scattering in the energy range 1.8—4.2 Mev.
The eGects were tentatively analyzed in terms of
nuclear P wave scattering with mean phase shifts of
around —0.1'; but false indications of nuclear scat-
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tering of this extent could arise from a variety of
non-nuclear sources. If the precise status of nuclear
scattering in high angular momentum states is to be
determined at low energies, the consideration of such
non-nuclear contributions to the cross section is needed.

One of the largest non-nuclear sects originates in
the vacuum polarization interaction between the
protons, as was pointed out by Foldy and Eriksen. ' The
phenomenon of vacuum polarization is well established
theoretically. '~" The phenomenon results in a modi-
fication of the Coulomb potential between two protons
by the addition of a second "vacuum polarization"
potential. This added interaction was first discussed by
Uehling. "A number of other authors have considered
the problem, most recently Euwema and Wheeler, '
who avoided the regularization difBculties common to
earlier work through the use of a causality condition
and by Wichmann and Kroll, " who calculated the
vacuum polarization potential induced by a point
charge Ze to all orders of Zn, with o, standing for the
fine structure constant. In the present work, only the
leading term in a series expansion of the potential in
powers of n is important. This term, originally derived
by Uehling, " has been tested in a variety of experi-
ments. It contributes an important part of the total
Lamb shift of the electronic energy levels of hydrogen,
deuterium, and helium, "and results also in a detectable
shift in the energy levels of light x- and p,-mesonic
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atoms. '7 The work of Foldy and Eriksen' indicates the
presence of the theoretically expected vacuum polari-
zation interaction between protons. Those authors
considered the change in the S-wave scattering caused
by the vacuum polarization forces, using a method
based on the nearly linear variation with energy for
short-range (nuclear) interactions of the function f
first introduced by Breit, Condon, and Present. ' The
function E occurring in the Foldy-Eriksen analysis is a
later variant' of the f function, related to it by "&"=-',f—0.15443. Because of its long range, the vacuum
polarization interaction gives a markedly nonlinear con-
tribution to f at low scattering energies. It was shown

by Foldy and Eriksen' that the variation from linearity
of the values of f determined from the low-energy p-p
data, is in qualitative agreement with this vacuum
polarization eGect, but the data are not suKciently
accurate to make precise quantitative comparisons
possible. Subsequent considerations of P wave scat-
tering by Eriksen, Foldy, and Rarita' indicated that
roughly half of the observed contribution of the P
states to the 1.8—4.2 Mev cross sections' ' could be as-
cribed to the vacuum polarization P-wave phase shift.
The analysis of vacuum polarization effects in p-p scat-
tering is seen to be still incomplete because the long
range of the vacuum polarization potential may be
expected to result in contributions to the scattering
from states with angular momentum L) 1 to a degree
comparable with that from P states.

Other small additions to the cross section of rela-
tivistic and magnetic origin also enter a careful analysis
of the p-p scattering data. Corrections for relativistic
kinematics in the transformations connecting scattering
angles and cross sections in the laboratory system with
those in the center-of-mass system are well known, and
while small, are not negligible even at low energies.
Dynamic relativistic and magnetic effects in Coulomb
scattering have been treated by Breit" to 6rst order
in q, the Coulomb scattering parameter. Magnetic
scattering involving the anomalous part of the proton
magnetic moment has been included in the parallel
work of Garren'; but Breit" has recently pointed out
that certain of the terms appearing in Garren's" rela-
tivistic scattering matrix arise from contact inter-
actions between the protons, and cannot be trusted in

magnitude. Thus it is necessary to examine with some
care those relativistic and magnetic corrections to the
ordinary Coulomb scattering of protons which persist
at low energies. The radiative corrections important in

the energy level shifts in atoms and in electron scat-
tering phenomena are reduced for protons by powers
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of the ratio nt/M of the electron to the proton mass s'

and are negligibly small.
The concern of the present work is the consideration

of those non-nuclear contributions to the proton-proton
scattering cross section of electromagnetic and rela-
tivistic origin which may be confused at low energies
with nuclear scattering. Particular attention will be
given to the problem of vacuum polarization scattering.
The analysis is intended primarily to clarify the status
of nuclear scattering in orbital angular momentum
states with L&0.

The following notations will be used throughout the
paper.

E=kinetic energy of the incident proton in the
laboratory system.

k= (3IIE/2h') &=2or times the reciprocal of the rela-
tivistic wavelength in the center-of-mass system. "

rt = e'/kv = the relativistic" Coulomb scattering param-
eter, with v the laboratory velocity of the incident
proton.

8=scattering angle in the center-of-mass system.
x= cos8.
o (0) =differential P-P scattering cross section in the

center-of-mass system.
Er, singlet p-—p—phase shift for the state with orbital

angular momentum quantum number L.
8~J = triplet p-p phase shift for the state with orbital

angular momentum L, total angular momentum J in
units A.

bl, =phase shift for orbital angular momentum L
caused by the vacuum polarization interaction.

o.I,=argi'(I. +1+srl) = Coulomb phase shift for orbital
angular momentum L.

er, p
——exp(2t'(or, —op)).

v = (4m/M) (rotc'/E) = the parameter characterizing
the vacuum polarization scattering. Here m is the elec-
tron mass and M is the proton mass.

a v(x)=the vacuum polarization scattering ampli-
tude correct to first order in the vacuum polarization
interaction between protons, with x= cos9.

a, 'pl(x) =the lowest order of the scattering ampli-
tude a v(x) in an expansion in powers of Coulomb
parameter q. This function arises in the treatment of
vacuum polarization scattering in the erst Born ap-
proximation.

a v "(x)=the vacuum polarization scattering ampli-
tude of order rt' relative to a o&"(x).

2. CALCULATION OF VACUUM POLARIZATION
SCATTERING OF PROTONS BY PROTONS

(a) Vacuum Polarization Potential

In the present work, the additions to the p-p scat-
tering matrix caused by the vacuum polarization inter-
action between the protons will be calculated from the
vacuum polarization potential in terms of phase shifts.

ee W. Heitler, Qnantnrn Theory of Radiation (Clarendon Press,
Oxford, 1954), third edition, Chap. 6.



VACUUM POLARiZATioN EFFECTS

Only the leading (Uehling) term in the expansion of the
potential in a series in powers of eZ will be considered.
The next terms in the series as given by Wichmann and
Kroll" are much too small to inQuence detectably the
scattering of protons by protons since in this case Z= i.
The Uehling potential'2 is conveniently represented by
an integral given by Schwinger, "

2rr e p" f' 1 q (P—1)&
V, (r) =——

~ e
—'"'&~ 1+

~
d$, (1)

2P)

where ~ '=is/me is the Cornpton wavelength of the
electron divided by 2m. As was shown by Pauli and
Rose," the potential can be expressed in terms of
Bessel functions,

0.5—
0.4—

V~ (r) = (2n/3z. ) (e'/r) I(2zr),

with I(s) given by

I(s) =L1+(s'/12) )Ep(s) —-', L1+(s'/10) gsE, (s)

(2.1) ~ 0.3—
0.2—
O. I—

+ (3s/4) $1+(s'/9) $ EQ(f) Ck. (2.2)
0

r = (crn x I0 )

The Bessel functions of imaginary argument of the
second kind, E„(s),are used as defined by Whittaker
and Watson. '4 For small values of s=2ar, the power
series expansion of I(z)

I(s)= —C——', +ln(2/s)+3 s/8 —3s'/8+s. s'/24
—(s'/64)t (7/3) —C+ln(2/s))+O(s') (2.3)

is quite useful. Here C is Euler's constant C=0.5772
The general features of the vacuum polarization poten-
tial are at once apparent. For 2~r—4, the potential
diverges as r 'ln(1/sr), while for 2'))1, it decreases
nearly exponentially to zero. Except for the factor
I(2zr), the potential is Coulombian; this factor acts as
a cutoG function for r—+~, giving the potential a 6nite
range of the order of the Compton wavelength of the
electron. While short compared to the distances over
which Coulomb forces are important in the p-p problem,
this range is very long relative both to the range of
nuclear forces and to the wavelength of relative motion
of the protons, even at low energies. This characteristic
of the potential is important in the scattering of high
angular momentum states. The potential is sketched
ln Flg.

(b) Vacuum Polarization Phase Shifts

At proton scattering energies less than about 10 Mev,
the sects in the cross sections ascribed to the scattering
of states with orbital angular momentum quantum
numbers L&0, are quite small, leading to negative mean

"J.Schwinger, Phys. Rev. 75, 651 (1949).
~E. T. VVhittaker and G. N. %'atson, A Cogrse in Modern

Analysis (Cambridge University Press, New York, 1952), fourth
edition, pp. 372—374 and 384.

Fio. 1. The vacuum polarization potential V,v(r). The upper
curve is a plot of the cutoff function I(2~r) of Eq. (2) entering in
the definition of the potential. The lower curve gives the potential
in kilovolts; for comparison, the ordinary Coulomb potential
between protons is 145 kev for a proton separation r= 10 "cm.

phase shifts no more than a few tenths of a degree in
magnitude. "' There is as yet no substantial evidence
for any dependence at low energies of the triplet phase
shifts on the total angular momentum quantum
number J. The vacuum polarization E-wave phase
shift is of the same sign and order of magnitude as the
observed phase shifts. "It is probably safe to assume
that the correct nuclear phase shifts are not much dif-
ferent from those observed thus far. Even for nuclear
phase shifts an order of magnitude larger, the distortion
of the proton wave function is very slight, and produces
a negligibly small change in the value of the vacuum
polarization phase shift as compared with that calcu-
lated using wave functions undistorted by nuclear
forces. Conversely, the presence of the vacuum polari-
zation forces will produce only a small change in the
nuclear phase shifts. "If such wave function distortion
effects are neglected, the total phase shifts for each
partial wave can be written as the sum of a vacuum
polarization part 8r, , and a nuclear part (8 g)„,
8~g (b~g)„+br, T—hat this is no.t the case for I-=0 was
pointed out by Foldy and Eriksen, ' who have included
in their calculations of the S state vacuum polarization
scattering the eGects of the large nuclear distortion of
the proton wave function. These are quite appreciable
since the S-wave phase shift Eo is around 45' at 2 Mev.

~5Quantitative considerations on the nuclear distortion eGect
for the P-wave phase shifts are given in the author's thesis, Yale
University (unpublished) .
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For phase shifts of the size observed or of the size
caused by the vacuum polarization interaction, the only
significant contributions to the p-p scattering cross
section arise from interference terms involving the
relatively large Coulomb or 5-wave scattering ampli-
tudes. Contributions quadratic in the phase shifts are
negligibly small. Thus, it is sufficiently accurate to
retain in the scattering matrix only terms linear in
these phase shifts. It will be assumed, then, that the
total phase shifts 8LJ are suSciently small for L&0
to justify one in replacing quantities Q z ——(sin5 J)
Xexp(i//~g) appearing in the formulation of the p-p
scattering matrix given by Breit and Hull, " by
Q~~/i~y (5z~—)„+Bi, The. higher powers of 8~~

appearing in the exact expansion of Q~~ will be dropped.
The vacuum polarization phase shifts bL do not depend
on the value of the total angular momentum quantum
number J, and do not therefore contribute in this linear
approximation to the oG-diagonal elements of the scat-
tering matrix. Direct substitution of the phase shifts in
the ni representation of the unsymmetrized scattering
matrix given by Breit and Hulp' yields for the first-
order vacuum polarization contributions

where iFi(a,c; s) is the confluent hypergeometric
function,

a s a(a+1) s2

iFi(a,c; s) =1+——+ ~ ~ ~

e 1! c(c+1) 2!
(5.2)

Using the integral representation (1) of the vacuum
polarization potential in (4) and interchanging the
order of the integrations, a procedure which may be
justi6ed, one obtains

4n I' ~ 1 q (P—1)*'

dt's 1+
I

dpF~'(p)
3s "o ( 2P// P "o

proximation the scattering energy for two protons in
the center-of-mass system. Since in the present case
case nuclear distortion of the proton wave functions is
to be neglected, Fz, (p) is an ordinary Coulomb wave
function '7

~
1'(L+1+ir/)

~

F (p)
—e

—wq/2 (2p) z-/-'e '/

21' (2L+2)

X iFi(L+1 ii/, —2L+2; 2ip), (5.1)

where

hey= De3= hn4= 0,

k(~oo—&') = a~2= &~o=&,

a (x) = Q (2L+1)el„obrPI,(x).
L=O

(3.1)

(3 2)

(3 3)

le—2ctp/i (6 1)

The second integral can be evaluated in terms of the
ordinary hypergeometric function of Gauss. Using an
integral representation for the conQuent hypergeo-
metric function, "

Here Pl, (x) is the Legendre polynomial of order
1., x= cos8, and the Coulomb factors eL, p are as defined
in the list of notation. In the present analysis, the
Coulomb and S-wave scattering amplitudes will be
treated exactly, with bo removed from (3.3) and treated
as a part of the large total S wave phase shift Ep.
Equations (3) will then be valid so long as the total
phase shifts for states with L&0 are small enough to
deal with in the linear approximation. In this case the
net e8ect of the vacuum polarization interaction will be
to add to each diagonal element of the p-p scattering
matrix the term it o (x) —8o, and the calculational
problem reduces to the evaluation of Eq. (3.3) and Bo.

The phase shifts caused by the vacuum polarization
potential will be calculated to erst order in the inter-
action by means of the usual formula'

iFi(a,c; s)=Lr(c)/r(a)I'(e —a)7

f1
e"(1—t)--'t —

'Ch, (6.2)X,
4 p

where

Ml, (1+2s—')

=e- "~r(L+1+ii/)
~

—' d
Qp Jp

d]NL —iq)L+ig

(6.3)

and performing the integration over p in Eq. (6.1), one
obtains the general result

~~= —(2/&) " l'(p)F '(p)dp
4p

Here Fz(p) is p times the unperturbed wave function
for orbital angular momentum L, p=kr, V(p) is the
perturbing potential, and F/2 is to a suflicient ap-

"G. Breit and M. H. Hull, Jr. , Phys. Rev. 97, 104'7 (1955).If
coupling between triplet states of the same J and different I is
present, the extension of this formalism to the coupled case may
be used, following the results of Sreit, Ehrman, and Hull, Phys.
Rev. 97, 1051 (1955).

X (1 ii) &-ill(1 $)r Al ~ /Epe
—[/2/*)+»&-»&]P(2p)&mi

(6.4)

X t~+'&(1 ~)~+'&(1—t)~'~(1+—est isN) " '—(6.5—)-.
"The properties of the Coulomb wave functions have been

studied extensively, notably by Breit and his collaborators. The
essential properties of the functions and a bibliography thereon
is given in Tables of Coulomb 5'ave Functions, National Bureau of
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The last double integral may be compared with a
known representation of the hypergeometric function"

du dtu 't '(1—u) ' '(1—t) '(1—stu) '
0 0

=9'(~)I'(&)I'(c—~)I'(c—&)/I'(c) I'(c)j
X2Fi(a,b; c; s), (6.6)

where for ~z( &1, 2Fi(u, b; c;s) is defined by the usual
power series in s. The changes in the variables of inte-
gration from $ and e to x and y,

t =x/L1+is —is@7, u =y/[1 is+is—yg, (6.7)

put (6.5) in the form of (6.6); one then obtains the
required result for Mg,

( s2 $ mi (1—is) '"
~z(1+2s-') =l& "I

4 1+s') f1+is)

(1(L+1+i&)
~

X ~Fii L+1+iit,
I'(2L+2)

L+1 i&; 2I.+2—; ~. (6.8)
1+s')

This result is closely related to the monopole integrals
occurring in the quantum-mechanical treatment of the
Coulomb excitation of nuclear energy levels. " The
phase shifts 6& caused by the vacuum polarization
interaction become, to erst order in the interaction,

1

~.=—(- /3-) I (1+-,'y) (1-..):y-'
Jo

XMI, (1+iy ')dy, (7)

where the change of variable y= $
' has been made in

Eq. (6.1) and v is a parameter characteristic of vacuum
polarization scattering,

i =2~'/k'= 4m'c'/ME.

The use of the Coulomb wave functions in (6.1)
yields results considerably more complicated than those
obtained with the free particle wave functions. The use
of these wave functions leads to the well-known
integrals"

&~)'(t)c-"'dt = lQ. (1+2~'). (8.1)
0

Standards Applied Mathematics Series, No. 17 (U. S. Government
Printing Once, Washington, 1952), Vol. 1."Higher Transcendental PNnctions, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 255.

"See reference 28, p. 78.' The Coulomb excitation integrals are summarized by Alder,
Bohr, Huus, Mottelson, and Winther, Revs. Modern Phys. 28,
432 (1956).

3' G. ¹Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, New York, 1952), second edition, p. 389.

Here Qr, is the Legendre function of the second kind.
This second result may also be obtained directly from
Eq. (6.9) by replacing g by zero. The expression for the
phase shift 5r, in terms of Qz, neglects the distortion of the
proton wave function by the Coulomb field, but gives,
in fact, a surprisingly good approximation for 8& above
about 1 Mev,

gl &o~ = —(&q/3~) (1+-',y) (1—y) ly-'Q&(1+ ~y-')dy.

(8 2)

This expression and Eq. (7) have been used in a
numerical investigation of the properties of the vacuum
polarization phase shifts. Equation (8.2) gives a first
approximation for 8r„the difference between Eqs. (7)
and (8.2) then gives the correction to 51."~ caused by
the use of the correct Coulomb wave functions rather
than free particle wave functions. The important case
of (8.2) with L=O was evaluated approximately as a
series in powers of the small quantity i/2, yielding the
result

8p"'= —(nit/6n-) (2Lln(2/v)]'+1. 7615
—0.2804 ln(2/v)+ .}. (8.3)

This representation of ho&" is quite accurate down to
about 100 kev, the next term in the series being of
order v/2. The special case of Eq. (8.2) with L=1 was
given by Eriksen, Foldy, and Rarita. "For other values
of I-, the integral is most easily evaluated numerically.
Values of 61."' have been calculated for L &5 at a
variety of energies and at 2 Mev the calculations were
extended exactly to L=10 and by a semianalytic
approximation for the L dependence of the phase
shifts to L=20. The results for L &5 are shown in
Fig. 2. It is apparent from the slow decrease in the size
of the phase shifts with increasing L, that many angular
momentum states may be important in the vacuum
polarization scattering. The variation of the 51, with
energy is also slow in the high L states. Both conditions
result from the long range of the vacuum polarization
forces as compared with the range of the centrifugal
barrier and the proton wavelength.

The difference between Eqs. (7) and (8.2) was used
to obtain by numerical integration the corrections to
8L,&" necessary because of the presence of the Coulomb
Geld. The results are given in Table I. This table shows
values of the correction in 61. caused by Coulomb distor-
tion of the wave function as a fraction of the phase
shift 81.") obtained with neglect of the distortion. The
variation with scattering energy and orbital angular
momentum quantum number L of the b~&" is shown in
Fig. 2. For L=O, the differences were calculated from
Eqs. (8.3) and (8.3'); while for L=1, they were calcu-
lated using Eqs. (11) and (12) of Eriksen, Foldy, and
Rarita. "The differences for L&1 were calculated from
the integrals (7) and (8.2) for 61, and 51,&"; these results
may be in error by as much as 5—10 /~. In these calcu-
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calculations are more easily made than those using the
functions M& and Eq. (7).

The integral of Eq. (7) has been evaluated approxi-
mately for L=O, using for Ms the series of Eq. (11).
Terms involving q' and higher powers of g were dropped,
and terms in high powers of the small quantity v/2
were also neglected. Proceeding in this manner the
phase shift 80 was approximated by

be=Is ' + (arf/3s) {5.2tl —3.83tf(v/2) &—0.29tf'

+L1.202r)' —2.36rf (v/2) '*j ln(2/v)
+oh'~'( /2)'8( /2)'j) (8 3')

This result for bo should be accurate above 1 Mev, but
terms in q', etc., may contribute significantly at lower
energies.

.002

.OOI

0
IO l5

L
20

(c) Vacuum Polarization Scattering Amplitude

The vacuum polarization scattering amplitude correct
to first order in the interaction is given by the series of
Eq. (3.3), in which the phase shifts 8r, appear weighted
by the statistical factors (2L+1). The phase shifts
decrease slowly with increasing L (Fig. 2); and the real
and imaginary parts of the quantities (2L+1)ez„sbz,
reach their maximum values for fairly large values of L,
as is seen in Fig. 3 (L 5 and L~11 for the real and
imaginary parts of 2 Mev). Thus, despite the con-
siderable amount of cancellation occurring at each
angle because of the oscillations in sign of the Legendre
polynomials of high order, phase shifts for states of
high orbital angular momentum may contribute appre-
ciably to the scattering amplitude. One may estimate
roughly that value of L beyond which contributions to
the scattering amplitude become very small by noting
that for proton separations less than the classical
turning point &~L, the wave function is strongly
suppressed by the centrifugal barrier. Thus, if the
potential becomes very small beyond a cutoff radius r„
the maximum L for which the calculated phase shift will
be significant is roughly L kr, .The vacuum polarization
potential decreases" for 2xr&)1 as (2xr) 'e '"", and it
may be assumed that the potential is negligibly small
for 2~r&1. This rough estimate for the cutoG indicates
that about 45 angular momentum states may be im-
portant in the scattering, a conclusion supported by
numerical calculations of the scattering amplitude at
2 Mev using up to 2I phase shifts. The use of only the
first few terms in the series for a v Eq. (3.3), gave com-
pletely misleading results. Even using the first 21
terms in the series it was not possible to obtain definite
values for g ~ without resorting to the use of summation
methods involving the averaging of successive partial
sums of the series. lt was apparent that only for much
higher values of L would the contribution of the last
term retained in the series be negligible relative to the
sum up to that point.

Analytic summation of the series for a ~ was used
therefore. This summation proved possible in several

Fio. 3. The variation with L at 2 Mev of the quantity
Sj= (2L+1)es, QSs entering in the calculation of the vacuum
polarization scattering amplitude as in Eq. (3.3). The Coulomb
factors er, , a are defined in the list of notation; ) er., o )

= 1.The devi-
ation of Ss from (2L+1)Sr, is an approximate measure of the infiu-
ence of the eL„Oon the vacuum polarization scattering.

approximations, the crudest of which is equivalent to
the use of the first Born approximation for the scatter-
ing. This evaluation involves the use of the phase shifts
8L, &') calculated using free particle wave functions, and
the approximation of the Coulomb factors el. 0 by unity.
The resulting series for a, can be summed, or else the
first Born approximation to the scattering amplitude
employing undistorted plane waves may be evaluated
by the usual method, yielding the representation

a,~"(x) = —(rr/3s. )tlF (x)/(1 —x),
where

(12.2)

F(x) = —5/3+X+ (1+X)'(1—rsX)

(1+X)'+1&&in, (12.3)
, (1+X)'—1

with
X=v/(1 —x). (12.3')

For all of the present p-p scattering experiments, the
energies and angles are such that X((1. Thus, for
practical purposes, F(x) may be expanded in the series

F(x) = —5/3+in(4/X)+3X/2 —(s)X'$s+ln(4/X)]
—(X'/8) [s—ln(4/X) j+ .. (12.4)

The functions a„v"&(x) and F(x)/(1 —x) for 8=1855
kev are plotted in Fig. 4. For comparison of the size

XL(1—x)y+ v$-'dy (12.1)

Here the superscript on a, &'&(x) indicates that this is
the lowest order approximation for a, (x) with respect
to the Coulomb field effects. The substitution f= (1—y) &

reduces the equation to simple integrals, yielding the
result given by Uehling, "
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FIG. 4. The vacuum polarization scattering amplitude in the
first Born approximation a p '). Upper curve: the function F(x)
entering Eq. (12.2) which is used in the evaluation of a p(0). Here
g=cos0, where 0 is the proton scattering angle in the center-of-
mass system. Lower curve: the quantity F(x)/(1 —x); a ~&'&(x)
= (—op/5x)P(x)/(1 —x).

of the vacuum polarization effects with the Coulomb
and nuclear 5 wave parts of the p-p scattering cross
section, the fractional change in the cross section
caused by including in the scattering matrix a „&p&(x)

is plotted in Fig. 5 for E=1855 kev and Eo——44.2'.
The vacuum polarization S-wave phase shift bo(') has
been subtracted from a „"leaving just the contribu-
tions from angular momentum states with L&0. Also
shown in Fig. 5 is the fractional change in the cross
section caused by a small negative mean I' wave phase
shift, 6~= —0.025'. This is roughly half the size of the
vacuum polarization I'-wave phase shift at this energy.
In the region of scattering angles around 8=35', the
vacuum polarization and I'-wave contributions to the
cross section are similar in form; despite the differences
occurring at larger and smaller scattering angles, there
is enough over-all similarity between the e8ects to make
confusion of vacuum polarization with true nuclear I'
wave scattering possible.

That the first-order undistorted plane wave approxi-
mation for (t ~ is not necessarily accurate may be
inferred from the curves of Fig. 3, where the quantity
(2L+1)81, entering the series for a „&p&is compared with
the real and imaginary parts of (2L+1)el., pal, . Even
for quite small values of L, the quantity el„o is sig-
nificantly diGerent from unity at the energies of
interest, and the inQuence on the scattering of the
phase shifts for large L is considerably modified. A next
approximation to o; „may be obtained by using the

free particle phase shifts 8L") combined with the exact
values of the Coulomb factors eQ, p in Eq. (3.3). This
approximation is considerably better; the use of the
phase shifts bL&'& introduces a much smaller error into
a~ than does the approximation of the eL, & by unity.
Details on this approximation are given in the author' s
dissertation. "

The exact summation of the series (3.3) for a, (x)
will now be undertaken. Substitution of the repre-
sentation of Eq. (7) for bl. in Eq. (3.3) yields the result

00 r'
a, (x) = —(err)/3') P (2L+1)er„p ' (1+-,'y)

L=O

X(1—y)'y 'Mr, (1+~y ')Pr, (x)dy. (13.1)

The order in which the summation and the integration
are performed may be reversed. Thus, introducing the
explicit form of Mr, from Eq. (6.9), and writing the
Coulomb factors eL, O as

r (L+1+i~)r (1—i~)
eL, 0=

r (L+ 1—i~)r (1+i~)
(13 2)

one obtains

r(1—i~)
( ) = —( „/3 )

i" (1+-;y)(1—y)'*y '
r(1+i,) J,

X fexpL —2rt tan '(v/2y)'j) P (2L+1)
LM

p 2y y'+' Lr(L+1+i t))jsxF, (x) l

(2y+r ) 2r (2L+2)

2
X2Fll L+1+irt, L+1 i&' 2L+2' — ldy

E
' '

'2yyv)
(13.3)

e '~'t +'& Ft(L+1—ir), 2L+2; t)dt. (14.2)

Using this expression in (13.3), and again interchanging
the order of the summation and the integrations, one

"L. Durand, dissertation, Yale University, 1957 (unpublished).

It is convenient to consider the series occurring in this
representation with s replacing 2y/(2y+ v); the hyper-
geometric function 2F& may be expressed in terms of a
confluent hypergeometric function &F& by an integral
relation easily derived from the representation (6.2)
for yF]) 'vis. )

I'(a) sFt(a, b; c; x/y) =y'J e "'t' ' tF&(b,c; xt)dt,

l*iyl«, (141)
whence

~+t+' r (L+1+i&) sF, (L+1+i&,L+1 i&; 2L+2; s)—
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the variable izz appearing in (15.2), Eq. (15.1) may be
reduced to the form

s-* r (1y '
) ~ t' e- ~~ &'+*&I'

X,F,[ iq—, 1; —',t(1—x)]dt. (15.3)

This is a convergent integral provided Re(1/s))1, a
condition satisled in the present application. The in-

tegration may be performed using the result of Kq.
(14.1) yielding finally

-.005—

.005—

-.005—

Change from q to q Rel.

Q (2L+1)s~+'Pl, (x)Pr (L+ 1+ized)]'
LM

XzFi(L+1+izt, L+1 izl; 2—L+2; s)/F (2L+2)

=Lr(1+' )]' '"L(1/ )—(1+*)/27 ' '

(1-x)s
XzFii —

ized, 1+izt; 1; i. (15.4)
2—(1+x)s&

obtains for the series alone

P(2Iy 1)s&+&P,(x)LF(L+1+ig)]z
LM

X,F,(L+1+izt, L+1 zzt; 2L+2; s)/F (2L—+2)
oo

= s—'& dtt'&e 'I' P (2L+—1)t~PI, (x)F (L+1+izt)
4 p L=O

X,F,(L+1—ig, 2L+2; t)/I'(2I. +2). (15.1)

This series may be related to the expansion of a Coulomb
scattered wave given by Gordon, '4

F(1+izt)e'"*"iFi( zzl, 1; —',izz(1 ——x))

00 F (L+1+zzt)= P (2L+1)(im)~Pi, (x) ~
—iu/2

L~ I (2L+ 2)

XiFi(L+1 izl, 2I.+2; izz), —(15.2)

where for Coulomb scattering N=2kr, and the right
hand side of the equation is usually expressed in terms
of the Coulomb wave functions of Eq. (5.1).The series
of Eq. (15.1) has precisely this form. Identifying t with

~4 W. Gordon, Z. Physik 48, 180 (1928).

30 60
ecm = (Degrees)

FIG. 5. The fractional change in the theoretical p-p scattering
cross section caused by various eRects discussed in the text. The
parameters determining the initial cross section 0-th are E=1855
kev and E0——44.25'. This value of E0 gives a good fit to the
1855-kev experimental data. ' Top: the change caused by including
in the p-p scattering matrix the vacuum polarization scattering
amplitude a p«& with 80«) omitted. Middle: the fractional change
in the cross section caused by a mean P-wave phase shift 8
—0.025'. Bottom: the fractional change caused by using the
relativistic rather than the nonrelativistic value of the Coulomb
parameter g.

Substituting in Eq. (13.3) for a,„with s= 2y/(2y+ v),
one obtains an integral representation for a ~ exact in
its inclusion of Coulomb field efI'ects on the 6rst-order
scattering amplitude,

~1

a:(*)= —(~n/3~) Ir (1+ zan) I' (1+zy) (1—y)'

+V
XL(1—*)y+ ] '

(1—x)y+ v

XexpL —2zt tan '(v/2y)'*]

y
XzFi( zzt, 1+—ized; 1; ~!dy (16).

y+X)

If p is set equal to zero everywhere except in the factor
—(nzt/3zr) multiplying the entire quantity, Zq. (16)
reduces exactly to the free wave approximation for the
scattering amplitude as in Eq. (12.1).

A relatively simple and accurate approximation for
a., may be obtained by expanding the exact result of
Eq. (16) in powers of the small quantity zt=ez/Av and
retaining only the erst few terms. At the lowest energy
at which proton-proton scattering experiments have
been performed, 200 kev, q has the value 0.35; g
decreases with increasing energy, varying from 0.13 to
0.08 over the range of the most accurate experiments,
1.8—4.2 Mev. Hence if the energy is not too low an
expansion of a ~ in powers of p may be expected to
converge fairly rapidly. The parameter v is also small,
v~1/180 at 200 kev, v~1/1800 at 2 Mev. Thus the
argument of the hypergeometric function in (16),
zz= (1—x)y/L(1 —x)y+v]=y/(y+X) is close to unity
over most of the interval in y contributing significantly
to the integral. It is more convenient to expand the
hypergeometric function in powers of 1—u, a change
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accomplished by the transformation of Eq. (10.1),

I
I'(I+zr&)

I

' sF&f i—rf, I+it&; 1;y/(y+X) j
i—rf(lnf(y+X)/Xj) sP&f—ir&, I+irf; 1;

X/(y+X) j r (—i~)r (1+i~)
I'(rs —irl)I'(rs+I+ir&) ( X

xg
I'(I+1)I'(~+1) & y+X)

&6 2Q
(17.1)I—irf = +t m(m'+r&s)

with a further expansion of the remaining quantities in
powers of p, one obtains the required result given here
correct to second order in q,

I
I'(I+ig) I' Pif—ig, 1+in; 1;y/(y+X)]

f y+», py+»=1—ig lnI I+g' lnI I lnI
& x) i x) &yyx)

X
+O(ir&') (17..2)

n=rz' y+X

The integrals for a p(') and a ~(') can apparently not be
evaluated in closed form but a, (') may be obtained
quite accurately using an approximation based on the
closeness of the factor

(I+sy) (1—y)'*=1—sy' —sy'+ ".

to unity. The factor is rewritten in the form

1+L(1+-:y)(1—y)' —17,

and the integrals are split accordingly into two parts.
The parts involving the term "1" are integrable in
relatively simple form, while those parts involving the
term in square brackets are much smaller and may be
approximated. Details of the integrations appear in the
author's dissertation. "The result obtained for &t v"'(x),
valid for v/(1 —x)«1, is

(Qri) 1l (1 )
Im &t. &'&(x) =

I

—
I

—lnI —
I1-x&3~) 2 Ex)

2 y- 1y-
lnI I lnI —

IEx)
1 (1+x) "

I +0.1166.=t ns& 2

«2l f' 2—0.2804 lnI —
I
—2 lnI I +O(X), (19.1)

(v) E1—x)

(I+x) i (v I+x) '
X tan 'I

I
—tan 'I —

I
. (19.2)

&1—x) &2 1-x)1

&t,v&'& (x) = —(nrf/3m) (1+-,'y) (1—y)-:

The entire integrand of Eq. (16) may now be expanded
in powers of rf. The factor expf —2r& tan '(v/2y)'*)
involves also the small quantity (v/2)i; consequently,
only terms through order q will be retained in its expan-
sion. The function &t~ may then be written in the form 4r& t' &r ) ('I —» '

Re &« '& x =-
&t„,(x)=«, "&(x)+&t„&'&(x)+&t.,&'& ( )+, (18.1)

where the terms added to the first Born approximation
term a~&0~ are

and

(v)'
Xf(1—x)y+vj ' —2p«n 'I —

I

(2y)

f 2y+vq (y+Xy-
+it& lnI I

—2 lnI I dy, (18.2)
v ) & X )

1

j&t &'&(x) = —(&rrf/3n. ) ' dy(1+-', y)(1—y)r'

rP ( 2y+v
Xf(1—x)y+v) —' —lnI !

2 ( (1—x)y+v)

(y+X) (2y+ v )
X 3lnI I

—lnI(X) E v )

(y+xi
&

y
+n' »I

& x ) &y+x)

This result is not very convenient for numerical work,
but a simpler formula obtained by dropping the smallest
terms suffices for energies above a few hundred kilo-
volts. This simpler result replaces the imaginary part
of the above quantity by

(&r q ( Iy-
Im &1 v&'&(x)

I
—

r& I
lnI —

I

1—xi3rr ) . EX)

(2) ( 2
x —:»I—

I

—i»I I
(»2')

E v) E1—x)

The real part of a p(" is quite small, being of the same
magnitude at 2 Mev as the contributions to Re a~
from a ~('). The term lm a ~(') arises entirely from the
Coulomb factors el„o, while Re a ~"' arises from the
alteration of the phase shifts caused by the Coulomb
distortion of the proton wave functions. These con-

- n

s=tts' y+X

3~ Details of most of the necessary integrations are given in
(18 3) Sec. 4 and Appendix A of the author's dissertation, reference 33.

The manipulations are for the most part elementary.
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clusions are apparent if the various factors entering
Eqs. (16) and (18.2) are traced back to their origins
and the functions Mr, and Qr, entering the formulas (7)
and (8.2) for the distorted and undistorted phase
shifts are compared.

The small second-order correction to a~(0) has been
evaluated roughly by replacing the factor (1+sy) (1—y) f

in Eq. (18.3) by unity. The error thus incurred is only
a few percent of the total value of the integral. The
factor ln((2y+ v)/$(1 —x)y+ v)} was approximated by
inL2/(1 —x)], an approximation which is permissible
provided X=&/(1 —x)«1. The result thus obtained is

rP &'&r ) ] 2 q (is-
a.,"'(x) —

I ~ I ln
1—x E3vr ) E1—x) &X)

f2'(2q-(2I+s»I
L ~i &1-x) L1-x)

(1+x) n

XP —
] [

—1.202 . (20)
=rts'E 2 )

These high-order contributions to a p are graphed in
Fig. 6 as fractions of a, (') for an energy of 1855 kev.
The imaginary part of a p"' is seen to be quite large,
reaching about 50% of the value of &r „&s&at both small
and large angles. The correction (Re &r, o&+&1 v&s& —LBs)
is plotted as a unit, the functions Re a, (" and 6 p"'
being similar in size; Here 58&& is the difference (8&& 8&&& &), —
representing the effect of Coulomb distortion on the S
wave vacuum polarization phase shift. It is convenient
to remove this difference from a, here, and the re-
mainder of bo, namely 50(", may be removed separately
from a „",80 being treated as only a part of the total S
wave phase shift Eo. It is seen that the ratio

(Re &r„&'&+a &'& —Ate)/&t

is fairly small especially for small angles where the
vacuum polarization scattering is most important. This
contribution to a, has been neglected at and above
1855 kev, although it has been included in the calcu-
lations at lower energies.

The vacuum polarization scattering amplitude to
first order in the interaction is given including all
Coulomb effects exactly by Eq. (16). It was found to
be convenient to expand this exact result in a power
series in the small quantity p, and terms through order
rP are given approximately by Eqs. (19) and (20). These
equations are suKciently accurate for numerical work
over the range of size of the parameters v and g of the
most interest, but are restricted by the condition that
v/(1 —x)«1 (v=1—x for (&=1.4' at 1855 kev).

III. RELATIVISTIC AND MAGNETIC
SCATTERING CORRECTIONS

Relativistic and magnetic corrections in high-energy
proton-proton scattering have been treated extensively

0.5—
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FIG. 6. The leading additions to a p( ) in the expansion of the
6rst order vacuum polarization scattering amplitude 0 p ln
powers of r&. Top: Im a,~&'&/a ~&'&. a ~&'& is shown in Fig. 4. The
calculated points were obtained by numerical summation of the
imaginary part of Eq. (3.3), using the first 21 phase shifts BJ.( ).
The bars indicate the uncertainty in the sum. Bottom: (Re a„~&'&
+a ~&s& —LMol/a ~&'&. Here LBO is the difference 80—80&0&. All
further additions to a p

' are of order at least q'.

by several authors, but little attention has been given
such corrections at low energies. " The simplest rela-
tivistic effects are the well-known changes in the trans-
formations connecting the cross sections and scattering
angles measured in the laboratory system with those in
the center-of-mass system. " These kinematic correc-
tions, while small, are not negligible even at low
energies. The change in the transformation of the
scattering angles results, for example, in a diminution
of the theoretical p-p cross section in the region of
dominant Coulomb scattering by the factor 1—(E/Mc'),
a change of 0.43% at 4 Mev. Of a more subtle nature
are the dynamic relativistic and magnetic contributions
to the p-p scattering matrix discussed by Breit" and
Garren. "These authors have considered the modi6-
cation of the scattering amplitudes necessitated by a
relativistic treatment of Coulomb and magnetic scat-
tering correct to terms linear in e' and v'/c'. It was
found that in the usual Coulomb scattering amplitudes,
the non-relativistic value of the parameter g, rf = (e'/fs)
X (M/2E)f, should be replaced by the value rf =e'/Av,
where e is the laboratory velocity of the incident proton
calculated relativistically. The value in the center-of-
mass system of the parameter k', k'=ME/(2&&&'), is
correct relativistically. The relativistic treatment of
Coulomb scattering results also in the appearance of

"0.Chamberlain and C. Wiegand, Phys. Rev. 79, 81 (1950).



1608 LOYAL DURAND, I I I

additional spin-dependent forces between the protons,
similar in origin to the L S forces characteristic of the
Dirac theory of an electron in a central field. The phase
shifts caused by these added interactions between
protons have been calculated correct to terms linear in
e' and p'/c' by Ebel and Hull, ' while Breit" has cal-
culated the corresponding scattering amplitudes in the
first Born approximation after showing such a calcu-
lation to be equivalent to this order to a phase shift
analysis. Garren" has included in his work the additions
to the scattering matrix caused by the anomalous mag-
netic moment of the proton also calculated in the first
Born approximation. The uncertainty in these results
arising from the distortion of the proton wave functions
by the Coulomb and nuclear forces has recently been
considered by Breit," but such distortion eQects are
relatively unimportant at low energies except in the 5
state. If for low scattering energies, the added matrix
elements are expanded in powers of v'/cs, it is necessary
to retain only those terms contributing to the cross
section in the order p'/c' or less; higher order terms in
the cross section are insignificant at the energies of
interest (v'/c'&0. 0053 for 8&5 Mev). In the absence
of large triplet phase shifts, the off-diagonal matrix
elements contribute to the cross-section terms of order
v'/c4 or higher and will be neglected. Similarly, the
parts of the diagonal matrix elements arising from
relativistic sects contribute detectably to the cross
section only through interference terms involving the
relatively large Coulomb or nuclear S-wave scattering
amplitudes. In the notation of Breit and Hull, " the
magnetic and relativistic additions to the diagonal
elements of the antisymmetrized scattering matrix are,
to order ps/c'

1, 1— 2~~5 0, 0—~~5 1, 1)

2 &khS p, p = —(ply/2cVc') (IJ,~+p~s),

(21.1)

(21.2)

2 &khS r, r =re/ScVc'(p~'+2', „1)cos8. (21.3)—
Here p„is the anomalous part of the proton magnetic
moment expressed in units of the nuclear magneton.
The subscripts i and j on AS;, ; refer to the value in
units of A of the total spin of the two protons in the
scattered and the incident states respectively. Since
2pl ln sin(8/2) is small in the angular region and at the
energies at which the fractional changes in the cross
section caused by each matrix element are of detectable
magnitude, the not altogether certain factor

exp[ 2irl ln si—n(8/2) j
by which the above elements of AS may have to be
multiplied was approximated by unity in obtaining
Eqs. (21).The contributions to the triplet cross section
of order p'/c' vanish in the absence of large triplet
nuclear phase shifts; the DS;, ; then contribute to ~0-

"M. E. Ebel and M. H. Hull, Jr., Phys. Rev. 99, 1596 (1955).

only through an interference term with the triplet
Coulomb scattering amplitude 5 ', entering in the
combination

(ReS ')(ES r r+DS p, p+6$~ r r)=0. (22)

"The author is grateful to Professor G. Breit for discussions
regarding the origin and the uncertainties in this S-wave effect."J.Schwinger, Phys. Rev. 76, 790 (1949).

The singlet amplitude hS 0, 0 adds to the scattering
matrix an isotropic term representing just an S-wave
phase shift which should be treated as part of the total
phase shift Eo. The source of this phase shift was
pointed out by Breit" who showed that it originated
from what are formally magnetic contact interactions
between the protons and that the value obtained in a
calculation of the phase shift is quite sensitive to the
behavior of the wave function in the region in which
the electric field of the proton deviates significantly
from that of a point charge. This region is certainly
within the range of the specifically nuclear interaction;
thus the form of the wave function and the value of the
phase shift are very uncertain. Since the magnetic forces
are of a short-range character, they may be regarded as
only one part of the total short-range 5-state interaction
between the protons, as has been pointed out by Breit.'
From this point of view it is unnecessary to distinguish
between the parts of Eo arising from the magnetic and
the nuclear interactions, but it is still convenient to
separate out the part of Eo caused by the long-range
vacuum polarization forces.

It is concluded that the additions to the p-p scat-
tering matrix caused by the relativistic and magnetic
modifications of the Coulomb interaction enumerated
by Breit" and Garren" may be dropped at low energies.
The only significant modification of the low-energy
Coulomb scattering is the change in the definition of the
parameter g."That this change should not be neglected
in the analysis of the low-energy p-p scattering data is
seen from the curve of Fig. 5 showing the fractional
change in the theoretical 1855-kev cross section caused
by changing g from its nonrelativistic to its relativistic
value. The cross section was calculated assuming an 5-
wave phase shift Eo of 44.25', roughly the value fitting
the 1855-kev experiments. The eGect becomes larger
at higher energies. The electromagnetic interactions
leading in the case of electrons to the Lamb shift of
atomic energy levels" and to corrections for radiation
(bremsstrahlung) in the Coulomb scattering of elec-
trons, ' are, in the case of protons, diminished in mag-
nitude by powers of the ratio of the electronic to the
protonic mass. " Higher order vacuum polarization
corrections" are likewise negligible. II; is therefore
thought that the electromagnetic interactions between
low-energy protons are adequately described in the
absence of large triplet phase shifts by the relativistic
Coulomb and the first-order vacuum polarization
scattering amplitudes alone.
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IV. VACUUM POLARIZATION CONTRIBUTIONS TO
THE P-P SCATTERING CROSS SECTION

The vacuum polarization contributions to the low-

energy p-p scattering cross sections have been calculated
at energies spanning the range of the most accurate
experiments. 7 It has been assumed that any nuclear
phase shifts in states with I.&0 are so small that only
terms linear in the total phase shifts contribute sig-
nificantly to the cross section. In this case the eGect of
the vacuum polarization interaction is to add to the
diagonal elements of the p-p scattering matrix the
term a„,(x) in accordance with the discussion of Sec. 2,
Eqs. (3.1), (3.2), (3.3). The vacuum polarization 5
wave phase shift 50 should be omitted from a „sinceit
is only one part of the large total phase shift Eo,. any
vacuum polarization eGects in S-wave scattering may
then be treated as was done by Foldy and Eriksen. '

Tracing through the construction and antisymmetri-
zation of the p-p scattering matrix as given by Breit and
Hull, "one Gnds for the singlet and triplet scattering
amplitudes correct to 6rst order in the vacuum polari-
zation interaction

sa= sa,+[exp(iKo) j sinEo+sa o
—bo, (23.1)

Ta Ta +trr— (23.2)

Here ~u, and ~u, are the singlet and triplet Coulomb
scattering amplitudes,

s ra, = —(q/4) {Lsin '(8/2) j expt iq ln—sin'(8/2) )
&cocos '(8/2) j expt —ig ln cos'(8/2))), (23.3)

where the plus and minus signs correspond to the
singlet and triplet states, respectively. Similarly a~
and ~a~ are the antisymmetrized vacuum polarization
scattering amplitudes,

s ra, (cos8) =-', La, (cos8)&lr, (—cos8)j. (23.4)

where

k'30~=2 ReL( a,—bo) ( a,+Lexp(iEo)1 sinÃo)*$

+6 ReLrn~ ~a,*j. (24.3)

There may be additional contributions to 0 (8) involving
nuclear phase shifts for states with L &0, but the fore-
going construction for 60 „will be valid if the con-
tributions to the cross section involving the square or
higher powers of the total phase shifts are negligible.

The vacuum polarization contributions 60. p to the
p-p scattering cross sections were calculated for the
energies and scattering angles of the Worthington,
McGruer, and Findley experiments, ' as well as for
1397kev. The vacuum polarization scattering amplitude
was used above 1400 kev in the approximation

lr~(x) —8o~~lr~&') (x)—8o(')+i Im a~('&, (24.4)

with 8o(o) being as in Eq. (8.3), the small terms tr o(o',

Re g p
' and the difference 80—50&') being dropped. The

error thus introduced is quite small, since the neglected
terms contribute less than 6% of Ao o at 1855 kev and
decrease inversely as the energy for higher energies.
However, the contribution to 60-~ from the term
Im(1 p&'& was typically around one-third of the con-
tribution from a,p("; hence, the Coulomb 6eld eGects
on the vacuum polarization scattering are not neg-
ligible. In the calculations, values of Eo giving a best S-
wave fit to the data were used; the Coulomb scattering
amplitudes and values of 0 ~h(8) were obtained using an
automatic computing program coded for an I.B.M. 650
digital computer by Shapiro and Pyatt. The values
obtained for 60-, are given in Table II, while the ratio
of hr p to the pure S wave plus Coulomb cross section
o~h is shown in Fig. 7. It should be noted that 60 ~

TABLE II.Vacuum polarization contributions to the p-p scattering
cross section excluding the S-wave eGect. '

In the convention used here regarding the factors of
two which enter in the process of antisymmetrizing the
scattering amplitudes, "and in the absence of triplet p-p
phase shifts, the diGerential scattering cross section is
given by

k' (8)=
i

a(8)i'+3i a(8) ['. (241)

The cross section may be expanded into parts repre-
senting the dominant S-wave and Coulomb scat-
tering, with additional terms involving the vacuum
polarization scattering. Contributions to 0 (8) involving

~a ~~' will be dropped, both because they are too
small to detect, and because other terms involving the
squares of the phase shifts 5L, have been neglected in
the evaluation of a,. If a&~(8) is that part of a. (8)
involving only the Coulomb and S-wave scattering
amplitudes, and if 50 ~ is the contribution to 0 (8) linear

in a ~ and 80, then

(24.2)

QB (kev)
e ~ 1397 1855 2425 3037 3527 3899 4203

Degrees mb
12 99.9
14 56.1
16 33.6
20 13.9
24 6.66

~ ~ ~

30 2.68
35 1.48
40 0.939
50 0.569
60 0.489
70 0.479
80 0.484
90 0.487
Ep 39 1'

mb
77.1
33.2
19.9
8.25
3.94

~ ~ ~

1.60
0.909
0.605
0.404
0.366
0.367
0.373
0.375

44.3'

mb
37.1
20.5
12.2
4.99
2.40

~ ~ ~

0.993
0.574
0.399
0.285
0.269
0.271
0.278
0.280

48.4'

mb
24.7
13.7
8.13
3.33
1.59

~ ~ ~

0.663
0.392
0.280
0.212
0.203
0.209
0.212
0.213

510

mb
18.8
10.4
6.18
2.53

~ ~ ~

1.11
0.508
0.304
0.220
0.171
0.167
0.171
0.174
0.176

52.5'

mb
15.8
8.72
5.16
2.11

~ ~ ~

0.943
0.425
0.257
0.188
0.149
0.147
0.150
0.154
0.155

53.3'

mb
13.8
7.59
4.49

~ ~ ~

0.818
0.369
0.226
0.167
0.134
0.134
0.136
0.140
0.140

53.8'

a The values of Ko used in the calculations are given in the last row;
possible nuclear scattering in states with L &0 was neglected.

p The author wishes to thank Dr. J. Shapiro and Mr. K. D.
Pyatt for their cooperation at this stage of the work. The com-
puting program to which the reference was made, was designed
originally for the study of p-p scattering at high energies.
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FiG. 7. The contribution hrv„ to the theoretical p-p scattering
cross sections arising from vacuum polarization scattering in
orbital angular momentum states with 1.&0. The initial cross
sections crth were calculated from good S wave 6ts to the data at
the energies indicated,

includes only the effects of orbital angular momentum
states with L&0. Thus, the nearly isotropic part of
Do, at large scattering angles (50' &8 &90') represents
not an S wave eGect, but the combined eGect of many
partial waves. At smaller scattering angles, ho.~ has
somewhat the form of the change in the cross section
caused by a small negative mean P-wave phase shift,
as is seen from Figs. 5 and 7.

V. CONCLUSIONS

The inQuence on the proton-proton scattering cross
sections of small electromagnetic and relativistic modi-
6cations of the Coulomb interaction between the
protons has been considered, with particular attention
to the largest such modification, the vacuum polariza-
tion interaction. The phase shifts caused by the vacuum
polarization potential were calculated to first order in
the interaction strength, including in the calculation
the modi6cation of the wave function resulting from
the presence of the Coulomb 6eld between the protons.
The eGects on the phase shifts of the distortion of the
wave function by nuclear forces were neglected, because
at the energies considered these sects are expected to
be small in states with orbital angular momentum
quantum numbers L&0. Experimental data suggest in
fact that the P-wave phase shifts are a small fraction
of a degree. If, on the other hand, these phase shifts
should be larger than about 1' nuclear distortion of the
wave functions should be considered. "The Coulomb
distortion effects are not large above about j. Mev, as
is shown by the comparison in Table I of the vacuum
polarization phase shifts calculated using free particle
wave functions with those calculated using Coulomb
wave functions; the Coulomb eBect should, however, be
important at lower energies. The vacuum polarization
scattering amplitude was evaluated to first order in the
interaction including exactly the Coulomb phase shift
factors e~, tl, it was found that these factors materially
modified the contributions to the amplitude of the high
angular momentum states. The eL„pare, in fact, entirely
responsible for the imaginary part of the scattering

amplitude, which contributes up to one third of the
vacuum polarization contribution to the p-p cross
section in the energy range 1.4—4.2 Mev. Many angular
momentum states contribute significantly to the scat-
tering, resulting in appreciable modifications of previous
work on vacuum polarization scattering based on S- and
P-wave eGects alone. ' ""The discovery at low energies
of large nuclear phase shifts in states with L)0 would
necessitate a reconsideration of vacuum polarization
scattering in which the vacuum polarization phase shifts
for those states were removed from the scattering
amplitude, and treated instead as part of the total
observed phase shifts 6tting the experimental data.
Such a treatment would be similar to that given S-
wave scattering by Foldy and Eriksen. '

Values of the vacuum polarization contribution to
the proton-proton scattering cross section are given in
Table II for the range of scattering angles and energies
corresponding to the most accurate recent experiments.
This addition to the cross section is of detectible mag-
nitude L 0.7 percent maximum change in o(8)j, and
is quite similar in its angular dependence to the change
produced in a pure 5 wave plus Coulomb cross section
by the addition of P-wave scattering. Thus it is believed
that vacuum polarization scattering should definitely
be considered in a precise analysis of low-energy p-p
scattering data. It should be pointed out that the
theoretical results of this paper are in principle applica-
ble also to other cases, such as p n, n-n, an-d p-d scat-
tering, provided appropriate changes are made in the
parameters ri and v; thus ri becomes ZrZ2e'/hv, while p

becomes (m/p)(mc'/E'), where p is the reduced mass
and E' is the scattering energy in the center-of-mass
system. It is not meant to imply however that infor-
mation on vacuum polarization will be obtainable by
analyzing these more complicated cases.

Relativistic and magnetic contributions'~" to the
p-p scattering matrix have also been considered in the
limit of low scattering energies. The relativistic altera-
tion in the Coulomb parameter g results in signi6cant
changes in the low-energy cross sections (Fig. 5); but
the extra terms in the scattering matrix may be omitted.
Other electromagnetic interactions between the protons
are too small to inQuence detectably the scattering.
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