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Energy Dependence of Cross Sections near Threshold: One Neutral
and Two Charged Reaction Products*

RQBERT W. HART, ERNEsT P. GRAY, AND WILLIAM H. GUIER
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

(Received May 24, 1957l

The energy dependence near threshold of cross sections for reactions leading to the escape of one neutral
and two charged particles is determined. The method is an extension of one developed previously for
uncharged particles, and utilizes only general properties of solutions of the time-independent three-particle
Schrodinger equation valid outside a reaction zone of finite extent. Electron detachment from H by
charged particle bombardment, and nuclear reactions of the type (ti,apl are considered as examples.

I. INTRODUCTION zone might be considered finite is perhaps self-evident
when only short-range forces between the products are
involved. But it also can exist when long-range forces
(such as Coulomb) are involved, since the transfer of a
finite (threshold) amount of energy between reactants
is required for a reaction.

It should be recognized, however, that not every
mathematical formulation of a reaction displays this
finite reaction zone. For example, imagine a reaction
consisting of the emission of charged balls from a
charged sphere. Here we have clearly defined the sphere
to be the reaction zone. If the wave function describing
the outgoing Qux is written in the form

HE limiting energy dependence of reaction cross
sections at threshold is of interest from a purely

theoretical point of view because this has proved to be
one of those rare features of many-body problems
amenable to an exact theoretical determination. Such
threshold laws for reactions leading to neutral products
have been obtained by Guier and Hart, ' and less general
results for three uncharged particles have been obtained
by others. ' ' But when we consider reactions leading to
charged products, the long-range Coulomb potentials
introduce a new class of difFiculties into the many-body
problem. The simplest of these reactions, which appear
to be those leading to one uncharged and only two
charged products, are tractable, however. We shall
consider this problem in sufhcient detail to develop the
limiting energy dependence at threshold of the cross
section for reactions leading to three such products, no
two of which are bound. (When two of them are bound,
the result is well known, since that case is equivalent to
a two-product reaction. )' We shall consider the region
of validity only very brieQy.

This theoretical result is also of some interest from
an experimental point of view, since an accurate experi-
mental determination of threshold energies for reactions
requires extrapolation of the experimental yield-~s-

energy curve. Examples of reactions to which this
theory is directly applicable are the detachment of a
electron from a singly charged negative ion by charged
particle impact, and (ri, tsp) nuclear reactions.

The treatment which follows is applicable to reaction
which can be considered to occur only when all reactant
are within a finite distance of each other, i.e., when th
contribution to the reaction decreases at least exponen
tially for large separations between any two reactants
This implies the existence of a reaction zone which ma
be considered finite, although it does not imply that th
interac6oe vanishes outside this zone. That the reaction

G(r, r')S(r')rE ',

where 6 is the Green's function including Coulomb
potentials and where S is the source distribution within
the sphere, then the finite extent of this source distri-
bution appears explicitly. However, if we were to use
the free-space Green's function without Coulomb poten-
tials, Gs, then ip would be given by

ri=j Ge(r, r') S(r')+ ri(r') a', '+acrfaceicregraia,
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and in such a representation the source distribution
would appear to extend not only over the finite reaction
zone, but over the entire infinite interaction zone. It is
clear that, in general, the explicit appearance of a
finite source distribution is insured in a Green's function
formulation only if all potential terms which "distort"
the wave front outside the reaction zone are included
in the definition of the Green's function.

y The actual extent of the reaction zone, apart from its
being finite, is of importance only insofar as it aGects
the range of validity of the results. We shall not consider
this aspect here, but merely note that in the absence of
delayed breakup of a reaction product, the reaction zone
can probably be considered comparable to the separa-
tion distance between reaction products at which the
potential energy of interaction is equal to the threshold
energy involved.
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Although a complete description of a reaction would
require a detailed consideration of the internal structure
(including spin) of the reactants and reaction product,
it is shown (see also references 1—4) that the desired
threshold behavior of reaction cross sections can be
obtained by regarding the reaction products outside the
reaction zone as structureless particles, and without any
speci6cation of the reactants. This property follows
from the fact that the cross section can be expressed in
terms of the scattered part of the wave function in the
asymptotic region where the products are far from each
other and the reaction zone. In this "detachment"
region, the wave function can be regarded as a linear
combination of asymptotic solutions of the Schrodinger
equation, with each of these components describing a
particular quantum state of three reaction products.
The asymptotic solutions themselves are determined
only by the long-range part of the interaction, but each
is multiplied by an energy-dependent amplitude which,
in general, is determined by the details of the short-
range interaction. At threshold for a channel, however,
the limiting form of the energy dependence of the corre-
sponding amplitude actually becomes independent of
the short-range interaction, and can be determined from
the requirement that the wave function and its gradient
be bounded and continuous for all energies.

Unfortunately, this limiting energy dependence is not
obtainable from the usual type of asymptotic solution,
which is not valid in the limit of zero momentum of the
reaction products within any bounded region containing
the reaction zone. Our major task, therefore, is to obtain
d,n expression for the wave function which is valid in
this limit (in order to apply at threshold the conditions
of boundedness and continuity of the wave function),
and which we can also evaluate explicitly in the usual

asymptotic limit of large phase (in order to obtain the
cross section from its representation as a fiux integral).

1 1—V22+—V22+—V22

mg m2 ms

Z2Z2e2
+—E& —Q(ri, r2, r2) 4—'=0, (1)

l22.
I r —r2I

where Q contains all interparticle short-range inter-
actions, which are required to decrease more rapidly
than the inverse square of the interparticle separations.

In order to remove the ignorable center-of-mass
coordinates, and at the same time separate variables,

II. WAVE FUNCTION

We begin with the three-particle Schrodinger equa-
tion, valid outside the reaction zone, for one neutral
and two charged particles with total energy E&,

we de6ne the new coordinates

( m2m2
I'2 —13 ~

& (m2+m2) Mi)

mi l * m2(ri r2)+m2(rl r2)

Em2+m2& .
mil i+m2r2+m212

—Q(u, v) 4=0. (3)

Transforming to the center-of-mass system (w =0) leads
to a Schrodinger equation characteristic of a two-par-
ticle system with a Coulomb force center at the origin
which attracts only one of the particles, i.e.,

f 2
IV '+V '+I k'+ —g(u, v) I

4'(u, v)=0, (4)
Iul@

where
k'= 2MgE/k' q= (2M]/5')Q (4a)

with E representing the total energy in the center-of-
mass system, and

1 —Mi (M2 Mi)
I

—+
I

ZZe'.
a 5' &m, m&

(4b)

It is readily verified that solutions of Eq. (1) which
correspond to a three-particle outward flux (detachment
fiux) are identified with solutions of Eq. (4) which
correspond in the center-of-mass system to a two-
"particle" outward flux in the new coordinates u, v.

One representation of the solution of Eq. (4) is in
terms of the Green's function g which includes all
potentials exterior to the reaction zone, and is given by

4(u, v) =%,(u,v)+ g(u, v; u', v')Ss(u', v')du'dv'. (4c)

Here, S~ represents the actual source for the scattered
part of the wave function and must therefore vanish
outside the bounded region in which the reaction
actually takes place, i.e., outside the'reaction zone.
%'; is some (usually readily obtainable) solution of the
Schrodinger equation including such potential terms
that, outside the reaction zone, 0'; has the incident
wave (including the Coulomb potential) as its incoming

where Mi ——mi+m2+m2. In the new coordinate system,
the Schrodinger equation becomes

2M, ZiZ2e' (Mg Mi)
+

k2 lul E m2 m2
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part, but has no outgoing part corresponding to the
reaction under study. g is the Green's function, satis-
fying the equation

2
V„'+V„'+h'+ —qo(u, v) g(u, v; u'v')

a)u[

=8(u —u')b(v —v'), (4d)

with the usual boundary condition that the singularity
at u=u', v= v' correspond to a source, and where go=a
outside the reaction zone, and qo ——0 inside the reaction
zone.

Unfortunately, this Green's function is, in general,
very diS.cult to obtain, and we therefore consider an
alternative representation of the wave function in
terms of the Coulomb Green's function which does not
include the short-range potentials; i.e., we represent%'

by

4'(ll, v) =4';.(ll, v) +
J

~G (u, v; ll, v )S@(ll, v )du dv, (5)

where 6 is the Coulomb Green's function satisfying the
equation

2

i
V„'+V '+h'+ iG(u, v; u', v')

afuf
=8(u—u')5(v —v'). (6)

In this representation, the (modified) source distribu-

tion, SE, may, in general, extend beyond the vicinity
of the reaction zone. In fact, one possible representation
for SE is given by

which extends outside the reaction zone along the
directions for which the short-range potential (qo) does

not vanish.
However, in the absence of delayed breakup of a

reaction product, a representation with SE confined to
the vicinity of the reaction zone must exist for the wave
function in the detachment region. [By detachment
region we mean the region in (u, v) space, or (ri, rs, rs)
space where all particles are far from each other and the
reaction zone. ) This follows from the fact that in this

region, both 6 and%' satisfy the same equation and have
the same (outgoing or damped) asymptotic form, so

that + cannot have a virtual source distribution which

is, in fact, unbounded. While it is dificult, in general,
to find analytically a bounded representation for the
source distribution (Ss), it will be sufhcient for our
purpose to show that the integral in Eq. (5) may be
transformed into one having finite limits. The details
are described in the appendix where it is shown that,
in the absence of delayed breakup (e.g., metastable or
virtual states) of a product, such a transformation is

possible, and that the magnitude of these limits does not
greatly exceed the reaction zone, unless a bound-state

level exists in the neighborhood of threshold. Accord-
ingly, we shall represent the wave function in the
detachment region by Eq. (5), with the integral orev
a source distribution SE extending over a finite region
in the neighborhood of the reaction zone.

For our purpose, it will be necessary to use only two
properties of SE.that SE is bounded, and not identically
zero, regardless of the energy. These properties, which
arise from the conditions that the wave function and its
gradient be bounded and continuous for any energy,
are perhaps obvious ones, and the demonstration of
their validity is quite simple. To show boundedness, we
use Eq. (5), and the defining equation for the Green's
function [see Eq. (6)j to obtain

I
V„'+V '+h'+ i+, (u, v) =Ss(u, v),

aqui J

where %,(u, v) is the scattered part of the wave function.
Since this wave function and its gradient are required
to be bounded and continuous for all energies, including
threshold, the source function must also be bounded
(except possibly for an integrable singularity at u=0)
for all energies. To demonstrate that the source function
is not identically zero (even at threshoM), we need
merely note that this condition would imply that
0'=4, identically, which is clearly not possible.

It is perhaps worth indicating at this point why
these are the only properties of the source distribution

affecting the energy dependence of the cross section
near threshold. We shall show in Sec. IV that when k
is small, the Green's function 6 can be expressed in the
asymptotic region as a sum of products of known partial
waves in the particle coordinates u, v, multiplied by
known functions of the source coordinates, u', v'. The
integral over the sources then determines the amplitude
of each partial wave. The fact that the source distribu-
tion must approach some limiting function, bounded
and not everywhere zero, as the energy approaches its
threshold value, together with the fact that the integral
extends over an unspecified but bounded region (to
which Ss is confined), then permits determination of
the limiting threshold energy dependence of these
amplitudes without any further specification of the
source distribution. In fact, any approximations to the

solrce distribution which preserves these two properties
will yield the correct limiting energy dependence of the

cross sectiorI, rIear threshold, although they need not
agree at all in magnitude of the cross section.

There must always remain two possible exceptions to
this general result. (1) It is~~possible to imagine an
accidental combination of incident wave and internal
structure for which some partial wave could not be excited
at all, making a source distribution orthogonal to the
appropriate term of the Green's function. (2) It is
conceivable that an accidental resonance could occur
in the internal structure of the particles at threshold.
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In this case we couM no longer neglect the internal
structure even in the asymptotic region.

III. GREEN'S FUNCTION

The" Coulomb" Green's function Gg is defined as the
solution of Schrodinger's equation, modified by an
inhomogeneous term representing a pure source,

2
V„2+7' '+ I~ks+

I
Ge B(u——u')8—(v v')—. (6b)

It does not satisfy the boundary conditions implicit in
any real reaction, but plays a role entirely analogous to
that of the free-space Green's function.

%e shall now obtain the desired Green's function by
a straightforward but rather involved application of
one of the usual methods, ' and merely indicate the
major steps in the development.

Equation (6b) is immediately separable in the corre-
sponding angle coordinates. This separation is readily
performed by expanding the delta functions in terms of
spherical harmonics. Let 8 and q be the spherical polar
angles associated with u, and 0, C be the corresponding
angles associated with v. Then

asymptotic form for g&, L having as a leading term7

exp(it k (u'+ v') "'+phase j)
(u2+ v2) 2/4

Therefore, although Eq. (9) is itself separable in u and
v, the boundary condition is not, and the desired solu-
tion must be made up of a superposition of the solutions
of the separated equation. Following reference 5, for
example, we represent such a superposition as

~00 00

gg L= dK dE
J

it% i"'(u) ll'ir, i"'(u') li". I,"'(v)4„r."&(v')X,(10)
k' —E'—~'

where the paths are to be so chosen that the I', v' cor-
respond to a source, and where the f functions are the
orthonormal solutions of

1 B t' B) 2 l(l+1)——
I

u-'—I+K'+— P~, 4&'&(u) =0, ('11a)
u Bu ( Bu) au u liI

1 B ( B) L(I.+1)I——
I

~—I+a- lt, , z,
&2& (v) =0. (11b)

vs Bv E Bv) V'

3(v v')—
&(v —v') = P P &r., sr(8P) &r., sr*(O',~")&

L-0 M=L
(7b)

where Fi, (8,q) are the normalized spherical harmonics. '
Substitution into Eq. (6b) yields

g&, I-(u»i u )v i »a)'Y&. r, ~, sr(e~ p~O8')

The delta function character of Eq. (9) is readily
verified by substituting Eq. (10) into the left-hand side
of Eq. (9), carrying out the indicated differentiations,
and then using the closure property, namely, that

B(r—r')
lt'2, 4 '(r)gs, i"&*(r')dk=, i=1 or 2. (11c)

rf'

For our case, lt &'& is the radial part of the usual Coulomb
continuum wave function given by'

L,m„L,M

where

and where g&, L is defined by

ir lK (ir 1 q ) 1
px io&(u)= expI —

I rI 1+1+
(2l+1)! (2 aIK[ ~ ~ 2Ka~

(gb) 1
Xe '«" (2Ku)' tF&I 1+3— —, 2l+2, 2iKu I. (12a)

iKa'

1Bt'B)1B(B)2——
I

u'—I+——
I

~—I+k'+-
vs Bv( Bv& au

l(l+ 1) 1.(L,+1) b(u —u') 8(v —v')
(9)

NN VV

with the added condition that I', v' correspond to a
source point. Equation (9) is now to be solved for gi, z,.

The radiation condition, namely that the solution
represent an outgoing Aux for large I, v requires an

~ P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(MeGraw-Hill Book Company, Inc. , New Vork, 1953), p. 820 G.

6L. I. Schi6, QNaetem Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 73.

'P. M. Morse and H. Feshbach, reference 5, p. 1732, Eq.
(12.3.91).

It might seem at 6rst glance that including only continuum
solutions in the construction of the Green's function is not suf-
6ciently general. However, the above f&') is a solution of the
hydrogenic Schrodinger equation for any E, including the
imaginary values corresponding to negative energy states which
arise for the case of Coulomb attraction. Therefore, the super-
position, as represented by the contour integral of Eq. (10), takes
these states into account, and they could be made to appear
explicitly by considering the poles of the gamma function oc-
curing in f&'& (see Eq. (12a)g.' For Coulomb attraction, see, for example, H. A. Bethe and
E. E. Saltpeter, Encyclopedia of Physics (Springer-Verlag, Berlin,
1957), Vol. XXXV, p. 107 ff. For Coulomb repulsion, see W.
Gordon, Z. Physik 48, 180 (1928).Note that our wave functions
dier from theirs by a factor 2 &, because the integral in Eq. (11c)
extends from —~ to +~, instead of from 0 to ~. This do'es not
aft'ect the usual normalization when we take into account the
possibility that IC (and «) may be negative as well as positive.
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z- plane
7F ~-—+ I
2

a-plane

Fzo. 1. Contour for the a integration.

Similarly, P„z,&'& (v) is the orthonormal continuum
solution of Eq. (11b).We may obtain this most readily
by letting a~~ in the Coulomb wave function of Eq.
(12a), yielding

6, "'()=J —:( )(/2)'*. (12b)

With the above definitions of the functions appearing
in Eq. (10), and verification of the fact that the g&, z,

defined by this equation does actually satisfy the dif-

ferential equation, Eq. (9), the contours must be

FIG. 2. Contour for o.' integration.

specified to satisfy the outgoing Qux condition. Consider,
first, the integration over « in Eq. (10), with f&'& given
by Eq. (12b). The integrand has simple poles at
«= & (O' —E') &, and a path such as indicated in Fig. 1
must be defined, such that it passes below the positive
pole and above the negative pole. Carrying out this
integral, we find

1 p" J~) («v) JJ~)(«v') «d«[ —v.i/(vv') i7J~*,[v'(O' —E')&7&~,&»[v(O2 —K2) &7 if v) v'

(vv')'* ~ „ [—v i/(vv') &7Jwk[v(k' —E') '71Jr ~ &'i [v'(O' —K )~7 if v(v'.

The remaining integral over E is somewhat more complicated. We first substitute the above result into Eq.
(10), along with P "& from Eq. (12a). We shall need to consider only the case v) v', for which Eq. (10), becomes

(—i) I" r 1 )' 7r

gi, J.—— dK E' Fl 1+l+ ! exp —iE(u —u')+ (2Ku)i,F,
l

1+l-
l2[(2l+1)!7' ~ „4 iKu !Ola

Z

, 2i+2, 2iEu !iEa ]

P2

1 ) Hi+1"'[v(k' —IC')-*'7 Jr~*[v'(k' —K') l7
, 2l+2, —2iEu' !

— . (13)
iKa )

Just as in the free-space case (a-+~),io determination of the effect of the radiation condition on the contour in
the region I, v, ))I', v' is most readily accomplished by introducing a new variable n, and the remaining two-
particle hyperspherical coordinates P, R defined by

a=tan '(k'/E' —1) '*, P=tan —'(u/v) and R= (gP+v')l

so that K=k sinn and (O' —E') & =k cosa. Equation (13) then becomes

(13a)

g), &= (RR'cosPcosP') l '

2[(2l+1)!7'

1
da cosa sin'a 1'l 1+l+

ika sinn

Xexp ik sina(—R sinP —R' sing)+ (2kR sinn sing)'(2OR' sinn sinP')'
jk!a sinn. !

, 2l+2, 2ikR sinn sinP ! iFil 1+l+
ika sine )

1
, 2l+2, —2ikR' sinn sing !

isa sinn

XJ~1(kR' cosa cosg)&~~ o&(kR cosa cosp), (14)

where on the path, as indicated in Fig. 2, the argument of the Hankel function has a positive imaginary part as
E~~~. The Green's function is now obtained as a single quadrature by substitution of Eq. (14) into Eq. (g).

"P.M. Morse and H. Feshbach, reference 5, p. 823.
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IV. ASYMPTOTIC EXPANSION OF THE WAVE FUNCTION

1517

We can now utilize the fact that for the experimental situations we are considering, the cross section involves
the wave function for only such large particle separations and particle coordinates, that even for small k the phase
shifts at the observation point (i.e., kR) must remain large. For this reason the two limiting processes (i.e., kR~~,
k—4) must be carried out sequentially, 6rst letting the phase shifts associated with the observation point
(kR sinn sinP and kR cosn cosP) become arbitrarily large, and subsequently allowing k to become small. We consider
Eq. (14), which is greatly simplified in the limit of large kR, whe. re"

k sino. r
(2kR sinn sin8) ' I'~ 1+3+

(2l+1)!
r

exp( ik—R sinn sinP+
ika sinn)

r 1 ) sin[kR sinn sinp ——,hr+h(n)+ln(2R sinp
~
k sinn ~)/ka sinn5

XP'i~ 1+/—,21+2, 2ikR sinn sinp ~= (15)
ika sinn r R sinp

with
r

b(n)=arg I'( 1+I,+
ika sinn)

(kR cosn cosP) &

r2 ~
& exp[ikR cosn cosP 2iL~ —',ivr5--

Bz+1&"(kR cosn cosp) =
~

—
~

&m)
(16)

In this limit, the integrand of Eq. (14) has points of stationary phase on the real part of the path where, above
threshold, the wave function does not damp. Expressing

sin[kR sinn sinP —~le+8 (n)+ln(2R sinP
~

k sinn
~
)/ka sinn5

in the above equations as the difference of two exponentials, the integrand containing the positive exponential has
a stationary point at n= p, and the other, at n= —p. Using the method of stationary phase, we obtain:

2~
—in. /4 ~8cR

g~, z= k —exp i —(L—+3+1)—B(P)—
(2l+1)! R' 2 kc slIlg

r 1
»(2lk(R sinP) +

2
~
k

(
a sinP, ika sinP)

X exp(ikR' sinP sinP') (2kR' sin8 sinP')'(R' cos8 cosg) l

X iFi~ 1+1+,2l+2, 2ikR' —sinP sin8'
~
Jz+1(kR' cosP cosP'). (17)

ika sinp

Substitution of this result into Eq. (8) yields the required asymptotic form of the Green s function, which in
turn yields the asymptotic expression for the wave function from Eq. (5).

When these substitutions are made, we obtain the following asymptotic expression for the partial waves, valid
in the limit kE—+~:

+),z, „,M(Rpe, y, O'4)=klR &exp i kR+
ka sinP

1n(2( k~R sinp)+8(8) +
2(k

~

a sinP

where

XAg, I'zi 1+l+
j.

(kasinP)'Ii, z, , M(k, P)yzz, ~ M( gq, O, )C, (1S)
ika sinp)

I~, z, ~, M(k,P)= dr'$~(r')yzz, ~, M*(e', y', 0',4') iFi~ 1+k+,2l+2, 2ikR'sinPsinP' ~—
)

rR'
q

' Jzi.~(kR' cosp cosp')
Xexp(ikR' sinP sinP')

~

—sinP'~, (19)
E a ) (kR' cosP cosP')~

"Higher Transcendental Fgnctions, edited by A. Erdblyi (Mc-.
Graw-Hill Book Company, Inc. , New York, 1953), Vol. I, p. 278.



HART, GRAY, AN 0 GUI ER

expE —-,'i (l+I.—k)j.
(2l+1)!

(19a)

We shall now consider the limiting energy dependence of Ii, r„,~(k,p). Since the integral has finite limits (see
Sec. II and Appendix), we can obtain the limiting form of the wave function as k~ by expanding the integrand
in powers of k, and retaining only the leading term. From this point on, however, it will no longer be possible to
check the development by letting the charges vanish. The reason is that the energy appears in some terms in the
combination ku, which is infinite if the charges vanish, but which vanishes at threshold, otherwise. When we neglect
higher order terms in ka and kR', the conQuent hypergeometric function reduces to":

2
exp(ikR' sinn sinP') iFiI 1+l+,2l+2, —2ikR' sinn sinP'

I

1k' sl.no.

(2R' sinP'q
= (2l+1)!

I

a

(2R' sinP') &I i+ 2l I, (20)
a )

and neglecting terms of higher order in (~~kR' cosp) in the expansion of the Bessel function appearing in Eq. (19),
we obtain for the integral of Eq. (19):

lim Ii r., „,~(k P) =—(ka cosP) Ii r„„,~= (ka cosa), dr'Sr. ~(r')yi, r, ~ ~*(8',p', 0',4')(Pl+1)!2 ~ '—'
k-+0

(R' q &(R' q ( (R'
sinP'

I I
cosP'

I I'ii+ij 2l 2—sinP'
I I EI'(I-+r)3 ', (21)(a ) Ea ) 4 ( a ) )

where Ii, L„,is is finite and independent of energy and p for well-behaved source distributions and finite reaction
zones of arbitrary shape and size.

In the limit kR +~, small b—ut finite k, and Z&, Z3/0, therefore, the partial waves of Eq. (18) are given by"

4'i r, „,m(RPg, &p, O 4)= (2s / I
ka

I )~& t. r Ii, r . 7iii,rr.... .~(e, ~p, O 4)k~&R t(sinP) &(cosP) ~

Xexp i kR+
ka sinp

7r(a '—laj-')
ln(2 I k

I
R sinP)+8 (P)+, (22)

2lkjsinp

except for sinP or cosP—=0. These are the asymptotic
three-particle partial waves from which the threshold
energy dependence of the cross section can be evaluated.
They are strictly valid only in the limit k—+0, but are
also a valid approximation for energies sufFiciently close
to threshold to insure that

I
kR'I, lkal«1, "where, from

the coordinate transformations of Eq. (2), and the
fact that the origin is at the center of mass, R' is related
to the actual (source) coordinates by

my m2 F3
(r,')'+ (r,')'+ (r, ')'

'

M,

(m, r2'+m3r, ')' m2 m,
+ (rm")+ (r3") , (23)

mph] M~ Mg

with r&', r2', r3' bounded by the "radii" of the reaction
zone associated with the three particles. In configuration
space, their validity is confined to the detachment

~ Reference 11,p. 280.
"For the asymptotic form of the gam~a function in Eq. ('18),

see reference 11,p. 47.

region, and does not extend to a neighborhood where
any of the particles "overlap" (i.e., near where q/0),
and where the wave function, in general, assumes a
diferent asymptotic form. (These partial waves may
be regarded, if we wish, to correspond to a model reac-
tion producing point particles. )

It may be worth noting that for the case of Coulomb
repulsion, these partial waves are large at threshold
only when both charged particles leave the reaction
zone nearly in opposite directions. This property can
be demonstrated by noting that for this case c(0, and
that for small positive k, the real negative exponent,—s.(kI al sinp) ', in Eq. (22) makes the wave function
arbitrarily small except in the immediate neighborhood
of P =s./2. Values of P close to ~r/2 correspond to v&&e
which, from the definitions of u, v in Eq. (2) (and the
fact that the origin is at the center of mass, i.e., w=O)
lead to

lul ( m&m2ma q & ( jr,-r, j

jvl &m, +mn+m, ) &lm, r,+m, r, j)
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This condition is satisfied only when the charged par-
ticles are emitted in nearly opposite directions. For the.
case of Coulomb attraction, on the other hand (u) 0),
the partial waves change from damped to propagating
at threshold without any such strongly favored particle
configuration.

Finally, it may be noted that the partial waves for
even / are symmetric, and those for odd l, antisymmetric,
in the interchange of the coordinates of the charged par-
ticles when these have identical mass. The symmetry of
the total scattered wave function is then determined by
the l dependence of the coeS.cients of the y~, L„,~
in Eq. (22) and, therefore, by the angular variation of
the source distribution Ss(2).

V. CROSS SECTION

The energy dependence at threshold of the cross
section is now evaluated by using the asymptotic ex-
pression for the partial wave functions, Eq. (23). We
are not interested in multiplicative constants which are
independent of energy and consequently they will be
ignored.

Since the center of mass of the three particles has
been assumed at rest, the Aux integral extends only
over the remaining coordinates. When the total wave
function is normalized to unit incident Qux, the cross
section is numerically equal to the three-particle Qux
and is therefore proportional to

advantage of the orthogonality of the spherical har-.
monics to obtain

w/2

e~, r„~,srerk2~3 ~ sinp(cosp)2~2

(1 1)
Xexp —

(

——
I dP k&0. (25)

k sinp E ta( u)

For the case of Coulomb attraction (a)0), Eq. (25)
becomes

x/2

n~ r, ~ Meek +3 T coss+ ~PsjnPdPerk2 +3, k~O. (26)

Tl.e above integrand can be directly related to the
energy spectrum associated with the reaction products
by writing it in terms of the energy (e) shared by the
two charged particles in' their center-of-mass system.
Using Eq. (13a), and recalling that the points of sta-
tionary phase in Eq. (16) occurred at P= ~rr~, this
energy can be expressed as

k'h'
e = s111 p =E sin p.

2M;

This energy spectrum can now be explicitly displayed
as the integrand of an alternate form for Eq. (26),

Gg J 23~ (E e) ide e)0. (26a)

where d'S=Rs sin'P cos'P sin8 sinO~d&dO~dpdCdP is the
hypersurface element in the center-of-mass system, and
where the integral extends only over that part of the
surface of the six-dimensional hypersphere for which
all three particles are far from each other and from the
center of mass (presumably corresponding to the inte-
gration of the outgoing Qux performed experimentally
by the detector). This restriction excludes the two-
particle current such as elastic scattering which would
otherwise contribute to the cross-section integral, and
which appears as surface waves in this hyperspace. "

Since we are interested in the three-particle Qux, we
have obtained an appropriate asymptotic expression
for the wave function which, however, does not contain
the surface waves, and is not valid in these excluded
regions. In view of the infinitesimal solid angle asso-
ciated with these regions, and the fact that our asymp-
totic solution is integrable there, " we can without
error extend the Aux integral over the entire hyper-
sphere when we use this asymptotic solution. We sub-
stitute Eq. (23) into Eq. (24), and take immediate

'4 P. M. Morse and H. Feshbach, reference 5, p. 1728 ff.
"Although the asymptotic form of the wave function has a

singularity at p= 0 (where rs = rs), it is integrable there, and gives
no contribution, since the surfa"e element d5S contains sin'P as
a factor.

It is interesting to note that for the fictitious case of a
"neutrino" rest mass of the same order as the electron's,
time-dependent perturbation theory for allowed (L=O)
P-decay yields the same energy spectrum in the limit
of very small end-point energy (E).rs

For the case of Coulomb repulsion (a(0), we evaluate
the integral in the limit of small k by the method of
steepest descents and obtain for energies above threshold

2rt' 1 1q
~3, ~, , ~~ k3~»2 e~ —

~

khfgf g)

Finally, noting that )from Eq. (4b)$,

Z2Z3e (P23) Z2Z3e 023

ka h(2E) & hsk23

(27)

where l323=2N22233/(2N2+2233) is the reduced mass of the
two charged particles, and k232=23323E/k2, we rewrite
the above expression for the cross section so that the
exponent for Coulomb repulsion has the same form as
given by Wigner in the two-particle case, 4

( 22rZ2Z38 p23$
~~ r„~sr" k»3~2" «pl —

I ~
k2.„&0, (27a)

' E. Fermi, Z. Physik 88, 161 (1934),
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where it will be recalled that L, is the angular momentum
quantum number for the neutral particle with respect
to the center of mass of the two charged particles. The
energy spectrum for this case can be displayed by
rewriting Eq. (25) in the form

8~ f 2p.23C2) ~

E e)—~& exp —
m Z2Z3—! I

d~.
0 - Sc( 6 )

(27b)

Just as in the case of only two charged (and no
uncharged) particles, the limiting energy dependence
of the cross section is independent of l and ns, the
quantum numbers for relative angular momentum
between the two charged particles. Also, just as for
cases involving an arbitrary number of neutral particles,
the limiting form does not involve any s-component
angular momentum quantum numbers. The appearance
of states of the angular momentum quantum numbers
l, m, and M is determined, even at threshold, by the
short-range details of the interaction. When R'/a«1,
however (as it can be for some nuclear reactions), a
power series expansion of I~, 1„,~ [see Eq. (21)j indi-
cates that only the l=0 partial wave contributes at
threshold.

The three-particle result (Eq. 27) differs from the
corresponding one for two particles4 in having an
energy-dependent factor multiplying the same ex-
ponential term which arises when the charged particles
are of like signs. " It vanishes in the correspondence-
principle limit 5—4, indicating that at threshold the
process would not occur classically. This can be
explained physically as follows: When this detachment
takes place at threshold, the two charged particles
must arrive "at infinity" with an arbitrarily small
energy. But outside the reaction zone, where only the
repulsive Coulomb potential is effective, the charges
must be regarded classically as "rolling down" this
potential hill (from the reaction zone), and will therefore
always arrive at infinity with a finite energy. Evidently
they must "tunnel" through the repulsive Coulomb
potential which acts as a barrier. In fact, the exponential
part of the threshold law can be obtained by considering
transmission through such a classically forbidden region
in the usual way.

The range in energy over which the 1=0 term of
Eqs. (26) and (27) might be expected to describe an
experimental yield curve will be mentioned here only

briefly. It is clearly limited by the neglect of higher
order terms containing ka and kR'. The energy de-
pendence of Sg, including the requirement that no
other new reactions have thresholds nearby, must also
be considered in estimating the range of validity.

"This exponential should not be confused with the usual
Gamow penetration factor for the incident particle, which is not
displayed in Eq. (27a) because sufFiciently close to threshold it
is a constant factor not dependent on the excess energy above
threshold. For a further discussion of this point, see Viligner.

For electron detachment from H, for example, the
threshold law becomes

o ~ Z"4 exp{—16.4[E(ev)1&}, 0 &E&&0.4 ev, (28a)

for detachment by electrons, and

0 ~ E&, 0 &8&&0.5 ev, (28b)

for detachment by positive ions. In both the above
cases, the condition on kR' appears to be the most
stringent limitation on the range of validity for a
reaction zone as large as one Bohr radius. For the
order-of-magnitude estimate above, the reaction zone
radius was taken as 4 Bohr radii for the electron case
(a value apparently somewhat larger than that of the
negative ion), '~ and 5 Bohr radii for the positive ion
case.

For nuclear-scale reactions [e.g. , (N, ep) reactions',
the reaction zone may be regarded as being of the
same order of magnitude as the nuclear radius. Upon
expressing the energy 8 now in Mev, taking the de-
tached particle to be a proton, and denoting the mass
and charge of the product nucleus by A and Z, the
threshold law becomes

o ~ E9~4 exp{—Z[E(Mev)P&(1+2 ')-l}

J 0.02 Z' Mev
for 0&E«the smaller of

&
(29)7XA & Mev,

where, in evaluating R' [see Eq. (23)$, r&' and r&' have
been taken as 1.2A&)&10 "cm.

VI. CONCLUDING REMARKS

Having started with three particles, one is probably
entitled to feel that nine quantum numbers should have
appeared somewhere in the analysis, instead of only
eight (the three associated with the center of mass of
the system, and l, I., m, M, E). Certainly the ninth
quantum number does appear in the case of three
neutral particles, where it describes states in the radial
separation between the particles. ' There, it appears in
an entirely natural way when the Green's function is
expanded in terms of eigenfunctions satisfying the
appropriate radiation condition. But such an expansion
is usually very difficult in cases such as the present one,
where the Coulomb interaction term has prevented us
from ending separable solutions of the Schrodinger
equation which individually satisfy the desired radiation
condition. Since we have not found an expansion of the
radial part of the Green's function in terms of eigen-
functions satisfying this boundary condition, the asso-
ciated quantum number has remained concealed. A
further breakdown into reaction channels presumably
exists which would display the ninth quantum number.
The major point is that since the Green's function
contains all detachment channels, whether or not they

7 L. R. Henrich, Astrophys. J. 99, 59 (1943).
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are resolved, or displayed explicitly, no unresolved
channel can appear less rapidly with energy than the
lowest energy dependence determined directly from
the "unresolved" Green's function.

This treatment has shown how the functional form
of the energy dependence of the cross section near
threshold is determined without a detailed knowledge
of the reaction, just as for uncharged particles. It is
based primarily on applying to a solution of the
Schrodinger equation valid outside a reaction zone of
finite extent the requirements that the wave function
and its gradient remain bounded and continuous (even
at threshold). In order that the concept of a finite
reaction zone be a valid one, it is necessary to consider
all long-range interactions explicitly in this solution of
the Schrodinger equation. For this reason, although the
treatment appears to be generalizable to include as
many uncharged particles as desired, any extension to
include additional charged particles appears to be more
dificult because it is then necessary to determine
properties of the wave function when the Schrodinger
equation does not appear to be separable.

J= qp(%' —4'~)Gdu'dv'

into an integral over a finite region (of a magnitude
comparable to, although somewhat larger than, the
reaction zone), plus a remainder term which damps
exponentially. In order to do this, we shall need only
rather general properties of the bound-state wave
functions, and while we shall carry out the trans-
formation only for square-'well binding potentials (qp),
the result is apparently valid for bound states in general.
The transformation involves, principally, the separation
of @—4, into outgoing and ingoing parts (in the three-
dimensional space of the unbound particle) and the
deformation of the path of integration (in the complex
plane) along paths on which these wave functions damp.
The example given here pertains only to uncharged
particles, in order to illustrate the procedure in its
simplest form. When two of the particles are charged,
the Coulomb Green's function (and wave functions)
must be used in place of the corresponding free-space
functions, but the transformation is otherwise analogous
for that case.

As an example, we shall consider only the channel
corresponding to binding between particles 2 and 3,
i.e., we define

qp(m) =
—kpp for Q(b (and outside the reaction zone)

0 otherwise.

APPENDIX

Here, we shall illustrate the transformation of the
integral

As a further simplification, let particle 1 be infinitely
massive, and let m2= m3= m. In the region of integration
defined by qpNO, which may be regarded as a ("die-
lectric") wave guide, 4'—4; may be expanded in the
complete set of normal modes, %~, for such a guide.
These satisfy the Schrodinger equation

(V '+V '+P —qp(u) }+zr——o, (A-2)

with the boundary conditions

=0 or =0. (A-3)

The contribution of the damped modes need not be
considered since the corresponding integrals can be cut
off at several (wave guide) wavelengths with exponen-
tially damping remainder. The coe%cients of the ex-
ponentially increasing modes are required to vanish,
so we are left with a (finite) number of propagating
modes for which the integrals must be investigated.

The partial waves of these modes are given by

Jg+;(E),N) Bg+;&""&'&)w(lP+kp' —Ei') &g

Pi& (cos9)

cosp p costs@

O)
cosypp sinl'4
sinyq cosmic'

.sinyq sinFC

(A-4)

where Eq is a root of

Ji+)(Eib) =0 or J),+g'(Kgb) =0,

with the singularity at (u', v') corresponding to a source,
and is given, for R&R' by"

G(R,R') = Q f(, r„„,~, „(R8,0 P) cosLes(q —
p '))

XcosPI(C —C')j c s'Po' sin~/'

XF(—e, 1+X+v+2; L+,'; sin'P')-
Ji+~p~p(&R')

XPi"(cos8')Pr~ (cos0'') (A-6)
(R')'

where the f&z~ „are f,unctions only of the field
point, and are not relevant here. Substituting Eq. (A-5)
and one of the modes from Eq. (A-4), say the mode.
with (cosy' cosI'C and B&'&), into Eq. (A-1), and car-

and where the argument of the Hankel function is real.
The free-space Green's function satisfies

(V'„'+V '+k')G(u, v; u', v') =8(u —u')b(v —v'), (A-5)
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rying out the angle integrations, we obtain

J=g CI„A, &, rfI„A, &, r, e(R~O, O'p) cosyycosI'c

(v')'dv'cos"p' sin"p'

XF(—I, X+A+so+2; A+~» sin'P')

A,~A~s.+sP (te"+v")'j A~;(EI te')

(I')'+ (v')' I'&

HA+., &I&t v'(k'+kos —E&,') &)X,(A-7)
lg

(where te'=R' sinp', v'=R' cosp', and the CI, A, , I are
coeKcients arising from the angle integrations) with oeL

and vL determined by NLs+vL' ——Ro', where Ro is the
reaction zone boundary.

We now show that each of the above integrals can
be restricted to a region in (I',v')-space which is no
greater than several wave-guide mode wavelengths from
the origin, with an error that damps exponentially in
the parameter "cutoff X (k'+ kos —Eq') '*." Since the
I' integration extends only to u'=b, we need merely

show that the v' integral can be cut o8 at several
guide mode wavelengths, say at v'=vo. We now inves-
tigate the behavior of the v' integral for v'&vp, where
the Hankel function may be expressed by its asymptotic
form and the hypergeometric function is equal to
1+0(b'/vo'). This integral can also be expressed as an
integral over a finite region with an exponentially
damped remainder. This can be seen by deforming the
path of integration (from vo to oo on the real axis) to
a new path running from vo to ivo (say along an arc of
the circle ~v'~ =vo), then from ivo to coo along the
imaginary axis, and finally along an infinite arc to
v'= oo. (If we had taken a mode having H&'& rather
than H&'&, the path would have been deformed into the
lower half plane, rather than the upper. ) The infinite
arc contributes nothing because the integrand vanishes
there. The integral from ivo to i~ is clearly exponen-
tially damped Li.e., it has as a factor

exp) —(vo(k'+kos —Ex') t—k(vo' —ks) t)j,
which damps for energies sufBciencly close to threshold:
that k&(k'+kos —E&,s)&/(1 —b /vo')&j. Finally, the in-
tegral from vo to ko extends over a finite region, and
can be lumped with the integral from vL, to vo to yield
the desired transform of J into an integral over a finite
region.
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Mass Distribution in Fission of U"' by Resonance Neutrons*

R. NASUIIOGLU, t S. RABOY, G. R. RINGO, L. E. GLENDENIN, AND E. P. STEINBERG
Argonne Eationa) Laboratory, Lemont, Il)&tois

(Received August 5,. 1957)

Radiochemical analyses of samples of U~' irradiated with monoenergetic neutrons at 1.1, 3.1, and 9.0 ev
indicated that the Gssion yield of Ag"', Cd"~, and Sb"~ relative to the yield of Sr89 does not change from
that produced by thermal neutrons.

' 'NVESTIGATIOXS of the variation of fission yield
~ - with mass have been made under a wide variety of
experimental conditions, but these studies have not
included fission induced by resonance neutrons of well-
defined energy. A determination of the relative prob-
abilities of symmetric and asymmetric modes of fission
at specific resonances might give further insight into
the nature of the fission process and the properties of
the states of the compound nucleus corresponding to
the resonances. In particular, Bohr' has presented
qualitative considerations relating the relative prob-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t On leave from the University of Ankara, Ankara, Turkey.
'A. Bohr, I'roceedings of the International Conference on the

Peaeefll Uses of Asomk EN@'gy, Geeeea, 1955 (United Nations,
New York, 1956},Vol. 2, p. 151.

abilities of symmetric and asymmetric fission modes
to the spin and parity of the state of the compound
nucleus.

Measurements of v, the number of neutrons per
fission, have indicated that this quantity remains es-
sentially constant for all resonances. ' However, it was
felt that a study of the features of the curve of yield
vs mass would provide a more sensitive measure of
possible differences in fission modes at diGerent
resonances.

Samples of U"o metal (about 90 g each, 1 cmX 1 cm
X 10 cm) were irradiated with neutrons from a crystal

s Auclair, Landon, and Jacob, Compt. rend. 241, 1935 (1955};
Zimmerman, Palevsky, and Hughes, Bull. Am. Phys. Soc. Ser. II,
1, 8 (1956};Leonard, Seppi, and Friesen, Bull. Am. Phys. Soc.
Ser. II, 1, 8 (1956}; Bollinger, Cotb, Hubert, Leblanc, and
Thomas, Bull. Am. Phys. Soc. Ser. II, 1, 165 (1956}.


