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Scattering of High-Energy Electrons from C" on the Inter~ediate-
Coupling Model
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The nuclear matrix elements of 1p-nuclei for intermediate coupling, which have been worked out in a
previous paper, are used here in the case of C~ to calculate the elastic form factor and the inelastic form

factor corresponding to the excitation of the nucleus to its 4.43-Mev level. For the 7.65-Mev level only the

monopole transition matrix element has been calculated. The difhculty that has been faced in making a
tentative 2+ assignment to the 9.61-Mev level has been pointed out by discussing the observed magnitude

of inelastic 4.43-Mev scattering and position of the 15.09-Mev (1=1, 7=1) level.

1. INTRODUCTION

''N a previous paper' a cross-section formula was.- worked out on the intermediate-coupling model of
(ip)-shelP nuclei for high-energy electron scattering
using the Mltiller potential and Born approximation
method. It can be easily seen that the detailed formula
for the differential cross section given by Amaldi el al.'
gets much simplified insofar as all the terms containing
J;I become very small compared to those containing
only p;s. Omitting all terms containing J;f, one gets
ultimately the simple formula

Zse coss(0/2)
a'~(tt) =

4E;s sin4(e/2)

1
X —(+f

~ P exp( —iK R'&') r &"
~
4;) . (1)

Z

In this form 1/Z times the nuclear matrix element can
be interpreted as the form factor Ii.

In this paper we have calculated for C" the elastic
form factor and the inelastic form factor corresponding
to the excitation of the nucleus to its 4.43-Mev level
(2+) using the formula for nuclear matrix element
derived in paper I. For the 7.65-Mev level (0+) we
have calculated only the monopole transition matrix
element, and have refrained from calculating the
detailed behavior of the diGerential cross section with
angle. The difhculty that we have faced in making a
tentative assignment of 2+ to the 9.61-Mev level has
been pointed out by an examination of the possibility
of simultaneously reproducing with the intermediate-
coupling model this level and the 15.09-Mev level at
their correct positions and also the observed order of
magnitude of the 4.43-Mev inelastic scattering. The
experimental data made use of for comparison with the

' M. K. Pal and S. Mukherjee, Phys. Rev. 106, 811 (1957); to
be referred to as paper I.' In paper I we designated the same shell by (2p) in conformity
with Jahn, Elliott, etc. (See, e.g., Proc. Roy. Soc. (London)
A218, 345 (1953).j In this paper we are using the shell nomen-
clature used by B. F. Sherman and D. G. Ravenhall, Phys. Rev.
103, 949 (1956).

Amaldi, Fidecaro, and Mariani, Nuovo cimento 7, 758 (1950).
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The zero-order potential V(R&'&) has been taken, as
before, to be the isotropic oscillator potential with well-

parameter ao, but the higher order potential, enclosed
in the square bracket, for which matrices corresponding
to different (J,T) are to be set up with the LS-coupling
states as basis, has been assumed to consist of a single-
particle type spin-orbit interaction (in contrast to the
two-particle Case-Pais type of paper I) and a central
interaction V(R&'») given by Rosenfeld's prescription,

V(E 't ) = Vpf(E 't )(—0.13Vw+0.93Vsr
+0.46Vst —0.26VsI). (3)

A Gaussian form of radial dependence,

f( '*")=expL —(&"")'/«'j (4)

has been assumed. Following Inglis' and Lane, ' we
have introduced the intermediate-coupling parameter
i =cr/E, where E is the exchange integral for the central
interaction. Our work differs from the manner of
analysis of C"data by other authors' 7 in two respects:
(i) we have used intermediate-coupling wave functions
which have already reproduced many observed features
of (1p)-nuclei, and (ii) we have analyzed the data in
terms of the oscillator well-parameter ao and the inter-
mediate-coupling parameter t, both of which can be
physically interpreted.

In Sec. II we have referred to the relevant formulas
of paper I made use of herein, and have pointed out

J. R. Fregeau, Phys. Rev. 104, 225 (1956).
5 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
e A. M. Lane, Proc. Phys. Soc. (London) A66, 977 (1953);

A67, 167 (1954); A68, 189, 197 (1955).
r R. A. Ferrell and W. M. Visscher, Phys. Rev. 104, 475 (1956),
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calculated values have been taken from the paper of
Fregeau, 4 and the incident electron energy for these
data is 187 Mev.

In making intermediate-coupling calculations for the
nuclear wave function 0, a departure has been made
from paper I in that here we have used a total nuclear
potential of the form

A

V=/ V(g(7))+ P crl(t) ~ s(t)+. P V(g( l)) (2)
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TABLE I. Energy matrix for J=O, T=O, with V= —0.13V~+0.93V~+0.46V&—0.26V~+0. Z; 1~I& s&&).

D,JI.Ts I 44)000 L432 j101 I422)000 E422j202 L3323101

$447000
$431j101
E422j000
L4223202

t 3323101

A. Matrix elements in terms of direct and exchange integrals. '
9.56L+12.92' ——;a+6 —0.4E+10 0

6 76L+. 14 02E.+ ,'n ——-,'a+15 (7/12) a+6
3.98L+20.06K' 0

6.74L+ 10.78'+-,'a

0
(i~a —0.1E)+15

-',a+10
3.04L+19.38E+ (5/4)a

L44)000
I 431)101
L422j000
L422j202
L3321101

70.28

B.Matrix elements in terms of the intermediate-coupling parameters |.&b

--:i'V'6 —0.4+10 0
54.58+ 43/ 'siv—'15 (7/12)tv'6

43.94 0
51.22+)/

0
(4['—0.1)v'15

—;[+10
37.62+ (5/4) 1'

& The matrix is symmetric.
b The matrix elements in B all have to be multiplied by the exchange integral X.

the necessity of considering the 7.65-Mev level as
arising from configurations other than (is)'(1P).s

Section III deals with the elastic scattering. In Sec. IV
we give our treatment of the monopole transition
matrix element of the 7.65-Mev level. Section V
describes results- of our calculations for the inelastic
4.43-Mev scattering. In Sec. VI we examine the diK-
culties that we have faced in making a 2+ assignment
to the 9.61-Mev level in view of the observed magnitude
of inelastic 4.43-Mev scattering and the position of
15.09-Mev level. Section VII contains concluding
remarks.

II. SCATTERING FORMULAS AND '7.6S-MEV
LEVEL CONFIGURATION

Sy a diagonalization of the energy matrices for dif-
ferent (J,T) corresponding to the potential terms
enclosed in the square bracket in Eq. (2) one obtains
the eigenvalues and eigencolumns. The former give
the shifts of the (J,T) levels concerned from the zero-
order coniguration-energy value and the latter enable
one to express the intermediate-coupling wave functions
as a superposition of the I-S-coupling wave functions
used as basis in the above matrix representation. One
writes, with known coeKcients Ciqiis,

T' 1 T

Mp 0 Mg
and

J' 2 J
M 0 M

vanish by the triangular inequality rule when T=T'= 0,J=J'=0. The remaining terms of the matrix elements
require I-=I', S=S', J=J', M=M' for their non-
vanishing.

If the 7.65-Mev level belongs to the same conigura-
tion as the ground level, then the intermediate-coupling
wave functions of these states are given by expressions
like Eq. (5) with coefFicients C'[i,]r,s for the ground
state and C'~) ~L,s for the excited state, the summation
in both',"cases running over the five LS-coupling states
of Table I. These coeKcients satisfy, for orthogonality
of the two states, the relation

C'p ]rsC'[]]zs=0.
P,]LS

(8a)

has to sum and average over the final and initial
M values according to the following formula:

I
PI'= (2J'+1) ' Par P~'I ~sisr'I' (7)

Now both the 7.65-Mev level and the ground level of
C" are J=O, T=O. The Clebsch-Gordan coefficients,

In view of the orthogonality of the fractional parentage
coefficients we get

@(JTMMr) = Q Cp, ]rs
([X]LS)

XV((1s) (1p) CXgLTS JMMr) (&)
(@

.
I p (

.K R[.&)

The general matrix element in the form factor is

((1s)4(1p)"P,]LTS, JMMs

XI+;exp( —sK R[~'])r [i]I

X (1s)4(1p)"p,'jL'T'S', J'M'Mr). (6)

~]thin the s-shell and p-shell this gives respectively
formulas (3a) and (3b) of paper I.s To obtain IF I'~ one

8 In paper I these formulas are quoted wrongly; they have to
be multiplied by ~s and (—1)s s'+~' ~ respectively.

C [X]LSC [L]Ls 0. (Sb)
[X]LS

Since experimentally inelastic scattering correspond-
ing to this level has been observed, one has to postulate,
therefore, that this level does not belong to the con-
figuration (1s)'(1P)'. Sherman and Ravenhalis have
demonstrated the same fact by considering the mono-

'B. F. Sherman and D. G. Ravenhall, Phys. Rev. 103, 949
(1956).
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pole transition matrix element (Zr„'), or (Z(Rf'&)srf'i)
according to our notation.

8= (2es+1)-f, e=a,/r, . (9c)

By a proper choice of 8 (i.e., rs for given as) it is
possible to satisfy the requirement L=6E suggested
by Inglis. ' With this relationship between the two
integrals and putting {=n/E, we get Table IB. We
have diagonalized this matrix for (=3, 4.5, 6, 10, and

TA13LE II. Highest eigenvalue (Ep) and the corresponding
eigencolumn of the energy matrix for J=O, T=O. The eigenvalue
given here must be multiplied by E(=+0.0214Vv for 8= 1). The
expression for X contains the potential well depth Vo which is
negative and hence the highest eigenvalue is the lowest on the
energy-level diagram.

Ep

Wt. of (44]000
Wt. of L431)202
Wt. of L422j200
Wt. of $422j202
Vft. of t332$101

0 3
70.28 72.03

C1 1 0.939
CQ 0 -0.332
CQ 0 0.007
C4 0 -0 088
C5 0 —0.036

4.5
74.56

0.850
—0.481

0.072
-0.181
—0.093

6
78.43

0, !26
—0.588

0.230
—0.301
—0.160

10
92.09

0.503
—0.661

0.223
—0.440
—0.278

20
131.25

0.358
—0.651

0.272
—0.487
-0.370

III. ELASTIC FORM FACTOR

With the interaction potential given by the portion
enclosed in the square bracket in Eq. (2), we have set
up the energy matrix for the ground state / =0, T=0
of the (1s)'(1p) configuration. This is shown in Table
IA, in which L and E are direct and exchange integrals
given respectively by"

I—P(0)+ (4/25)P(2) —t Ps{3Q&3 Q+s+3Qy7} (9a)

If —(3/25) P (s l —t P' {Q~s —9 P~s+ Q~r } (9b)

with

TAsx.z III. Square modulus of the elastic form factor.

K'Qt All

IF., lv

First zero of IF,~I'at Z'=

0
0.5
1.0
1.5
2.0
2.5

1
0.833
0.479
0.183
0.0417
0.0041
3.00

It is seen, therefore, that in the case of C" the elastic
form factor does not depend on the nature of angular
momentum coupling. The values of

I p, i
I

' are tabulated
in Table III for diGerent E'. Figure 1 displays the

I
p, i I' vs E' curve and the fit of the experimental data

for two different choices of the oscillator well-parameter,
vis. , a0=1.64 and 1.72&10 "cm. The former choice is
definitely better and it leads to an rms value of the
radius of C" equal to 2.41X10 "cm.

0 EXPERWEiV7Al. PO/k'TS
W]r+ a~ =g.pgxxu "cm

IV. MONOPOLE TRANSITION MATRIX ELEMENT
FOR THE '7.6S-MEV LEVEL

By an extrapolation of the inelastic scattering curve
to E—4 SchifP' has evaluated the monopole transition
matrix element for the 7.65-Mev level. Fregeau4 quotes
a value =5/10 " cm' for this quantity obtained by
this method. SchiP' obtained too large a value for this
quantity on the collective model and too small a value

20. The highest eigenvalue, which gives the ground
state, and the corresponding wave functions are given
in Table II.

To obtain the elastic form factor we note that in the
matrix element (3b) of paper I the 8 term drops out

J 2 J
through the vanishing of ~ 0 ~ . The rest gives

for the intermediate-coupling state, again with the use
of the orthogonality of the fractional parentage coef-
6cients, the following matrix element

p, i= 28+4$ Q Cs

eliza

——28+4$
P,]LS

because
(-'pair. s=1

P,]LS

by the normalization requirement. Hence

'f) For an explanation of the symbols F(0) and F() see J. P.
Elliott, Proc. Roy. Soc. (London) A218, 345 (1953).

FIG. 1. I Fgi I' verses E'. Fit of the curve with the experimental
values for @0=1.64X10 "cm has been demonstrated.

"L.I. Schiff, Phys. Rev. 98, 1281 (1955).
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on the jj-coupling shell model. Sherman and Ravenhalle
have considered the 7.65-Mev level as a mixture of
(1s)4(1P) and (1s)'(1P)r(2P) configurations, the mixture
of the latter in the former being determined by the
perturbation method. They also report, in brief, inter-
mediate-coupling calculations with some of the possible
states omitted but fail to reproduce the high magnitude
of the monopole matrix element.

Following the suggestion of Hill and Wheeler, "
Ferrell and Visscher" have given a treatment of the 0+
excited level of 0". These last-named authors' have
recently used the same type of collective ("breathing
mode") wave function to describe the 7.65-Mev level
of C" and conclude that with 35% LS mode and 65'%%u~

collective mode of excitation for this level the observed
inelastic form factor can be reproduced. The mixture
of LS and collective modes is necessary because the
former gives too low and the latter too large scattering.

We have used Ferrell and Visscher's way of writing
the /. 65-Mev 0+ state wave function in terms of shell-
structure configurations:

4(J=O, T=O) = (3/13)%((1s)s(2s)(1P)s J=O T=O)
+(10/13)%((1s)4(1p)'(2p); J=O, T=O). (10)

Making certain simplifying assumptions, stated below,
and treating the ground state on the intermediate
coupling model, instead of pure LS model, we hnd it
possible to reproduce the proper value of the monopole
transition matrix element without having to postulate
a mixing of difkrent modes of excitation.

The simplifying assumptions mentioned above are
regarding the LTS values in (1s)'(2s)(1p)s and (is)'
(1p)'(2p) that couple to give the final J=O, T=O.
Because (1s)s(2s) (1P)' and (1s)'(1P)r(2P) will each be
about 30 Mev above the ground state con6guration
(1s)'(1p)', it is necessary that the 7.65-Mev level be
the lowest states of the above configurations depressed
by Q V[X "i) and Pirl&&'&. s'&'& through about 22 Mev.
For (1s)o(2s) (1p)' we, therefore, assume a coupling

@((Is)oO-' —' (2s)0-,' -,':000; (1P)'[44j000; J=0).

As regards the (1s)'(1P)'(2p) configuration there may
be as many as thirteen (1p)' states that can be linked
with (2p)1-,'-,' to produce J=O, T=O. Of these the
states of maximum symmetry of (1p)' are those be-
longing to [43j and they are two in number, 1 s s and
2 —,
' 2. To simplify matters we consider only the former

and take

+((»)000 (IP)'[43)1 s s (2P)1s s:
L=O, T=O, S=O, J=O).

By an application of Racah's'4 equation (27) we get
the monopole transition matrix element between the

"D.L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953)."R.A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956).
'4 G. Racah, Phys. Rev. 63, 367 (1943).

/. 65-Mev level and the ground state, given by

V. INELASTIC FORM FACTOR FOR
4.43-MEV LEVEL

Morpurgo" deduced the value of this quantity on
both LS- and jj models and found that the former

TABLE IV. Monopole transition matrix element for the 7.65-Mev
level. (Zr~') = ops (13/2) &C&. (For explanation of Ci see Table II.)

a0 )(i0» cm~ 0 3 4.5 6 10 20

(Zr„')X10"cm'
1.64 6.86 6.42 5.82 4.98 3.45 2.45
1.59 6.44 6.04 5.48 4.68 3.24 2.31
1.72 7.54 7.08 6.41 5.48 3.79 2.70

gives a value lower by a factor of 2.5 and the latter
lower by a factor of 6. Ferrell and Visscher' have,
therefore, treated the 4.43-Mev level in close analogy
with their treatment of the 7.65-Mev level. They have
postulated a 90%%uo LS mode and 10%%uz collective mode
for this state to explain the observed magnitude of the
inelastic form factor. We thought that it may be worth
while to see if an intermediate-coupling treatment of
both the ground and 4.43-Mev levels can increase the
value of the form factor for the pure LS model. In fact
for intermediate coupling we obtain a number of LS
coupling matrix elements in the form factor weighted
by suitable numerical factors. If some of these other
matrix elements be larger than the single matrix
element for pure LS coupling and if there is no chance
cancellation among the diferent matrix elements whose
sum has to be evaluated to get the Anal value, the form
factor may increase from the LS value.

In intermediate coupling, eight LS states will be
superposed to build up the state J=2, T=O. In a pre-
liminary calculation we have omitted four of these

"G. Morpurgo, Nuovo cimento 3, 430 (1956).

+0 Ct44]ooo
((~"')' -"')=- {~4(1)it (2 )

(13)& ~p

+2(5) '~(+,+P)4 (1P)4 (2P))P'&P

= aosCl44]ooo(2/13)'*{5g(+,4P)+s)
=up Cl4olppp(13/2)1.

a(%Pp) is the single-particle fractional parentage coef-
ficient corresponding to the coupling of 4([43j1i sr)

with (1p)1 s
—', to form %'([44]000). Its value unity has

been used to obtain the last step of Eq. (11). This
equation at once suggests the possibility of reducing,
with intermediate coupling for the ground state, Ferrell
and Visscher's "breathing mode" value because the
weight of the state [44)000 in the ground state is less
than unity and in fact adjustable with 1. The values of
this monopole matrix element for different t and ap
are tabulated in Table IV.
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TAnzz V. Energy matrix for 1=2, T=O, with V= —0.13Vsr+0.93V|&r+0.46Ve —0026Vrr+ Z;n(1&» s&&'&), and omission of four of
the states, namely, [422]002, [422]200, [422]202, [332]101.

P )LTS $44)200 L3213101 1431)201 [431j301

[44)200
[431]101
[431]201
[431]301

[44)200
[431)101
[431)201
[431)301

A. Matrix elements in terms of direct and exchange integrals. '
9.56L+ 10.52E —(1/15)aV'(105) soV'(42)

6.76L+14.02E ——,'a —(3/40)n V'10
6.76L+ 13.52E+ (1/12)n

B. Matrix elements in terms of the intermediate coupling parameter. 'b

67.88 —(1/15)fV'(105) —.'fv'(42)
54 58—s~f -(3/40) fv'10

54.08+ (1/12)f

(2/15) ~v'(30)
0

—(1/15)nV'(35)
6.76L+ 10.52E+ -',a

(2/15) f'V'(30)
0

—(I/») fV'(35)
51.08+-',g

a The matrix is symmetric.
~ The matrix elements in B all have to be multiplied by the exchange integral Z.

states. This has been done from the argument that these
omitted states, namely, [422]002, [422]200, [422]202,
[332]101,are not linked by o& P 1&&'i s&&i to the state
[44]200 (which is the first excited state in pure LS
coupling) and hence their mixture with [44]200 in
intermediate-coupling will be smaller compared to that
of the remaining three states. The resulting 4X4 energy
matrix is shown in Table VA and VB. The highest
energy value and the eigenfunction for various values
of f are given in Table VI.

In the present case, inserting known values of J, T,
J', T', we get

([)&]LOS,J=2
I +;exp ( iK R—' )r

XI )&']L'OS', J'=0)

/2L+1 ) '

I eZ (+8p) (+',+p)
(2L'+1)

X U(LL12; 1L'). (12)

The nonvanishing matrix elements that will contribute
to the form factor are

([44]200, J= 2
I P; exp (—iK R & i) r &'i

I

X [44]000, J'=0)= —-', (35) '8,

([431]101,J=2I+; exp( —iK R"')r '"
I

X [431]101,J' =0)= (7/10) v28,
(13)

([431]201,J=2I+; exp( —iK R&»)r &'i
I

X [431]101,J'=0)=——',(5) '*6,

([431]301,J=2Ig; exp( —iK R"')r '"I
X [431]101,J' =0)= —ss (7)16.

With the help of these results and Tables II and VI
for the wave functions we get Table VII for IF; I' per-
taining to the 4.43 level. The first line of Eq. (14)
multiplied with 1/Z gives F; for this level with pure
I.S coupling. It may be mentioned that Morpurgo's
result for I.S coupling diGers slightly from the value
given here because he used an approximate value

(= v3) for his constant A. It can be seen from Table VII
and Fig. 2 that the intermediate-coupling result is very
disheartening and IF;„I' decreases from the value at
the LS limit with increase of i. Many of the matrix
elements do not occur through the b~ q selection rule
of electron scattering and among the four that occur,
one appears with positive and three with negative sign
causing enough cancellation. It might be pointed out
that the inelastic curves of Fig. 2 cannot distinguish
between co values within wide limits because of the
large errors in the experimental data.

M 0 M

J can have only one value, and that is 2 (because

TABLE VI. The highest eigenvalue (Ei) and corresponding
eigencolumn of the energy matrix for J=2, T=0. The eigenvalue
given here has to be multiplied by E.

Wt. of t44|200
Wt. of $431/101
Wt. of f431)201
Wt. of $431j301

0
67.88

CI 1
Cg 0
Cg 0
C4 0

3
69.11

0.971-0.113
0.183
0.103

4.5
70.43

0.942-0.151
0.227
0.169

6
72.06

0.917-0.198
0.305
0.201

10
77.07

0.847—0.259
0.401
0.244

20
90.98
0.781—0.295
0.465
0.280

TABLE VII. Square modulus of the inelastic 4.43-Mev form factor.

Z'Qt. 0

0 0 . 0
0.5 0.00022 0.00016
1.0 0.00263 0.00189

) F ' i 1.5 0.00672 0.00482
2.0 0.00930 0.00667
2.5 0.00739 0.00531

4.5

0
0.00010
0,00118
0.00301
0.00416
0.00331

0
0,00005
0,00056
0.00143
0.00198
0.00158

10

0
0.000004
0.000047
0.000121
0.000168
0.000133

20

0
0.0000006
0.0000066
0.0000168
0.0000232
0.0000184

VI. SPIN ASSIGNMENT OF 9.61-MEV LEVEL;
CHOICE OF (

If the 9.61-Mev level belongs to the same con-
figuration as the ground level and its J diGers from the
ground level J' then obviously, through the property
of the Clebsch-Gordan coe%cient
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O.oi—

o.os

o.zoo/'

OS f.o

1 EXPERlkEPrdi POILU
~era a~ = f.z4x~O "cm
ThEOA'E7/CAl 9= 0 dZDWdrZS
O'M TIPZIED 8P' /. 7

E= a~I

in view of the fact that both the assignments have been
claimed to be corroborated by experiments.

Under these circumstances we tried to make a ten-
tative assignment of 2+ to this level but faced the dif-
6culty discussed below.

We have given in Table VIII the highest eigenvalues
of the energy matrices corresponding to (7=2, T=O)
and (J=1, T= 1) for different values of f Th. e energy
levels corresponding to these eigenvalues are obviously
to be identi6ed with the ground level, and the observed
levels at 4.43 Mev and 15.09 Mev respectively. The
calculated ratio as deined in Table VII has been plotted
as a function of 1 in Fig. 3. The observed value" of
this ratio corresponds to a 1 value of 4.5. This may be
compared with the value given by Inglis' by extra-
polation between I.S and jj limits.

In the same table we have also included the second
highest eigenvalue of the (J=2, 2"=0) energy matrix.

e-

Fro. 2.
~
F; (4.43) (' verzls E' for diferent values of i'. All the

theoretical curves lie beneath the experimental points. &=0 curve
is closest to the experimental points.

TABLE VIII. In this taMe E3 is the highest eigenvalue of the
energy matrix for J=1, T 1, and E& is the second highest eigen-
value of the energy matrix for J=2, T=O. If we identify the
former with the 15.09-Mev level and the latter with the 9.61-Mev
level respectively then observed values of the ratios && and e2

tabulated herein are: &~=3.41, es= 1.17 (see reference 20).

4.5 10 20

Eg(9.61) 54.58 52.70 52.54 44.76 42.04
E3(15.09) 56.24 58.06 60.20 65.25 75.15

eg = (Eo—E3)/(Eo —Ei) 5.85 4.79 3.48 2.14 1.39
~s (Ez—E2)/(Eo —Ez) 3.91 5.62 3.06 2.14 1.22

"A. E. Glassgold and A. Galonsky, Phys. Rev. 103, 701 (1956).
~r D G. Revenhall. , Phys. Rev. 100, 1797 (1955).
's A. Graue, Phil. Mag. 45, 1205 (1954).

J'=0). In this eventuality the scattering form factor
will contain only the 6 term, just as in the case of 4.43-
Mev inelastic scattering. Because the 8 dependence of
the form factor arises only through 8 one can, therefore,
easily explain the parallellism on a logarithmic plot of
the two inelastic curves corresponding to the 4.43-Mev
level and 9.61-Mev level.

From the n-particle model" and also from the fact
that the 9.61-Mev level decays by cr emission to Bes,
it has been suggested that this level can be either 1—

or 2+. Fregeau' has analyzed the nature of the multipole
transition of the 9.61-Mev level by a method suggested
by RavenhalP~ and concludes that this level is 2+.
Ferrell and Visscher, rs however, have cited a (d,n)
experiment by Graue' which establishes this level to
be 1 . These authors" have, accordingly, analyzed the
electron scattering data of this level on the assumption
that it is 1 . The situation seems to be rather puzzling

I
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I
I
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2 4 6 Q &0 l2 &4 ls 18 20

FIG. 3. Choice oi i'(= 4.5) to produce the 4.43-Mev level
(2+, T=O) and 15.09-Mev level (1+, T=1) at their observed
positions. A g value of 20 is shown to be the requirement for pro-
ducing the 4.43-Mev level (2+, T=O) and the 9.61-Mev level
(assumed to be 2+, T=O) at their observed positions.

The ratio e2 dered in the table is also plotted against
1' in Fig. 3. The observed value of this ratio corresponds
to a f value of 20. Because this 1 value is widely dif-
ferent from that quoted in the preceding paragraph by
the matching of levels of known spin and parity, we
could not make the assignment 2+ to the 9.61-Mev level.

We, however, point out the approximate nature of our
eigenvalues for the state J 2, T=0 because we dropped
four of the states in constructing the energy matrix.
The omission of these states will cause more deviation
from the eigenvalues, with none of the states omitted,
in the case of the second highest eigenvalues than in the
case of the highest. Therefore, our choice of &=4chas.
a smaller error than the value of /=20, concluded by

9 F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955).
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us to be requisite for producing a 2+ level at 9.61 Mev.
However, since this second value deviates widely from
the Grst, the conclusion that it would be impossible
with a single value of f' to produce a 2+ level at 9.61 Mev
together with a 2+ level at 4.43 Mev and a 1+(T=1)
level at 15.09 Mev may be taken as credible.

VII. SUMMARY AND CONCLUSIONS

It has been shown that the elastic form factor in the
case of C" is not dependent on the nature of angular
momentum coupling. This is a consequence of the
general result that the matrix element p,~~~ for elastic
scattering reduces to the simple form

28+&„S+ P g &piz, rsCp'iz, 'rs
[)]LTS P']L'TS

)&U(TT-,'1; —',T) iU(IL12; 1L') U(SJL'2; LJ)

J 2 J e
X+1O —6

M 0 3f2
where Z~ is the 1p-shell charge number. Since only the
t' term above is coupling-dependent, the elastic form
factor does not depend on f' if this term drops out
through selection rules on J. By 6tting the elastic
curve, we have obtained @0=1.64)&10 " cm, which
corresponds to a proton rms radius of 2.41&10 " cm
for C".

We have also shown with certain simplifying assump-
tions that the proper value of the monopole transition
rriatrix element for the 2.65-Mev level can be produced
by taking the "breathing mode" wave function for this
level and the intermediate coupling wave function for
the ground level. The "breathing mode" wave function
can really be looked upon as a wave fraction with
mixing of the conigurations (1s)'(2s)(1P)a and (is)4
(1p)'(2p). It may, therefore, be suggested that for

arriving at deanite conclusions a more general pro-
cedure would be to allow adjustable mixture of the
above conigurations, set up the full energy matrix
with all the states having J=O, T=O belonging to
these two con6gurations, and check if the highest
eigenvalue agrees with the position of this level and if
the corresponding wave function produces the observed
~F;„~' when taken along with the ground-state wave
function given in this paper. Here we have considered
only the monopole transition matrix element because
of the simplifying assumptions that we have introduced.
Regarding this part of the work, no claim at arriving
at conclusions can obviously be made. Only a suggestion
is made that the language of intermediate coupling in
itself may be adequate to describe the 2.65-Mev level
without the import of collective-mode language and of
simultaneous excitation of particle and collective modes
accidentally coincident in energy (without actually
verifying if they are really coincident).

For the inelastic scattering to the 4.43-Mev level
we have extended Morpurgo's observation in the LS
and jj limits to the intermediate-coupling region. It
has been shown that

~
F; ~' decreases from the value at

the LS limit with increase of t' In the .LS limit one gets
the closest approach to the observed value, the theo-
retical value still remaining about one-third of the
latter. In this connection we would like to mention a
contradictory conclusion by Banerjee'0 from the analysis
of inelastic p-p scattering data for this level of C~
that the jj-coupling wave function is more nearly
correct for it. Though the accuracy of p-p scattering
data may be greater than that of electron scattering
data, the mode of analysis of the p-p data is more liable
to uncertainties due to the nuclear interactions in-
volved; this point, therefore, calls for a closer examina-
tion.
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