
PH YSI CAL REVIEW VOLUME 108, NUMBER 1 OCTOBER 1, 1957
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It is shown that within the context of a local causal field theory the total ~-nucleon cross section 0 (co)
has the following behavior at high energies: lim~„coo. (co))0.

I. INTRODUCTION
' 'N the past few years, various derivations have been
& - given for the dispersion relations for x-nucleon scat-
tering. ' These relations follow as a consequence of
several general requirements invoked on the scattering
amplitude such as "microscopic causality" (i.e., the
condition that the commutator of two current operators
taken at space-like points vanish), Lorentz covariance,
etc. Also several detailed assumptions concerning the
interaction such as conservation of isotopic spin and
the pseudoscalar nature of the m-meson field are made.
Aside from assumptions of the type listed above (which
one would in general invoke on any local field theory
that is to describe meson-nucleon interactions), one
must also make a postulate concerning the behavior of
the ~-nucleon cross sections at high energies in order to
obtain a unique set of dispersion relations. It is usually
assumed that the cross sections approach a constant
at high energies. This condition seems reasonable in
view of the direct experimental measurements of the
high-energy cross section. ' One may also take the
experimental verification of the x-nucleon dispersion
relations in the low-energy region as indirect verifica-
tion of this behavior for the total cross section.

At present, then, the assumption that the total cross
sections approach a constant value in the high-energy
region may be viewed as a reasonable phenomenological
condition on the scattering amplitude. On the other
hand, it is obvious that a solution of the field equations
of motion would uniquely determine the high-energy
behavior of the cross section. In this note we shall show
that by making greater use of the nature of the
Lagrangian governing ~-nucleon scattering it is possible
to make a partial statement about the high-energy
behavior. The theorem that we shall prove in the next
section is that

is the pion energy in the laboratory system) provided
that the constant ) in the )1p' direct meson-meson inter-
action is not zero.

II. HIGH-ENERGY THEOREM

In order to prove the theorem mentioned at the end
of the previous section, we shall make use of two dif-
ferent representations of the scattering amplitude. For
definiteness let us consider the scattering of ~+ mesons
and protons. If q' and p' are the initial meson and
proton momenta and q and p the final momenta, the
S-matrix can be written as the sum of a noninteracting
contribution plus a part which gives rise to the scat-
tering:
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In the usual representation, ' the T+ matrix is expressed
as one-nucleon matrix elements of the current operators
which generate the meson field; i.e.,'
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In Eq. (2), j(x) is defined by

(where o (co) is the total sr-nucleon cross section and co
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— '+t"l4'(*), (3)* Supported in part by the U. S. Atomic Energy Commission
and the National Science Foundation.' M. L. Goldberger, Phys. Rev. 99, 979 (1955); K. Symanzik,
Phys. Rev. 105, 743 (1957); Goldberger, Miyazawa, and Oehme,
Phys. Rev. 99, 986 (1955).

2 Cool, Piccioni, and Clark, Phys. Rev. 103, 1081 (1956).' Anderson, Davidon, and Kruse, Phys. Rev. 100, 339 (1955);
Uri Haber-Schaim, Phys. Rev. 104, 1113 (1956).

48y the "usual representation, " we mean the one used by
Goldberger in reference 1.

'We use italic letters p, q to represent four-vectors, while
bold-face letters p, q denote three-vectors. The metric used is
such that pq=p q —p0q0. For a meson qo:=-a =q2+p (@=meson
mass) while for a nucleon pcs=—Z'=pe+ ms (m=nucleon mass).
We take A=c=1.
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where @(x) is the meson field operator. 0(xp) is the step
function, zero for xp(0, unity for xp) 0 and ~0) is the
vacuum state. The symbol +-+ above 8 means

Bg(x) 8f(x)
f(x)~pg(x) =f(*) — g(*).

Bxo Bxo

One can, however, express the T+ matrix in an
alternate fashion as one-meson matrix elements of
operators J(x) and J(x) which may be viewed as
generating the nucleon field. ' In this representation, one
easily obtains

1

, I T+(pqp'q')
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u—„(q ~ {J(x),J(0)}~
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obtained from Eq. (5) when q and q' are set to zero.
These two functions are related to each other by a simple
Lorentz transformation. Since pq is an invariant one
has E/m=pr/p, where E is the nucleon energy in the
meson rest frame and co is the meson energy in the
nucleon rest frame. Thus T+(E)= T+(pp).

We shall first prove the theorem by making use of a
speci6c interaction Lagrangian involving only nucleon
and x-meson interactions. Later we will discuss the
generalizations necessary to include hyperon and heavy-
meson interactions. According to pseudoscalar meson
theory, the interaction Lagrangian density is given by

where v; are the usual isotopic spin matrices and ban

and 8p are the nucleon and meson mass renormalizations
respectively. This leads to the current operators
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where

J(x) = (—iyB/Bx+m)P(x), J (x) =Jt(x)yp, (6)

and P(x) is the nucleon field operator. Also

Proceeding in the manner of Goldberger, ' we break
T+ into its dispersive and absorptive parts by writing
8(xp) = ip/1+ p(xp)] where p(xp) is the step function, i.e.,
p(xp) equals plus or minus one according as xp is greater
or less than zero. Thus in the X representation one
de6nes

D~(pp) =-,'i e
—

&*p(xp)(m
~ $j(x),jt(0)) ~m)d4x

y&/»=y;&/»~+yp&/&xp, {A,B}=AB+M. (7)

The y„= (y, , p4 ——imp) are anti-Hermitian matrices and
yp —=P is Hermitian. The u„ is a positive-energy nucleon
spinor of a given spin {the spin label has been sup-
pressed) and is normalized according to

and

A+(~) =-' e '"(mIL j(*),j'(o) jim)d4x, (13)

e '"(mI 8 (x),j'(o)j lm)~(xp) d'x, (12)

Q&Q& =Q~&+OQ& =1.

The terms in Eq. (2) proportional to (p~ p') and in
Eq. (5) proportional to (q~q') have been inserted for
completeness. They acct only forward scattering in
cancelling out vacuum Quctuations. ' We shall call the
representation given in Eq. (2) the "Erepresentation"
and that of Eq. (5) the "M representation. "

We shall go immediately to forward scattering in
both representations. In the S representation we choose
the Lorentz frame which is at rest with respect to the
nucleon while in the M representation we consider the
frame at rest with respect to the meson. Accordingly,
Eqs. (2) and (5) define two functions T+(p~) and T+(E),
respectively, where T+(&a) is the T+ obtained from Eq.
(2) by putting y and p' to zero and T+(E) is the T+

This representation has also been used by Symanzik (reference
1) but with scalar nucleons.

7 See footnote 4 of Goldberger's paper in reference 1.

where ~m) is a state of one nucleon at rest and T+(pi)
=D+(pi)+iA~(~). »milarly, in the M representation
one has

D, (E)
',i e '"-c(xp)u„(p~ {J(x),J(0)}~ p)u, d'x

2p

f
2i e '—*u~pp(u

~ g (x),J'(0)}~
p)u„8(xp)d'x, (14)

A+(E)
e
—*'"*u„(p

~ {J(x),J(0)}~ p)u d4x.
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Here ~y) is a state of one meson at rest and again
T+(E)=D+(E)+iA+(E). In Eqs. (12)—(15) it is under-
stood that the required terms proportional to (p~ p') or
(q ~

q') are to be subtracted from the structures explicitly
written down.
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Owing to the presence of the factor 8(xp), the second
integral in Eqs. (12) and (14) may be explicitly evalu-
ated since only equal-time commutators (and anticom-
mutators) appear. From Eq. (10), one sees that
{P(r,O),J(0)} is the sum of a c-number and a term
linear in @,. The c-number cancels out when one does
the appropriate subtraction of the (qlq') term, while

(pl&;(0) l p) is zero by Furry's theorem. Thus one has

D+(E)
,'i=)-e—'* (xo)(gl{J(x),J(0)}lp)m,d'x. (16)

2p

On the other hand, the term proportional to X in

j(x) as defined in Eq. (9) gives a contribution to
P&(r,O), jt(0)] which is not a c-number, and leads to a
term of the form

X/(mlle/(0)+2&(0)yt(0) lm)
—(olla(0)+20(0)4t(0) lO)]&'(r). (17)

Thus the second integral in Eq. (12) contributes a
constant to D+(pp) proportional to X:

D+(pi)=-', i ' e ' (p)x(peril j( )x,j (0t)]les)d'x+XC. (18)

the integral
1 ("A+(E')

(26)

In Eq. (27), A (E') is the absorptive part of them+-anti-
proton scattering amplitude. From charge conjugation
invariance, this is equal to the m -proton amplitude.

We are here considering forward scattering, and D(pi)
and A(pi) are the real and imaginary parts of T(cp)
Similarly, D(E) and A(E) are the real and imaginary
parts of T(E). Further, since the I.orentz transforma-
tion relating the frames used in the S and M repre-
sentation show that T(E) and T(pr) are equal, we see
that Eqs. (27) and (24) are inconsistent if X AO. Under
this condition then, Eqs. (21) and (25) are impossible
and thus Eqs. (19) and (20) must hold. '

From the "optical theorem" one may relate the
absorptive part of the forward scattering amplitude to
the cross section according to

exists and by a similar analysis leads to the dispersion
relation

1 " A+(E') A (E')
D (E)= P, — + dE' (.27)

~p E' E—E'+E

The theorem that we wish to prove is that ~+(~) =A+(~)il «l. (28)

or

lim A+(pi)) 0,

lim A~(E)) 0,
E~oo

(20) llm cvo' (co))0. (29)

Here p+(pi) is the total (elastic plus inelastic) pr+-proton
cross section. Hence Eq. (19) may be restated to read

(30)

E . (19) d (20) bein e uivalent statements] In In deriving Eq. (24), use was made of th«ausalityr
order to establish the validity of Eqs. (19) and ( 0),
we first assume the contrary, i.e., that

't 0 =0 for x')0

lim A+(co) =0. (21)

exists. Using now Goldberger's approach' to the deri-
vation of the more conventional dispersion relations
and noting from the definition of A+(p~) that

A~( —pi)= —A (pi),

where A (pi) refers to s. scattering, one easily obtains
the relation

A+(cp ) A (Qi )
D+(~) =—P ~' + da&'+AC. (24

p - Gl N Cd+Cd

On the other hand, from the assumption

lim A~(E) =0,

Under the assumption of Eq. (21), the principal-value
integral

1 t."A+ (cv')
8M

l )
7I ~ oo M —M

while to obtain Eq. (27) one must assume

{J(x),J (0)}=0 for x')0 (31)

Equation (31) is an extended causality condition and
is certainly a reasonable one for fermion fields J(x) in
a local theory.

III. M REPRESENTATION

In this section we brieQy discuss some other results
that may be obtained by making use of the M repre-
sentation of the scattering amplitude. First, it is of

8 To establish Eq. (27) one must of course show that A+( —E)= —A (E). In evaluating A+( —E), E is replaced by —E in Kq.
(15) both in the exponential and in the spinor u„. It should be
noted that N~( —E) is a negative-energy spinor but normalized
in the "wrong way, " i.e., u~( —E)u„(—E)=+1, while the nega-
tive-energy spinors v~ are normalized such that 8„v„=—i. The
contribution to the integral in Kq. (24) from the region 0 &~' &p
and in Eq. (27) in the region 0 &E' &m can be evaluated by the
methods of Goldberger, Miyazawa, and Oehme. ' Both contribu-
tions lead to the same result.

'It is interesting to note that neither Kq. (24) nor Kq. (27)
reproduces perturbation theory. It is necessary to write down the
relation which contains a second denominator under the integral
in order to reproduce perturbation theory.
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course possible to derive all the conventional dispersion
relations in this representation. Thus, if one makes the
usual assumption that the cross sections approach a
constant limit in the high-energy region, one can form
the integral

1 t-" 2 (E')
—I' ' dE',

~ „(E'—E)(E'—Ep)
(32)

the extra denominator being required to insure con-
vergence. In this way one obtains the same results as
Goldberger et a/. ' The results are now consistent with
that obtained in the X representation since the extra
denominator produces the structure D(ce) —D(&oe) and
the XC term cancels out in the usual representation.

It is possible, however, in the M representation to
obtain other dispersion-type relations, not between the
real and the imaginary parts of the scattering ampli-
tude, but between other quantities which are closely
related. Thus, let us de6ne a quantity, V+, which is the
same as T+ defined by Eq. (5) but with negative-
energy spinors ~ substituted for I:

.(~(~) i
lim

I I
=0. (34)

Ã, h., Z, and E refer to the nucleon, A particle, Z
particle and E meson respectively and T, are the
isotopic spin-one matrices. On the other hand, a
nonlinear interaction such as (Ppsr, g)'g; would lead to
an extra term in Eq. (16), and thus certain nonlinear
interactions would make the proof less clear-cut. An
interaction structure of the form )t'pxtpxp, p; would
lead to an additional term in Eq. (24) of the form X'C',
where C' is a constant. The theorem would still be
valid, provided AC+X'C'WO. For the usual pseudo-
scalar Lagrangian it is perhaps possible that X=—0. This
does not seem likely, however, if we think of our theory
as being simply the limit of a theory with a cutoff. In
the above derivation we have made more speci6c use
of the Lagrangian than is usually done, in that we have
assumed the condition of Eq. (31) in addition to the
usual causality condition (30).

Symanzik, " using the so-called tangent approxima-
tion, has shown that

(4~')-'~+ =s ~e '"*ll(*o)8.(v I V(*),J (0) & I
v')"d'&

V"+. is not a scattering amplitude, ' but may be obtained
from the meson-nucleon propagator. However, one can
still break V+ into its "dispersive" and "absorptive"
part S+ and 8+ by writing 8(xs)=sL1+e(xs)$ and
derive "dispersion" relations based on causal restric-
tions. These relations are very similar to the usual ones
between D+ and A+. Similarly, one can obtain relations
for quantities where one of the spinors in Eq. (5) is a
positive-energy spinor and one a negative-energy spinor.
Thus it is possible to obtain other restrictions on quan-
tities such as propagators which one would calculate in
a Lagrangian approach.

IV. DISCUSSION AND CONCLUSIONS

Although the proof of the theorem on the high-energy
behavior of o(oi) was given for a specific Lagrangian,
one can see that a much more general Lagrangian could
have been assumed. The main point in the proof was
that D(&e) as defined in Eq. (12) contained an extra
term proportional to the direct meson-meson inter-
action constant, X, whereas D(E) as defined in Eq. (14)
did not contain such a term. One could add to the
Lagrangian terms containing the hyperon and heavy-
meson fields without aGecting the result. Thus terms
such as g~qrtprrt and QzT@Pzp; could be included where

' At first sight it might appear that V+ is the amplitude for
x+-antiproton scattering, but that quantity is proportional to
iJ'e '&*8(xe)ee(q~ (J(0),J(x)) ~

q')e„d'x.

Thus this result and the one derived above, taken
together, say that the total cross section must increase
less rapidly than co but more rapidly than co ' at high
energies. A cross section which approaches a constant
is of course consistent with both results.

As a corollary to our theorem it follows, of course,
that in one of the dispersion relations Lsay, the one for
D~(oi)+D (&o)J, at least one extra denominator must
occur. This introduces the scattering amplitudes at the
reference energy res. That is, D+(&uo)+D (coo) becomes
an extra parameter in the dispersion relations. Upon
choosing ~0=p the dispersion relations will involve the
following parameters: the coupling constant g', and
the sum n&+2ns of the zero-energy s-wave phase shifts.

In conclusion, it should be mentioned that the deri-
vation of the cross-section theorem given here follows
the methods of Goldberger, ' and hence is subject to the
same objections as to rigorous justification as Gold-
berger s original derivation of the more conventional
dispersion relations. A rigorous derivation of the
theorem using the procedures of Bogoliubov" seems
dificult because of the fact that Bogoliubov's approach
utilizes the total scattering amplitude, T(a&), while the
theorem as derived here seems to depend upon breaking
T(ce) into its dispersive and absorptive parts. "
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