
PH YSI CAL REVIEW VOLUME i 08, NUMBER 0 DECEMBER 15, 1957

Weak Collective Effects in the Nuclear Shell Model
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Configuration mixing between the odd particle and the core is formulated to account for the weak col-
lective quadrupole eHects near closed shells. The configuration mixing sum is evaluated formally for the
general case and applied to O' . An equivalent formalism in which closure is done over the configuration
mixing sum is developed and applied to 0', giving good agreement with experiment. The closure result
is found to be very insensitive to variation of parameters. The closure formalism is also applied near the
lead closed shell, using a nuclear charge density distribution for the core instead of a sum over particle
states. The collective effects in this region are well accounted for, and the formalism is compared with that
for weak surface coupling.

I. INTRODUCTION

')ERHAPS the most fertile model of the nucleus
introduced in recent years is the shell model of

Mayer and Jensen. ' In this model, eigenstates are
generated by considering the independent motion of
nucleons in a potential well with a large spin-orbit
coupling, and it is assumed that a good approximation
can be obtained for the ground state and low-energy
properties of the nucleus by considering only a few of
these states. The assumption of independent motion is
ostensibly a very surprising one in view of the very
short range and great strength of nuclear forces, but
the nuclear shell model has proved extremely rewarding
and thus gained strong pragmatic justification. Recently
the work of Brueckner et al.' has indicated the way to
a sound theoretical justification as well.

If the initial generating potential is considered to be
spherically symmetric, then in the region of the doubly
closed shells the nuclear wave functions should be
particularly simple, and for a doubly closed shell plus
or minus one particle the nuclear wave function should
reduce to a single antisymmetric term, i.e., for this
case the j—j coupling independent-particle model
should reduce to the single-particle model. In gross
properties this seems in fact to be the case, but in most
cases where detailed information is available, there
seem to be residual collective eGects that cannot be
easily attributed to the odd particle in the pure single-
particle model, Attempts to explain these weak collec-
tive eGects within the framework of the collective
model of Bohr and Mottelson' using the so-called surface
coupling approach have been only moderately successful
and have not as yet been put on any fundamental
footing. The subject of this paper is the treatment of
these collective eGects within the framework of the
independent-particle model. 4
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~ M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nudear Shell Structure (John Wiley and Sons, Inc. , ¹wYork,
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s For references see H. A. Bethe LPhys. Rev. 103, 1353 (1956)].' A. Bohr and B. R, Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 27, No. 16 (1953}.

4 A preliminary note on this work has appeared. R. D. Amado
and R.J.Blin-Stoyle LProc. Phys. Soc. (London) A70, 532 (1957)7.
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In the nuclear shell model the generating potential,
U, must arise from some sort of averaging of the two-
body interactions, ' U, between the nucleons. But even
if this average has been performed in an optimum,
self-consistent manner, the shell-model states will not
be diagonal in the residual interaction, U —U. Since
the shell-model states generally used are chosen for
their analytic rather than self-consistent properties we
should not be surprised if the residual interaction has a
large perturbing eGect. The mixing of zero-order shell-
model states by the residual interaction is known as
con6guration mixing, and calculations of this mixing
have considerably extended the range of success of the
shell model. But calculations with the residual inter-
action are extremely complex and have in general only
been carried out among particles outside I—S closed
shells, and then except for the light nuclei, only near
closed shells. Limited calculations in which any number
of particles outside closed shells have been considered
have also been done for ground-state magnetic mo-
ments, ground-state electric quadrupole moments, ' and
comparative half-lives in beta decay. ' The calculations
for magnetic moments and log ft values give quite good
agreement with experiment, whereas the agreement for
quadrupole moments is not nearly so good far from
closed shells, but this can be understood in terms of the
sensitivity of the quadrupole moment to shape defor-
mations of the nucleus, '

Just as the residual interaction mixes different zero-
order shell-model configurations of particles outside
closed shells, so the interaction of an odd particle with
the closed-shell core will mix in excited configurations
of the core, even for a nucleus with only one particle
outside the closed shell. Because of the great stability
of the closed shell, the admixtures of these excited
states will be small. But because there are many core
protons, even very small admixtures can give fairly

~ Only two-body interactions are considered.
A complete account of this and other aspects of the shell

model and a complete list of references are given by J. P. Elliott
and A. M. Lane, "The Nuclear Shel] Model, " in Handbuch der
Physik LSpringer-verlag, Berlin (to be published) j.

'A. Arirna and H. Horie, Progr. Theoret. Phys. (Japan) 11,
509 (i9S4).

H. Boric and A. Arima, Phys. Rev. 99, 778 (1955).
s R.J.Blin-Stoyle and C. A. Caine, Phys. Rev. 105, 1810 (1957).
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large collective contributions, particularly for electric
moment operators like the quadrupole operator. From
this configuration mixing point of view, then, collective
eGects are due to mixtures of excited states of the core
caused by interaction with the odd particle.

In Sec. II the general procedure for the direct
evaluation of the configuration mixing sum in the case
of electric quadrupole eGects is outlined and applied
to the two weak collective effects in 0'7.

In Sec. III an alternative formulation for the weak
collective effects is presented in which closure is done
over the configuration mixing sum. For 0" this pro-
cedure is exactly equivalent to the one in-Sec. II, and
has the advantage of being a formalism in which
parameters are easily varied. The calculation gives a
good account of the weak collective effects in 0", and
further, variations of the parameters will change the
results by a factor of two, but no reasonable set of
parameters will account for the old, small value for the
ground-state quadrupole moment. " A brief discussion
is also given of other calculations of the weak collective
effects in 0".

In the heavy nuclei direct evaluation of the con-
figuration mixing sum for weak electric quadrupole
eGects becomes excessively dificult, but the closure
formalism developed in Sec. III can be effectively
applied. In Sec. IV the closure formalism is discussed
further and applied to weak collective eBects in the
region of the lead doubly closed shell. It is seen that the
calculation can be carried out in terms of a nuclear
charge density distribution without having to specify
single particle states for particles in the core. The
formalism gives a consistent account of the weak
collective effects in this region, and also provides a
general framework for the discussion of these effects.
A discussion is given of other calculations of the weak
collective e6ects in the region of lead, and in particular
the configuration mixing formalism with closure is
compared with the weak surface coupling formalism of
Bohr and Mottelson. '

II. THE CONFIGURATION MIXING SUM

For a nucleus di8ering by only one neutron from a
doubly closed shell, there will be no zero-order shell-
model contribution to electric quadrupole eGects.
The entire eGect must then arise from excitations of
the core. Since the core initially has spin zero and
positive parity, and since the quadrupole operator is a
one-body operator transforming under rotations like
an eigenstate of angular momentum 2 with positive
parity, the relevant core excitations in 6rst order must
be 2+ states of the core differing from the doubly
closed shell in the state of one proton only. Since the
generating potential, U, is a one-body scalar operator,
it cannot produce core excitations of this type and

"Geschwind, Gunther-Mohr, and Townes, Phys. Rev. 83, 209
(1951).

thus for the odd-neutron case we need only consider
the effect of the two-body interaction, V. The first-
order collective contribution to the matrix element of
the nuclear electric quadrupole operator between two
states J and J~ can then be written:

(o~l vl {2+,~i)»((2+, Jig IQl oui&

Es++6JJi

(oJIQI(2+ ~)~i)((2+ ~)~il vlo~i&
(1)

E2+—AJ Jy

where the sum extends over all 2+ states of the core
formed by excitation of a single proton, and where E2+
represents the energy for this excitation and AJJy the
diGerence in energy between the odd neutron states
and J,. By (2+, J)Ji is meant the core in a 2+ state
and the odd particle in the state J, coupled together to
form a state of angular momentum J~. Since we shall
only be concerned with low-lying states J and Jj or
with J=J~, AJJ] is always negligible compared with
E~ by virtue of the energy stability of the closed-shell
core.

A. Evaluation of the Mixing Sum

In order to evaluate the sum in (1) we take single
particle eigenstates of the form

gigsi=lirip(l ',mM m-l/-,'JM)Vi, x;,~ „) (2)

where (R~~ is the radial function, y~ a spin function,
and I"~, the usual spherical harmonic. The vector
addition or signer coe%cient and the spherical har-
monics are chosen to agree in phase and normalization
with Condon and Shortley. " It is convenient in (1) to
consider separately the matrix elements of V and of Q.
%e take for V an arbitrary exchange mixture of the
form

V(ris) = B(y+eI'~+PP—a+oI'aP~) f(ris), (3)

where the P's are the exchange operators, P~ space
exchange, and P~ spin exchange, as defined in Blatt
and Keisskopf. " 8 is the strength of the interaction
and the constants y, e, p, 5 are defined so that y+e+p
+8=1.Putting this exchange mixture into the matrix
elements of V in (1), one gets four terms and thus may
write

(o~lvl(2'~)~&= ~ + ~ +p~ +&~ . (4)

%e can now proceed to evaluate each of these terms
by first expanding the interaction function, f(r,s), in

"E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1935)."J.M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(J. Wiley and Sons, Inc. , New York, 1952):
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spherical harmonics. F&'s are the radial integrals given by

~0@ ~OQ

f(ras) =4ir P fs(ri, rs)P I's, ~(8ipi) I's, ~*(es,ys). (5) Fs(abed) =
~

(R, (ri) (Rs(rs) (R, (ri) (Rs(rs)
k=o m 0 0

Writing in the couplings in terms of signer coe%-
cients in the usual way and using the elegant formalism
for manipulating holes and particles in terms of creation
and annihilation operators developed by Brink and
Satchler, " one can reduce the general matrix element
of V in (4) from a matrix element between nuclear
states to a sum of matrix elements of the interaction
between single-particle states. These are then most
easily evaluated by transforming from a j—j to LS
coupling scheme and using the usual techniques for
manipulation of angular momenta. "

Considering the core 2+ state formed by exciting a
proton from the core state j to the excited state j&
and using

one gets for the four matrix elements corresponding to
the four exchange possibilities

M s = (—1)~'+&'+"+"'BFs (//'/i/i') (2/i00
~

2l il0)

X(2l'00~ 2/'/, '0)$5(2j+1)(2Ji+1)(2ji+1)
X (2l i+ 1)(2l'+ 1)j*'W(lilJiJ; 2-,')

Xfs(ri, rs)ri'rs'dridrs. (6)

In the case of 3f~, that is the Bartlett or spin-exchange
case, it has not been possible to evaluate all the sums
analytically. Nevertheless it is possible to reduce the
expression so that only the sum Z need be done numeri-
cally. This is

z=gz, (2I-+1)W(jjiJJi; 21)W(l'li'/l„21)
XW(li'jiliJi; sI)W(/'j /J; sL)

The matrix elements of the quadrupole operator
appearing in (1) can be evaluated in a similar manner
and for the case of a core proton excited from the core
state j to the state j&, one gets

((2+, Ji)JM~ Q„~OJiM')

( (2/i'+ 1)(2j+1)(2jr+ 1) y
1

!=(—1)~' 'I
4n-

XW(jilt' jl'; s2)(Ji2JM
~
Ji2M'p)

00

X(li'2l'0
~

li'200)
J

(Rit'*r4(Ri dr, (7)
0

XW(/, 'Pj,j 2') where we have taken the tluadrupole operator to have
the form

i@~ (—1)&+ '+"+"'BP—-—{(2k+1)F&(/P/, '/, )

X (k/i'00
i

k/i'/0)(k/'00
i
k/'/i0) t 5 (2/i'+1) (2/'+1)

X (2Ji+1)(2j+1)(2ji+1)j'*W(lilJiJ; 2-', )

X W (/i'l' jij; 2-,')W(lli'liP; k2) ),

Me ——(—1)&'+~+'+"5BFs(/P/i/i')(2/i00~ 2lilO)

X(2l'00
~

2/'/, '0)L5(2j+1)(2Ji+1)(2ji+1)
X (2li+1) (2l'+1)jlZ+Ms,

MJr = (—1)» ~+'+'B Q((2—k+1)Fs(//'/, '/i)

X(kli'00
i
kli'l0)(kPOO

i
kl'li0)P (2li'+ 1)(2l'+1)

X (2Ii+1)(2ji+1)(2j+1)g-'W (jjiJ,J; 2k)

X W(/J/i' ji; ', k) W(/i JiPj; —,'k) ). —

W(abed; ef) is the usual Racah coefficient, " and the

"D. M. Brink and G. R. Satchler, Nuovo cimento 4, 549 (1956).
'4 See A. R. Edmonds, Angular Momentlm in Qgantlm ~e-

choe/es, CERN 55—26 (1955).
'~ G. Racah, Phys. Rev. 62, 438 (1942); L. C. Siedenharn,

Oak, Ridge National, Laboratory Report ORNL-1098, 1952 (un-
published) .

m —& I"2, m.

B. Ajpylication to 0"
In the shell model, 0" has one neutron outside the

extremely stable Ois (Z=S, X=S) doubly closed shell.
One is therefore not surprised to 6nd that the low-

lying positive parity levels" as well as the ground-state
magnetic dipole moment" are very well accounted for
in the extreme single-particle model. However, two
electric quadrupole eBects are known that, from our
point of view, must be attributed to configuration
mixing. The first excited state, 0.872 Mev above the
ground state and assigned the single-particle configur-
ation 2s;, decays to the ground state by E2 radiation
with a mean lifetime of (2.5+1)X10 " sec," corre-
sponding to a reduced matrix element" for the decay
of 0.027&0.006 barn. The ground state, which on the
shell model has the odd neutron in a 1d; state has a

"F.Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955)."R.J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).

"We use the normalization convention for the reduced matrix
element (or double-bar matrix element) of some tensor operator
T(),p, between angular momentum eigenstates jm and JM of
(~~ T(&w) I jm)=(JIIT(")llj)(j"~~Ij)mu). This is related to
the lifetime following G. R. Satchler /Proc. Phys. Soc. (London)
A67, 1024 (1954)].
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small static electric quadrupole moment of —0.0265
&0.003 barn. "

In order to evaluate the radial integrals in (6) for
the case of 0", we must specify the form of the inter-
action as well as the form for the radial functions. For
light nuclei it is usual to take the single-particle func-
tions as eigenstates in a three-dimensional isotropic
harmonic-oscillator well. This gives for the radial
function'0

is —id
3 1 5
2 2 2

ip —2P
3 3 1 3 3

2 2 2 2 2 2

ip —if
1 5 3 5 3 7
2 2 2 2 2 2

TABLE I. The contribution is listed for each of the possible
excitations in 0"to each of the three terms; Q for the quadrupole
moment, ED for the E2 reduced matrix element with admixtures
into the ground state, and Eq for the E2 reduced matrix element
with admixtures into the excited state. The contributions are
given in units oi Bbsn&/LE;(a+2)"~'g where et (=u/b)s=1. 4 and
where E; is the appropriate excitation energy for each contri-
bution.

(Rsr, NN( ——exp( p—'/ 2)p'L~)(p'), (8) 22.2 33.5
7.1 18—8.8 —6.5

3.6 3.6 3.8
12 8.7 10
2.5 2.8 2.8

52 12.8 84.4
8.3 4.9 17

19 4.7 36
where E~~ is a normalization constant, L~g is the
associated Laguerre polynomial, and p = r/b with
b= (A/Mk)' if the generating potential U is given by
U= sMk'r'. For ease of calculation we take f(r, s) to
have a Gaussian form

f(t'ts) =exp( r\2—/a', ) (9)

' Kamper, Lea, and Lustig, Proc. Phys. Soc. (London) (to be
published); see also M. J. Stevenson and C. H. Townes LPhys.
Rev. 107, 635 (1957)j.

20 I. Talmi, Helv. Phys. Acta 25, 185 (1952).' W. J. Swiatecki, Proc. Roy. Soc. (London) A205, 238 (1951).~ W. H. Shaffer, Revs. Modern Phys. 16, 245 (1944)."L. Rosenfeld, ÃNclear Forces (North Holland Publishing
Company, Amsterdam, 1948).

The method for getting the fs's in this case and for
doing the radial integrals has been given by Swiatecki. "
A generalization of his procedure and an expression in
closed form for the integrals is given in the Appendix.

The choice of harmonic-oscillator radial functions of
the form (8) severely limits the possible excitations
that give nonvanishing contributions to the configur-
ation mixing sum. The combination of angular mo-
mentum selection rules and selection rules for matrix
elements of r' between harmonic-oscillator radial func-
tions" limit the possible excitations of protons from the
0" core that will contribute to (7) to 1s; to 1d;, 1s; to
1d;, 1p, to 2p,*, 1p; to 2p;, 1p; to 2p;, 1p, to if;, 1p;
to 1f;, and 1Pl to 1f;,

We are interested in three types of terms in the
combination of the interaction and quadrupole matrix
elements —those for which J=Ji——2, those for which
J=—', and Ji = -,', and those for which Ji=

~ and J= ~.
These three correspond to diagonal mixing for the
ground-state quadrupole moment, and the two cases
for the E2, mixing into the ground state and the excited
state respectively. For each of these three cases we must
evaluate the contribution of each of the four types of
exchange interaction, and this must be done for the
eight possible excitations enumerated above. The re-
sults will depend on the exchange character of the force.
We take for this a Rosenfeld mixture" for which
7= —0.13, e=0.93, P=0.46, and 8= —0.26. The radial
function parameter, b, can be obtained by relating the
density distribution of the wave functions to the nuclear
radius" and this gives for 0' b=1.6)&10 "cm. In the
interactien we take a=1.9)&10 " cm."The contribu-

tion of each of the excitations is given in Table I. We
notice that in general the relative contribution of each
excitation, or group of excitations to Q, ED, and Es is

roughly of the same order in each case, and thus we
cannot change the results drastically by simply dis-
allowing some particular excitation, or by giving it an
anomalously low or high energy.

Since we have no clear-cut experimental evidence
on which to base a choice, we must pick the energy
denominators for the excitations from the model. Neg-
lecting spin-orbit splitting, all the excitations we are
considering have the same energy. This is a consequence
of the selection rules for matrix elements of r' between
harmonic-oscillator radial functions. Since for light
nuclei spin-orbit splittings are small compared with
shell splittings, we expect that all the excitation energies
will still be of the same order when we include spin-orbit
splittings. This suggests that the configuration mixing
sum in this case could be evaluated using closure with
a mean excitation energy equal to twice the oscillator
shell splitting. The closure formulation for the problem
allows one to take into account the effect of variation
of parameters, and forms a more convenient basis for
comparison with experiment. As we shall see in the
next section, the results are in good agreement with the
experimental E2 and ground-state quadrupole moment
in 0".

III. THE CLOSURE FORMALISM

One can always treat the sums in (1) by replacing
the energy denominators by some mean excitation
energy, E, and then doing closure over the excitations.
This gives for (1)

—(1/E)(OJ~ VQ+QV~OJ ). (10)

This expression can be treated as a definition of the
mean excitation energies, and has the advantage of
averaging the information about the excited configur-
ations into the mean energy so that one need not specify
any but the zero-order configuration. The closure
expression is particularly useful if one can assume that
the mean excitation energy is a property that can be
assigned to the core, independent of the odd-particle
state. If this can be done then (10) can be used to give
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a one-parameter fit for the weak collective quadrupole
eQ'ects in a given nucleus or for a given closed shell core.

Since we are interested in obtaining just such a fit
of the weak quadrupole eGects near closed shells, it is
of interest to see in what cases the closure assumption,
that is the assumption that the mean excitation energy
is independent of the single-particle states for a given
core, will be valid. Clearly the assumption will be
trivially true if all the excited core states contributing
to the sum have the same excitation energy. It will still
remain a good approximation if the major contribution
to the sum comes from a spread of excitations small
compared with the mean excitation energy. As we have
seen this is the case for the harmonic-oscillator shell
model of 0" with small spin-orbit splitting. For the
closure assumption to be valid, however, it is not
necessary that the important contribution to the sum
comes from a small energy range. The closure expression
(10) defines E as the harmonic mean of the excitation
energies over the configuration mixing sum. And hence
the closure assumption is valid so long as the odd-
particle state does not affect the harmonic mean of the
excitation energies. Thus, for example, if the relative
contribution of each excitation is always the same, and
the only eGect of the odd-particle state is to provide a
scale for the contributions, then the assumption will be
valid. We shall return to the closure assumption in the
discussion of lead in Sec. IV.

A. Application to 0"
One can apply the closure form of (10) to the ground-

state quadrupole moment and the E2 transition prob-
ability in 0" either by simply adding up the results of
the direct configuration mixing calculation, or by a
straightforward evaluation of the matrix elements
appearing in (10). This latter procedure is relatively
simple for the closure case since the nuclear states
appearing in the matrix element are all states for one
particle outside a closed shell and thus the matrix
element between nuclear states is easily converted into
a sum of matrix elements between particle states. "
Since the closed shell is an L—5 closed shell, there is
no need to couple up the angular momentum of the
states of the core as is done in (2). Furthermore, for
matrix elements between states differing in only one
particle from a closed shell, it is easily verified that the
only ef'feet of the spin-exchange operator, I'&, in the
interaction is to reduce by one the number of spin
sums that are free. Since each of these sums contributes
a factor of two to the matrix element, one can simply
replace I'& by a factor of one half. Thus the interaction
in (3) can be rewritten

V(r12) = —BLy+2' p+ (e+ gb) &2r]f(2'12),

and the expression for the quadrupole moment or the
E2 transition matrix element splits up into a direct

part and a space-exchange part. One can write

(e)= (7+-,'W(e).;„,+(+-:b)(e),....,„
for the quadrupole moment and there is clearly a
similar expression for the E2.

Using the Gaussian form for the interaction as before,
and harmonic-oscillator radial functions, the evaluation
of the matrix elements follows in a straightforward
manner. The techniques described in the Appendix are
used to evaluate the radial integrals. One 6nds

88b'n:

and

direct = (6n'+11n+ 7),E(n+2)""
88b'n'

exchange= (n'+3n'+10n+ 7),E(n+ 2)11/2

Putting in the values for a, b, and n as before, one
finds

(Q)d;„„=—1.2(B/E) X10 "cm'
(Q)exchange/(Q) direct

for the quadrupole moment, and similarly for the E2:
(E2)d;„ect——0.85(B/E) X10 "cm'

(E2)exchange/(E2)direct
(12)

It is striking to note that both for the quadrupole
moment and for the E2, for reasonable values of the
parameters, the direct and exchange contributions are
about the same. This means that in both cases we can
write the results in the form

(Q or E2)= (7+~P+e+-,'b)(e or E2)d;„„„
and hence that the relative value of the quadrupole
and E2 are independent of the choice of exchange
mixture. Using the Rosenfeld mixture to evaluate the
exchange factors, one Ands

(Q)= —1.0(B/E)X10 ' cm'

for the quadrupole moment, and for the reduced matrix
element for the transition

(E2)=0.78(B/E) X10 22 cm2.

Comparing these results with the experimental values
we find that B/E=3.4&0.8 6ts the E2 transition rate
and B/E= 2.65&0.3 fits the quadrupole moment. There
is a satisfactory region of overlap between these two
values.

where, as before, n= (a/b)2. Similarly, for the reduced
matrix element for the E2 transition,

Bb'n'* (151 '
(E2)direct=

~ ~
(24n'+26n+19),

E(n+2)"" E22r)
and

Bb'n' (15' *'

(E2)exchange=
~

—
~

(11n +15n +68n+38).
2E(n+2)"" (22r)
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In order to compare these values with other results
for the strength of the interaction we must pick E.
The most reasonable procedure seems to be to pick
the excitation energy semiempirically. The first excited
state of 0"occurs at 6 Mev, and in 0" there is a group
of negative-parity states at about 4 Mev."These must
correspond to excitations of the same order as those
involving a change in the oscillator principal quantum
number. Taking 6 Mev as a mean value for this shell
separation energy and taking 8/E to be about 3 gives
8=40 Mev. This is a reasonable value for the inter-
action strength and fits well with other work that has
been done with configuration mixing around A =19."

B. Variation of Parameters

It is interesting that both for the quadrupole moment
and the E2, the direct and exchange parts are essentially
the same. We can investigate how this result changes
with variations in the range of the force or the shape
of the nuclear wave functions by varying o,. The ratio
in (11) only changes by 10'%%uz as a is varied. from zero
to 3.5. For the E2 the ratio in (12) is even less sensitive
to variation of n. Thus the insensitivity of the results
to the exchange character of the force holds for all
reasonable values of the ratio of the range to nuclear
radius. The ratio of the total E2 matrix element to the
ground-state quadrupole moment shows a similar
insensitivity to variations in n. It is gratifying that the
results are insensitive to variations in the exchange
character or range of the force. This means that no
set of experimental results greatly diRerent from the
present values could be accounted for by the theory.

For reasons of simplicity, the calculations thus far
have been done with a Gaussian radial dependence for
the force, but they can also be done with a Yukawa
dependence for f(r~s). Evaluation of the radial integrals
for this case is very much more complicated, and
therefore we have only investigated the direct part of
the quadrupole moment and of the E2. It is probably
safe to assume, nevertheless, that the exchange parts
will not be very diR'erent from the direct parts since in
0" the range of the force is of the same order as the
nuclear radius, and the matrix elements of the inter-
action should not be very sensitive to what is essentially
the fine structure of the interaction. For the Yukawa
case the direct contribution to the quadrupole moment
is a factor of two smaller relative to the E2 than is the
case for the Gaussian interaction. This result is also
fairly insensitive to variations of the range of the force
relative to the range of the particle functions. No exact
conclusions can be reached from this calculation but
the experimental results do seem to indicate a slightly
smaller quadrupole moment than is given by the

'4 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London}
A229, 536 (1955).

calculations with the Gaussian interaction, and this
might be accounted for by taking a Yukawa interaction.

Since it is probable that in a proper self-consistent
independent-particle-model formulation for 0" the odd
neutron states will be more loosely bound than is the
case in the harmonic-oscillator model, it is of interest
to investigate the eGect of "pushing out" the radial
functions for the 1.d and 2s states relative to the core
states. This can be done in a reasonable way by taking
a smaller b for the odd-particle states than for the core
states, that is to say, by taking the core states as
eigenfunctions in a narrower well than the odd-particle
states. This variation will only aGect the radial integrals
and as before we have only investigated the effect on
the direct parts with a Gaussian dependence for the
interaction. The evaluation of the radial integrals can
be carried out in a generalization of the procedure of
the Appendix, and one finds that even when large
variations of the odd-particle radial-function range
relative to the core states are considered the ratio of
the direct part of the E2 to the quadrupole moment
remains essentially unaltered.

%e have seen that reasonable variations within the
framework of first-order configuration mixing with
closure will change the relative results for the E2 and
the quadrupole moment by factors of order unity, but
no more. Thus, these calculations are in agreement
with the recent value for the ground-state quadrupole
moment, "but could not, by any stretch, be put into
agreement with the old, very much smaller, value. "
We have also seen in Sec. II that the results for direct
evaluation of the configuration mixing sum are not
very sensitive to assumptions about the excitations.
Ke have not investigated the eGect of variation of
parameters in the direct configuration mixing calcu-
lation, but in view of the closure calculation it seems
reasonable to assume that they will be insensitive to
these variations as well.

C. Other Calculations

Other attempts have been made to explain the weak
collective effects in 0" from diGerent points of view.
Perks" and Boric and Arima' have looked at the
configuration mixing without closure. In particular
Boric and Arima have evaluated the first-order con-
figuration mixing contribution to the ground-state
quadrupole moment for a large number of nuclei. They
make the two simplifying assumptions of zero-range
forces and harmonic-oscillator radial functions. Al-
though one would not a priori expect zero-range forces
to be a good approximation in 0"we have seen that in
fact the calculations are extremely insensitive to the
range of the force so that their calculations should be
good for oxygen. They find a ground-state moment of

'5 M. A. Perks, Proc. Phys. Soc. (London) A6g, gog3 (19$$).
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—0.04 barn, which is the correct order of magnitude
but somewhat larger than the experimental results or
the results of our calculations. They do not calculate
transition probabilities, but in view of our calculation,
one would guess that their method would give reason-
ably good agreement with the E2 in 0' .

The two weak collective eGects have been investi-
gated by Barker" from the point of view of weak
surface coupling. ' He 6nds that consistent with the E2
transition probability the ground-state quadrupole
moment comes out about a factor of two larger than
the experimental value. But we might expect surface
coupling to be a bad approximation in a light nucleus
like oxygen. A semiempirical calculation of the two
effects has also been carried out that seems to give a
consistent account of the order of magnitude of the two
eGects. '"

IV. THE LEAD CLOSED SHELL

For heavy nuclei the nuclear density distribution is
more "square" than in oxygen and hence harmonic-
oscillator radial functions are no longer a good approxi-
mation. We are thus no longer helped by the strong
selection rules imposed on the con6guration mixing sum

by these functions, and the evaluation of the proper
first-order configuration mixing sum (1) taking all
possible contributions into account would be very
di%cult indeed. On the other hand, application of the
closure formalism (10) is relatively simple. However,
since we are using closure in this case out of ignorance,
we cannot begin with a justification of the closure
assumption, that is the assumption that the mean
excitation energy will be a property of the core inde-
pendent of the odd-particle state, but as we shall see
this assumption seems in fact to be corroborated.

A. Develoyment of the Formalism.

In expanding the matrix element in (10) into a sum
of matrix elements between single-particle states, "one
encounters two types of terms, two-body terms in
which only the odd-particle state and one core state
appears, and three-body terms in which there are two
core states. In 0' the three-body terms contribute
slightly less than 20% of the two-body terms, and one

expects that because of the absence of harmonic-
oscillator selection rules, the relative contribution in the
case of heavy nuclei will be even less. Further it is

expected that the three-body terms will have roughly
the same dependence on odd-particle states as do the
two-body terms, and thus from the point of view of the
closure assumption we make a negligible error in

neglecting these terms.
If we neglect the three-body terms, then for the

~6 F. C. Barker, Phil. Mag. I, 329 (1956).» S. Fallieros and R. A. Ferrell, Bull. Am, Phys. Soc. Ser. II,
2, 26 {1957).

odd-neutron case we can write

—(0J( Vg~os, )
E

=—g(y;(1)yz(2)
~
V(12)Q(1) jy, (1)y (2)), (13)E '

where the sum goes over all core proton states.
In lead the range of the force is much less than the

nuclear radius so we can treat the interaction in a
range expansion and keep only the first couple of terms.
For the first term in the expansion (zero range) P~,
the space exchange operator, simply gives unity. In
this case the sum over core proton states reduces to
the charge density distribution, after suitable care has
been taken over the spin parts of the matrix element.
Thus (13) can be rewritten

gf 00 00

Qg*(2)ggi(2)p(1) V(12)Q(1)d3r,ifrq, (14)
p ' p

where p is the charge density normalized to unity, and
f' is a numerical factor depending on the exchange
mixture, and hence on the spin matrix elements.

The introduction of a density distribution is a
considerable computational simplification. Further, it
reduces the physically dificult problem of having to
choose single-particle eigenfunctions for the protons to
the problexn of choosing a density distribution, and the
recent high-energy electron scattering experiments at
Stanford have yielded much information about this
distribution. "We take a simpler density than the one
obtained in these experiments, but one that still retains
the gross features of the Stanford distribution. We take
the spherically symmetric distribution

p(r, t) =po for 0&r&R(1 t), —
p(r, t) =poL(R —r)/Rtj for R(1 t) &r&R, —
p(r, t) =0 for r& E..

The normalization is 4ir JPp(r)r'dr=1, giving

pp=
R'(4 6t+4P P)~— —

This density has been used by Blin-Stoyle" but with a
slightly diA'erent normalization. If one treats Rp=t'p
&A' as the radius of the square density distribution
that has the same mean square radius as p, then Rp is
related to 8 by

R'=R,'P'(t),
where

3 (4 6t+4P P)— —
tp(t) =

2 (6—1St+20P —15P+6t' —P)
R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).

29 R. J. Blin-Stoyle, Phil. Mag. 46, 973 (1955).
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In order to evaluate the integral in (14), we expand
the integrand in a power series in the range of the
force." Going to the first nonvanishing term beyond
zero range, and putting P~ equal to unity for this term
as well, gives

Z f
00

O'J 4JlpQrpr++ QJ Qsl&'(pQ)d'r, (15)
E Jo 0

where q is a factor depending on the exchange character
of the force,

In the approximation of zero-range forces that we are
using, the exchange factors, l and g, are easily expressed
in terms of the exchange character of (3). I'sr is equiva-
lent to unity for zero range and for the odd neutron
I'g gives a factor of —,'. Thus we get

=V+e+s (P+~)

where

(t=B@s ~ f(s)s'ds,

In the odd-proton case, I'~ gives minus the direct part,
and we get

C' = f(s)s4ds 6 f(s)s'ds.
"o

The integral can be evaluated in a straightforward
manner by using single-particle eigenstates for the odd
particle of the form (2). For the case of lead, however,
we take the radial functions as solutions of the radial
equation for eigenstates in an infinite square well. We
assume that the radius of the generating potential is
the same as the E that appears in the density distri-
bution; this is a reasonable assumption since it makes
the density and the single-particle functions go to zero
at the same radius. The angular integrals appearing in

(15) are easily evaluated in the usual way and the
remaining radial integrals are done graphically.

The formalism presented above is for the case of an
odd neutron or odd neutron hole nucleus and is easily
extended to the case of two odd neutrons or neutron
holes. Some change arises in considering odd protons.
Firstly there is a zero-order contribution to the electric
quadrupole eBects so that the configuration mixing
only provides an additional collective part. Further,
care must be taken in the closure sum to subtract the
diagonal term since to do closure one must sum over
all states. This diagonal term vanishes for the odd
neutron since the zero-order matrix element of the
quadrupole operator vanishes. In addition the anti-
symmetry of the odd particle with the core will make
the spin matrix element somewhat diferent. In the
case of a diagonal matrix element of the quadrupole

operator, that is, a ground-state moment, the collective
contribution for the odd-proton case corresponding to
(14) is

Zg
~gz(2) ~ p(1)Q(1)V(12)d'rid'rs

1 Zg p f' f'

j4 g)'QrPr V(12)p(1)
2E~o ~o &o

X
~ yg(2) ~'rf rid'rs, (16)

30 D. M. Brink, Proc. Phys. Soc. (London) A67, /57 (1954},

For a Rosenfeld mixture we find l =0.90 and q =0.60.
For ro we take 1.2&(10 "cm,"which corresponds to

an Eo for lead of 7.1)&10 " cm. For the interaction
parameters 8, and C', we take the values given by
Brink. ' 8=1.3)(10 '6 Mev cm', which in the usual
way is independent of the precise radial form of the
interaction; and C' =0.92)(10 " cm', which is an
average for the Yukawa and square well interaction.
The precise choice of C' is not very important since the
range expansion seems to be quite good, the term in C'
being only 10% of the first term.

B. Comparison with Experiment

The energy levels and spin assignments for Pb~',
one neutron hole in the doubly closed shell, are given
by Alburger and Sunyar. "The E2—M1 mixing ratio
for the 1.78-Mev transition between the fr~s and f~r

state is known and Satchler" has calculated the E2
reduced matrix element for the transition from this
mixing ratio assuming a single-particle value for the
M1. He gets for the reduced matrix element corre-
sponding to the E2 part of the transition 0.15 barn.
The assumption that the M1 part of the transition is
well given by the single-particle value has been investi-
gated and corroborated by Caine. "He has calculated
the first-order configuration mixing contribution to
matrix elements of the magnetic dipole operator and
finds that the mixing reduces the M1 matrix element
for the transition by only about 7% of the single-
particle value.

The reduced matrix element for the 0.569-Mev E2
transition from the first excited state (f;) to the p*,

ground state has been measured by Stelson and Mc-
Gowan" using Coulomb excitation and they get 0.096
barn. These two E2 transitions in Pb"' must clearly be
collective and we can try to fit them with the formalism
developed above. If we equate the experimental results
to (15) in each case, we get an expression for E as a
function of the density parameter, t, needed to fit the
experimental results. It is convenient to treat t as a
parameter even though it is given by the electron

"D.E. Albnrger and A. W. Snnyar, Phys. Rev. 99, 695 (1955).
~ G. R. Satchler (private communication).
33 C. A. Caine (private communication)."P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955}.
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scattering experiments since it is interesting to see the
eRect of variation in density distribution. The mean
excitation energies as a function of t are plotted in
Fig. 1.

In the two-neutron-hole nucleus, Pb"', the first
excited state, 2+, decays to the 0+ ground state by a
0.803-Mev E2 gamma ray. The reduced matrix element
for the transition, measured by Stelson and McGowan, '4

is 0.158 barn. The formalism of configuration mixing
with closure extended to the case of two neutrons can
be applied to this case, after single-particle con6gura-
tions have been chosen for the two neutrons. To do this
we have taken the particle con6gurations calculated by
Kearsley'~ taking into account configurations mixing
between the two holes. Once again the E as a function
of t needed to 6t the experimental result is given in
Fig. 1.

The only measured electric quadrupole eRect in the
odd-proton nucleus Bi'Pg is the ground-state quadrupole
moment of —0.4 barn. ' The contribution of the odd
proton, in the hg~2 state, to this moment is —0.28 barn
calculated by using single-particle eigenstates in an
in6nite square well. It is better to use these functions
to get the mean value of r' than the usual procedure
involving -,'the square of the nuclear radius" since the
kg~2 state is strongly "pushed out. " Assuming the
remaining —0.12 barn to be of collective origin, one
can use the formalism of (16) and once again plot the
mean excitation energy required as a function of t in
Fig. 1.

In Fig. 1 we see that there is surprisingly good
agreement between E2p7 E 2p7 and E2pg. This agreement
occurs for t =0.3, a value consistent with the results
of the. electron scattering experiments, " and, it is
interesting to note, not for values of 3 very different

'~ M; Kearsley -(to be published}.

FIG. 1. The mean excitation energies, E, are plotted as a
function of the surface thickness parameter, t, for the ground
state quadrupole moment in Bi p', Eopg, the 0.569-Mev E2 transi-
tion to the ground state of Pb~', E20~, the 1.78-Mev E2 in Pb~',
E 2p7 and the E2 to the ground state of Pb20, Egp6.

from 0.3. For t=0.3 the three mean excitation energies
are about 40 Mev. E206 comes out some 25% smaller
but we might expect this since, differing by two particles
from a closed shell, Pb"' should have a "softer" core
than those nuclei diRering by only one. In addition
there is an uncertainty of about 15% in all the results
due to the neglect of the three-body terms. One expects
the mean excitation energy to be somewhat greater
than twice the shell splitting in the heavy nuclei and
this is in fact the case if one takes the average shell
splitting to be given by the maximum of the giant
dipole photoelectric cross section. "

The question remains of why there should be a
unique mean excitation energy at all, that is, why we
should expect the closure assumption to be valid. To
give a complete justification for this assumption, apart
from the empirical justification, would, of course, entail
being able to do the con6gurations mixing sum exactly,
or, at least, knowing a good deal about the contribution
of each term in that sum. Since it is precisely the lack
of this information that led us to the closure formalism,
we cannot hope to give the results anything but a
certain plausibility.

We have already seen that if the relative contribution
of each excitation is independent of the odd-particle
state except for an over-all scale factor, then the
closure assumption is fully justi6ed. The closure
assumption will still be a good approximation if the
relative contribution from groups of excitations is the
same, so long as we consider groups with an energy
spread small compared with the mean excitation energy.
This is likely to be the case if in the range of important
contributions there are a large number of excitations
of diferent types in each small energy interval. If the
number in each interval is large enough and diverse
enough, then we can perform an average over the
contributions in each interval, and assume that the
relative values of each average does not depend on the
odd-particle state. This is a kind of statistical approach
to the problem, and it is likely to be fairly good in
heavy nuclei like lead because the large number of
particles in the nucleus will make for a large number of
diverse possible excitations in each small energy inter-
val. In addition it is probable that the total width of
the distribution of excitations giving the major contri-
bution is small compared with the mean excitation
energy since the combined eRect of the large energy
denominator, the selection of states by the quadrupole
operator, and the potential coupling will all contribute
to cutting oR the con6guration-mixing sum quickly.

C. Comparison with the Weak Surface
Coupling Method

It is of interest to compare the formalism for weak
collective effects using configuration mixing and closure
with the quasi-hydrodynamical method of Bohr and

S. Rand, Phys. Rev. 99, 1620 (1955).
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Mottelson. ' They assume that near closed shells the
nucleus may be represented by a spherical core with
small compressibility, in which case the collective
degrees of freedom which have the lowest energy will
be shape deformations with approximate preservation
of volume. The normal coordinates of these oscillations
will be the expansion parameters, 0,„, of the nuclear
surface given by

R'=R(1++„n„Y2,„),

where E. is the equilibrium radius, and where we have
restricted ourselves to deformations of the quadrupole
type. Bohr" and Bohr and Mottelson' have developed
an elegant quantum field-theoretical formalism for
treating these deformations. They quantize the surface
oscillations, or phonons, and find that 0;„essentially
contains the creation and annihilation operators for
these phonons. In the hydrodynamical approximation
the phonon energy is easily expressed in terms of the
surface tension and mass transport parameters for the
nuclear "Quid" of the core, and, as one would expect
from the quadrupole nature of the deformation, the
phonons have angular momentum 2 and positive parity.
The zero-order shell-model core state is then considered
to be a state with no phonons present, and the effect
of the interaction between the odd particle and the core
is to mix in states with one phonon (in lowest order).
In such a formalism the only mechanism for the inter-
action is the mode1 generating potential U.

Following the field-theoretical formalism, one carl
write both the interaction and the quadrupole operator
in terms of the creation and annihilation operators, and
thus one gets for the weak surface coupling contribution
to the ground-state quadrupole moment of a nucleus
with one particle in a state J outside the closed-shell
core

3 k
&Q.)=

(Sn)l C

where 'gqq is an angular matrix element of Yg, 0 between
the angular and spin parts of the single particle func-
tions, C is the surface-tension energy, and k is essentially
a measure of the interaction strength between the odd
particle and the core, and is related to the radial
derivative of the generating potential. In the case that
U is a square well, then the derivative is a delta function
at the surface and k can be expressed in terms of the
value of the odd-particle radial function evaluated at
the surface. But in general this specialization is not
made and k is treated as a constant. The surface-tension
energy, C, is normally treated as a fitting parameter,
and like E is expected to be a constant for a given core.

It is instructive to compare (17) with the corre-
sponding expression in the configuration mixing formal-
ism with closure. The comparison is most easily made

'~ A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
26, No. 14 (1952).

by considering the case of 1=0 and taking only the
first term in the range expansion. We then get for the
quadrupole moment of some odd-neutron nucleus

60',Z
(q)= gpss

'

(
Ng('r'dr,

(Sm) &R'E ~ p

(18)

where S.g is the odd-particle radial function.
It is interesting to note that this is just the expression

we would get if we assigned to the neutron an e6ective
charge of magnitude 3 OZ /2m. R' Eso long as the single-
particle functions vanish at the core radius. It seems
then that the eGect of the perturbation has been to add
to the uniform charge density of the zero-order core,
a density just proportional to the odd-particle density.
One of the essential diGerences between this and the
weak-coupling formalism being that we no longer
consider the core as incompressible and hence the odd
particle can acct the core throughout rather than only
at the surface. The surface part is still present as can
be seen by doing a partial integration in (18).

)
R

&'—L I @~(&)I
']«.

5(Sm) RBE ~0 dr

The first term is a surface term of the type one would
have for a square-well generating potential in the weak
surface coupling formalism. The second term, the bulk
term, is, in fact, larger than the first for all the cases
we have considered.

The expression for the quadrupole moment would in
the formalism of configuration mixing with closure seem
to depend in a more natural way on the odd-particle
function than does the weak surface coupling result,
particularly since the former allows one to take into
account the odd-particle function overlap with the core
density. It is this overlap that gives the curves in Fig. 1
their characteristic shape. For example, in Bi"' the
single-particle function is strongly "pushed out" and
thus the collective contribution for small t is very large
since the core density in the region of the peak in the
particle function is large. As we increase t the charge
density in the region of the odd particle goes down and
so does the collective contribution to the quadrupole
moment. Similarly the rise in the collective contribution
in Pb"' for large t can be attributed to a node in the
radial function.

The weak surface coupling formalism is easily general-
ized to E2 transitions as well as ground-state moments
and has been applied by True" to the transitions to the
ground state in Pb"' and Pb"' and to the ground-state
moment of Bi"'. He finds a surface-tension parameter,
C, of 11.00 Mev for the transition in Pb"' but only
520 Mev for the transition in Pb"'. Using the wave

38 w. w. True, Phys. Rev. 101. 1342 (1956).
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functions with configuration mixing between the holes
for Pb"' this can be raised to 715 Mev, but this is still
too large a discrepancy to be explained on the surface
coupling formalism. The better fit obtained with the
configuration mixing and closure approach can be
explained in that it allows one to take into account
the particle overlap in Pb"', and further since in the
configuration mixing formalism one is dealing with a
more familiar mechanism than surface coupling, the
remaining discrepancies can be more easily accounted
for. Calculations on the 1.78-Mev transition in Pb"'
indicate that very different parameters would be
necessary to fit the transition on the surface coupling
model from those used by True for the transition to the
ground state. Once more this is largely due to radial
integrals.

For the ground-state quadrupole moment of Bi2~,
True finds a collective contribution of —0.25 barn
using C=1100 Mev. This is much larger than one
expects if one estimates the single-particle part of the
moment taking into account the odd-proton wave
function. In this case an important contribution to the
configuration mixing approach is the introduction of
anti-symmetry between the odd proton and the core.
This cannot be conveniently done in the weak surface
coupling formalism.
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fq(rq, r2) =2 f(ru)Pq(cos8)2) sin8q2dH)2,
0

where E'& is the usual Legendre polynomial.
For a Gaussian form as in (9), one gets for the gen-

eral f~

( rP+r22) '& &» ~(&—&) (2k—2r)!(—1)"
f,(r„r,) =-', expI—

a' ) 2&r!(k—r)!

where x= 2rzr2/a'.
Evaluation of radial integrals with harmonic oscil-

lator functions of the form (8) always reduces to the
evaluation of radial integrals of the form

pI „= fg, (rg, r2)r) r2"
J,

( ri+r2 )
Xexp

I I dridr2, (A2)
$2

where from parity considerations if k is even, m and e
are even, and if k is odd, ns and e are odd. In view of
this the general integrals can be generated from the
integral with ns=e by repeated differentiation with
respect to 1/b'.

Putting (A1) into (A2) with m=n, and following a
generalization of the procedure used by Swiatecki" for
the evaluation of these integrals, we get

APPENDIX

If we expand the radial dependence of the interaction
as in (5), then

r!(k—r)!(k—2r —s)!p!(m—s—p —1)!um ' " '(n+2)&

where n= (a/b)' and (—1)!!= 1.

ma ~+ l& o~ '(&—~) )' —~~ ~~—) (2k —2r)!(m —s—1)!(2m —2s —2p —3)!!(2p —1)!!(—1)v+~+~28

22m+k+). L~ (a+.2)g$


