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Specific Heat of a Ferromagnetic Substance Above the Curie Point
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High-temperature expansions for the specific heat of the Ising model are compared for the triangular
and f.c.c. lattices. It is concluded that the "tail" of the specific heat curve above the Curie point is much
smaller for the f.c.c. lattice, but is steeper in the immediate neighborhood of the Curie point. For the
Heisenberg model for the f.c.c. lattice the tail is larger but apparently much less steep.

' N the absence of an exact solution of the three-
s - dimensional Ising model, the best source of infor-
mation on the physical properties of the model would
seem to be exact series expansions for the partition
function at low and high temperatures. From the latter
it is possible to derive a series expansion for the specific
heat in inverse powers of the temperature, all the terms
in the expansion being positive. Thus the behavior of
the specific heat above the Curie point is determined by
the asymptotic form of the coeScients in this series.
To obtain reliable information regarding the nature of
the specific heat anomaly, care must be taken to evalu-
ate the coe%cients correctly, and the position of the
Curie point must first be estimated with considerable
accuracy. Comparison with corresponding expansions
for two-dimensional models for which exact solutions
are available can also be most helpful.

Kakefield' derived several terms of the expansion for
the simple cubic lattice, and although we have recently
discovered small errors in the last two terms, ' they are
not large enough to aGect his conclusions. However, it
seemed to us that close-packed lattices, for which both
odd and even terms occur in the expansion, could
provide more information on the nature of the specific
heat anomaly. Terms have been calculated up to 1/T'
for the f.c.c. lattice, and are as follows:

C„/R =6K'+48K'+390K4+3200K'
+26 584K'+226 374.4E'+1 971 090.6K'

+17428 723.2E'. (1)

Here K= I/kT, and —I is the energy of a pair of
parallel spins. The corresponding series for the trian-
gular lattice in two dimensions is

C„/R= 3K'+12K'+33K4+80K'+212K'
+649.6E'+2076.467K'+6652.953K'. (2)

two lattices, we express the expansions (1) and (2) in
terms of the reduced variable x= T,/T, and we find for
the f.c.c. lattice,

C,/R=O 06257x. '(1+0 8169x+. 0 6778x'.+0 5680x'.

+0.4818x'+0.4190x'+0.3725xs+0.3364x'), (3)

and for the triangular lattice,

C./R =0.2263x'(1+ 1.0986x+0.8298x'+0.5525x'

+0.4021x'+0.3384x'+0.2971x'+0.2614x7). (4)

In comparing (3) and (4), we may say roughly that
the term outside the parentheses represents the magni-
tude of the "tail" of the specific heat curve, and the term
inside the parentheses represents the shape of the curve,
particularly near the Curie point. It will be seen that
the magnitude of the tail is much smaller for the f.c.c.
lattice; this has already been noted by comparing the
values of the entropy at the Curie point. 4 But it will
also be seen that the coefficients decrease less rapidly
for the f.c.c. lattice and the specific heat curve is
therefore sharper (and is thus certainly infinite). The
extent of this sharpness can be analyzed by writing the
ratio of successive coefficients a ~i/a„ in (3) and (4)
in the form 1+g/is, and determining the value of
k(= g+1). A limiting constant value of k would corre-
spond to C„/R (1—x) " (k=0 corresponding to a
logarithmic singularity). Table I gives values of
k(=g+1) for successive terms for the two lattices.
The values of k for the triangular lattice are much less
regular than for the f.c.c. lattice, and we know from
the exact solution that they will ultimately settle down
to a value of h=0. The values for the f.c.c. lattice

TAnLE I. Parameter k=1 a+no„+~/—a„ for successive terms in
the expansions of Eqs. (3) and (4).

For the triangular lattice an exact solution is available
and the Curie point is known exactly (kT,/6J=0. 606826).
For the f.c.c. lattice, analysis of high-temperature
susceptibility expansions has yielded an estimate'
kT,/12J=0.816, and this should be within 1% of the
true value. To compare the specific heat curves for the

h(d lattice)

1.0986
0.5106—0.0025—0.0889
0.2079
0.2678
0.1589

h (f.c.c.)

0.8169
0.6594
0.5140
0.3930
0.3483
0.3341
0.3215
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decrease steadily, and seem to correspond to a singu-
larity less steep than (1—«) '.

It is interesting to look at the corresponding expan-
sions for the f.c.c. lattice for the Heisenberg model.
Fewer terms are here available, and corresponding to
(1) we now have

C /A=18K'+ 108K'+90K 8—40K'+6750K' (5)

The Curie point can be estimated from high-tempera-
ture susceptibility data as given' by kT,/127=0.695.
The reduced specific heat expansion corresponding to

(3) is now

(:/g=p 2588,s(1+0.7194,+0.07188''
—0.08044irs+0. 077501''). (6)

It will be seen from the term outside the parentheses
that the tail is considerably larger than for the Ising
model. However the terms inside the parentheses do not
show steady behavior, are much smaller, and are not
all of the same sign. They seem to be consistent with a
much less steep behavior near the Curie point, and
possibly a 6nite value at the Curie point.
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Electron and hole mobilities in silicon have been determined in a region in which ionized impurity
scattering is predominant. Resistivities were measured by a four-point probe and impurity concentrations
were obtained with radioactive tracers or from thermal neutron activation analysis. Measurements were
taken with several Group III and Group V impurities up to concentrations of 6X10" (cm ') and 6X10"
(cm ') for n- and p-type silicon, respectively. The conductivity mobility can be calculated from these
data by considering the percentage of ionized impurities. The electron mobility approaches 80 cms/v-sec
and the hole mobility 60 cms/v-sec for the highest impurity concentrations. The comparison with measured
Hall mobilities leads to a ratio pll/p, which agrees with theory. A comparison with the existing theory of
impurity scattering yields better agreement for n-type silicon than for p-type. In the latter the measured
mobilities are considerably smaller than the theoretical values.

INTRODUCTION

&~RIFT mobilities in semiconductors have been
theoretically calculated by several authors.

Values of the drift mobility in the higher concentration
range can be obtained from the theories of impurity
scattering by Conwell-WeisskopP and Brooks-Herring. '
In addition to this, several independent theoretical
treatments of the ratio of Hall mobility to drift mobility
for nondegenerate semiconductors are available. '—' All
treatments yield a ratio greater than unity. In the
degenerate case this ratio approaches unity since the
averaging of r over energy becomes unimportant.

Various measurements of Hall mobilities are published
for rs and p-typ-e silicon. ' ' They cover a wide range of
impurity concentrations and are generally in agreement.

Drift or conductivity mobilities have been measured
by Prince, ' Cronemeyer, " and Horn. "Only the data

E.M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).' H. Brooks, Phys. Rev. SB, 879 (1951).
3 H. Jones, Phys. Rev. 81, 149 (1951).
4V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 82, 977

(1951).
s F. J. Blatt, Phys. Rev. 105, 1203 (1957).' F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
P. P. Debye and T. Kohane, Phys. Rev. 94, 724 (1954).' R. Q. Carlson, Phys. Rev. 100, 1075 (1955).
M. B. Prince, Phys. Rev. 93, 1204 (1954).

'0 D. C. Cronemeyer, Phys. Rev. 105, 522 (1957).
F. H. Horn, Phys. Rev. 97, 1521 (1955)

of Horn include the high-concentration range above
10" (cm '), but they are restricted to boron-doped
silicon. His mobilities are higher than the reported
Hall mobilities but smaller than theoretical mobilities.
However, according to Carlson' the reliability of the
chemical calibration involved in this method appears
to be doubtful. Carlson applies a correction which
leads to lower mobilities.

The present investigation gives additional data
for conductivity mobilities in the higher concentration
range. Radioactive tracers or thermal neutron activa-
tion analysis have been used to determine impurity
concentrations. This method was applied to several
donor and acceptor elements.

METHOD

In heavily doped silicon the contribution of the
minority carriers to the conductivity is negligible.
Therefore, the conductivity mobility p is obtained from
the resistivity p by the relation

p= 1/qpN,

where n is the charge carrier density and q the magni-
tude of the electronic charge. In the present experi-
ments the resistivity was measured by a four-point


