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Intensity of Optical Absorption by Excitons
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The intensity of optical absorption close to the edge in semiconductors is examined using band theory
together with the effective-mass approximation for the excitons. Direct transitions which occur when the
band extrema on either side of the forbidden gap are at the same K, give a line spectrum and a continuous
absorption of characteristically different form and intensity, according as transitions between band states
at the extrerna are allowed or forbidden. If the extrema are at different K values, indirect transitions involv-
ing phonons occur, giving absorption proportional to (AE) & for each exciton band, and to (AEls for the con-
tinuum. The experimental results on Cu20 and Ge are in good qualitative agreement with direct forbidden
and indirect transitions, respectively.

1. INTRODUCTION

'NSULATING and semiconducting crystals are trans-
- - parent below a certain photon energy above which
the absorption increases rapidly. It has been known for
some time that this edge often shows a complicated
structure which may take the form of a series of lines.
This led Frenkel' to introduce the concept of excitons:
individual atoms are excited to higher atomic states
and this excitation moves through the crystal because
of interatomic interactions. More recent work' has
shown that a complicated structure may exist on the
absorption edge in semiconductors. In these substances
an alternative theory due to Wannier' provides a better
description. Band theory is known to provide a good
basic description of the electron states: the ground
state of the crystal corresponding to all states in the
valence bands full, and all those in the conduction
bands empty. Light is absorbed in exciting an electron
from a full to a vacant band across the energy gap-
a process which may be considered as creation of a
hole-electron pair. Because of the Coulomb attraction
between the pair, a hydrogen-like (or positronium-like)
state is formed with smaller energy than that given by
band theory. In media of high dielectric constant, where
the interaction is weak, this description of an exciton
may be carried out in the eHective-mass approximation.
Impurity states in semiconductors have been treated
extensively in this way by Kohn, Luttinger, and others, 4

and Dresselhaus' has recently demonstrated the way in
which the method may be used for excitons. In the
case of strong interaction the hole-electron pairs are
con6ned to a single atom, corresponding to Frenkel's
description.

Detailed measurements of the absorption edge in
germanium by Macfarlane, McLean, Quarrington, and
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3 G. Wannier, Phys. Rev. 52, 191 (1937).
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Roberts' show a structure of a different kind which
we believe, is also due to excitons. In this substance the
maximum in the valence band and the minima in the
conduction band have different wave vectors K,s and
KA,', so that creation of hole-electron pairs of lowest
energy are forbidden by momentum-conservation con-
siderations. Hall, Bardeen, and Blatt' have shown that
such indirect transitions can take place if a phonon of
wave vector K,'—Ks' is simultaneously created or
destroyed. Kxcitons will be formed with lower energy
but those of minimum energy will have a wave vector
K,s—Kq'. Indirect transitions using a phonon can also
take place to these states. '

The theory of the intensities of both direct and in-
direct transitions is considered in this paper, the
effective-mass approximation being used. As well as
the bound exciton states, the effect of the Coulomb
interaction on the unbound hole-electron pairs is in-
cluded. Unfortunately, detailed calculations using the
known form of the energy bands in a substance like
germanium are exceedingly complex. Quantitative cal-
culations are therefore only carried out on a simple
model with spherical bands, but qualitative results can
be derived which allow some comparison with experi-
ment and which should be of use in analyzing new data.

2. EXCITON WAVE FUNCTIONS

It is convenient to use the formalism employed by
Dresselhaus with some change of notation. The exciton
state is expanded in terms of the Bloch functions for
the perfect periodic lattice. For this case of weak
electron-hole interaction, only the functions belonging
to the highest valence and lowest conduction bands
need be considered. In fact, for the exciton states of
lowest energy which are most prominent spectro-
scopically, only the band states near the extrema are
important. If, however, one or both of the extrema are
degenerate, summations over these bands are necessary.
For this case the exciton of type e and wave vector K

Macfarlane, McLean, Quarrington, and Roberts, Phys. Rev.
108, 1377 (1957), preceding paper.

Hall, Bardeen, and Blatt, Phys. Rev. 95, 559 (1954).
8 This possibility was predicted independently by Dresse+aus, '
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may be written

IKr)= 2 +*.I'~ ~' "IK.,j; K~,j'),
Ke, KA, , j,j'

For the bound states, H„is the normalized hydrogen-
atom function with reduced mass p=m, mq/(m. +ma)
and effective charge c '. The energy

where the state on the right has an electron with K, in
conduction band j and Bloch function QK„;(r,) and a
hole with Kq in valence band j, i.e., an electron missing
with Bloch function P —Kq, ~'(rq). The states involved
are restricted by the relation

pe' O'E' G

2 (m, +noh) 2Pe'e' 2M e'

and the effective "Bohr" radius. is

g $2 e/pe2

(2.8)

(2.9)
K,+Kg ——K.

The Fourier transform of 0,, ; K " may be written

, —(+B)—',eix Ry. ,x, n(r)

(2.2)

(2.3)

For the unbound states H„is given by a Coulomb wave
function which apart from the usual normalized spheri-
cal harmonic has radial dependence, ' for angular
momentum l,

where R is the mean hole-electron position, r the rela-
tive position

R=-', (r,+r„) r= (r.—r~), (2.4)

8 is the volume of a unit cell, S the number of such
cells in the crystal. Equation (2.3) represents the wave
function of the exciton's over-all motion in the crystal.
Superimposed upon this is a modulation produced by
the atom cores. This effect is included by the Bloch
functions in (2.1).

The effective-mass approximation gives (2.3) as a
solution of a Schrodinger-like equation,

L~.(p+ 2 P —p')+3'~( —p+k P—p")+I'(r)1C'
=EC. (2.5)

Here p, P are the momenta conjugate to r, R; and

p 0, pq' are A times K,o and Kq', the wave vectors at
the band extrema. X, and K& are obtained by writing
the energy relations in these bands which are quadratic
functions of the momenta A(K —K') in operator form.
With degenerate bands, (2.5) becomes a set of simul-

taneous differential equations for the C;, . V(r) is the
electron-hole interaction e'/er, where —e is the di-

electric constant.
It is sometimes convenient to transform (2.3) in

this general case to

R=e& II'(/+1 —io.) I
(2kr)'

Xe'~'F( in+—(+1 2l+2 2ikr)/—

(EB)'(2l+1)!, (2.10)

where the energy of relative motion E=A'k'/2p, F is
a hypergeometric function, and n= (G/E) l.

3. DIRECT TRANSITIONS

The transition probability per unit time, in an energy
density of incident radiation given by p(v) as a function
of frequency v, is

1—
I (Ol 0

I K,e) I'B(Ep—Ex,.+he) p(v)
Av

(3.1)

between the ground state and excited state IK,N).
Here 0 =e'&'( j, where j is the current operator acting
on electron states, and q, g are the photon wave and
polarization vectors. For the linear combination (2.1)
of hole-electron pair states,

1(0 I
~ IK,~& I

iek
O'K. ,Ka.~',~'"'" PK, ,~*e"'—( VP x&,,' . —

Eel j j' m
(3.2)

Because of momentum conservation we have effectively
K,= —Kz so that the only transitions which can take
place are to K=o. There will therefore be a line spec-
trum from the K=o states of the exciton bands, fol-
lowed by a continuous absorption. The f values for
the lines. are given by

C =expl i(K,'+Kq') R)e'x''"

XexpL-', i(K.'—K ') r)g'(r)/(XB) &, (2.6)

so that the equation for e'x''"p'(r) is the same as that
which would hold if the two extrema were at K=o.

A simple case which will be examined in some detail,
since it has a well-known analytic solution, is that of
two spherical single bands with effective masses m, and
mt„which has the same equation (2.1) as in the hydro-
gen atom case. It is convenient to write the solution in
a form slightly different from (2.3), namely

2m
(ol lo,

he'v
(3.3)

C =exp(iK p)H„(r)/(ll!'B)&

where y is the coordinate of the center of mass,

In the continuous absorption a sum over the quantum

(2 7)
numbers e describing the relative motion Lwhich are
here conveniently taken as k and i as in (2.10)$, gives

p —= (m, r,+tn@rI )/(m, +mq).
9 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions

(Clarendon Press, Oxford, 1949), second edition, p. 52,
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an absorption coe%cient

2x
K =—

I (0 I
cr

I O,rl) I
's„(E), (3.4)

In the true continuum where hv —E„~=E&0,one
obtains from (2.10):

where s„is the density of states IO, r4) per unit energy
range at energy E.

There are two cases which will be considered
separately.

(O,jlo I O,j')= 2lrvex, (3 3)

where in the tight-binding approximation ex;; is the
dipole moment between the atomic functions which
make up the Bloch functions in bands j and j'. It will
always be of the order of magnitude of an atomic dipole
moment.

Equation (3.2) therefore becomes

(a) Allowed Transitions

In this case the integral in (3.2) is finite when K,
represents the band edge, which for convenience we
take at the center of the Brillouin zone. Since only a
small range of K, is important in the sum (3.2), it may
be assumed as a 6rst approximation that the integrals
are independent of K,. It is convenient to write

I+(0) I'=
(NB) sinh(2m)

(3.11)

s(E) = (NE&/22r2) (2lt4/fi) &,

(b) Forbidden Transitions

In this case the integral in (3.2) is zero at K,=O but
for small values of K will be proportional to E.

&Kij le I K~j')=22rve((. K)*;,', (3.13)

where x' is a quantity which is roughly the square of
the atomic radius. Therefore

&Ola IO,e)= p 2lrve((. K)x,, '@K -K

K =Slr2N ve2X'42e (2la) 'E'*/CA2 Sinh(2m). (3.12)

This is continuous with the exciton absorption at E=O
when n —+ ~. For E))G where n —+ 0, ~ becomes pro-
portional to E' in agreement with the calculation of
Hall, Bardeen, and Blatt~ who neglected the electron-
hole interactions.

&OI~IO,~)= 2 2~vex ' (+x.-x.s, ' gy, .,0, m(0)=g 2zvex, j2
(3.14)

=p 2lr veX,,'.$(NB) ly;, l. '"(0), (3.6)

where we have used definition (1.3). Considering un-
polarized radiation, we obtain

f-=NBg
I 2 'x '0 ' "(o) I', (3 &)

where gx;,' is the f value of a transition with dipole
moment ex,; .

For the simple case of two spherical bands of masses
m, and m&, P(0) is nonzero only for s states, where

,0, n(0) 2

j„=NBgP x,r2 (3.15)

where gx;;. is the f value of an atomic transition with
dipole moment ex;; .

For the simple hydrogenic model used before,

when one uses definition (1.3). The gradient of P at the
origin is taken in the direction of polarization. For
unpolarized incident radiation, therefore,

I

y0, n(0)
I

2 (~a2N3) —i

A series of lines is therefore predicted at energy

(3.8)
gyo, n(0) 2 +2

3me'u'
(3.16)

hv =EK.,—G/222, (3.9)

1 )BEq-' G~

B Ear)
(E=EK.V —hv)

2BE$

with intensity falling like 22 '. The f value per atom in
the 6rst line is of order (atomic radius/exciton radius)'.
As the absorption edge is approached, the infinite
number of lines will overlap so that it may be con-
sidered as a continuum. The density of states is

only p states giving a nonzero result. A series of exciton
lines thus occurs at energies (3.9) except that the irst
line is now missing. For small values of e, the intensity
does not fall off so rapidly as in case (a). The f values
are smaller, being of the order of (atomic radius/
exciton radius)' per atom. At large I values the lines
overlap to give a continuum with

K= (Slr'Nvx40/3a4c) $1+(hv —EK,V)/G j. (3.17)

In the true continuum, where hp Eg p E&0, we
have from (2.10)

giving
K= Slr Nvx 0/a ci

independent of energy,

(3 1o) Bg(0) ' lr (1+n2)e h'

Br 3NB sinh(ln2)
(3.18)
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so that

&&=8~'Eve'x'(1+n')ne (2p) &E'/3eh' sinhna. (3.19)

This is again continuous with (3.17) and varies like E'*

well away from the edge, in agreement with reference 7.
The spectrum is on the whole weaker by the factor

(atomic radius/exciton radius)' than in case (a).

' S. Nikitine, J. phys. radium 17, 817 (1956)."R. J. Elliott, Phys. Rev. 96, 266 (1954).' "Atomic Energy Levels, " National Bureau of Standards
Circular 2, 1952 (unpublished)."J.Apfel and L. ¹ Hadley, Phys. Rev. 100, 1689 (1955).

(c) Discussion

In an actual crystal the spectrum may be expected
to differ in detail from the simple model calculated
above. In the case of degeneracy at one band edge the
exciton states will also be degenerate and g will be a
solution of a more complicated equation. It may, how-
ever, be expected that there will be two classes of
exciton spectra corresponding to the two cases given
above.

This broad classihcation does seem toshave some
application in practice although no f values have been
reported in the literature to the author's knowledge.
HgI2, PbI2 for example have one very intense line. "
Cuprous oxide, ' on the other hand, agrees very well with
the theory of the second kind. Two exciton series have
been reported arising from a near degeneracy in either
of the bands. Just such a small splitting of otherwise
degenerate bands may be caused by spin-orbit coupling. "
If the highest valence-band edge has wave functions
built from triply degenerate d functions, this splitting
will be 2) (where X is the spin-orbit coupling constant),
giving a single band higher and a doubly-degenerate
one lower. In atomic Cu++,"X=828 cm ' giving reason-
able agreement with the observed splitting of 1050 cm '.

At the center of the zone in this cubic crystal single
bands are spherical, and the conduction band is pre-
sumably single (probably a Cu s band). The low-energy
(yellow) series should therefore be correctly treated by
a hydrogen-like model and indeed the exciton series
agrees to within experimental error with

he=EN. p
—(G/e'),

for m=2, 3 .9. The e=i line is however very weak
while the intensity of the others appears in qualitative
agreement with (3.16) on the evidence of the 6gure
given by Apfel and Hadley. "Thus the picture of for-
bidden transitions gives good agreement and it would be
interesting to see if the absorption coefFicient on the
edge has the predicted E& dependence. The higher
energy (green) series has a similar behavior If the.
above interpretation of the band splitting is correct,
the excitons should have a double degeneracy like the
valence band. The energy surfaces in this band must
however be nearly spherical, although in principle

"Quting" would be allowed as observed" in the valence
bands of Si and Ge. The weak e= 1 line is at consider-
ably lower energy than the hydrogen model predicts.
This is paralleled by a similar e6ect in impurity states, 4

and is due to the breakdown of the effective-mass
approximation at small r where V(r) is no longer slowly
varying. The effect is appreciable only in s states where

p(0) is large. Other weak lines observed by Gross may
be other s states, but it seems that the exciton spectrum
of Cu20 is actually more complex than the above
model predicts in spite of the excellent agreement with
the predominant features.

Germanium would provide an interesting case of the
first kind since the lowest energy direct transitions occur
probably at K=O and are allowed according to theo-
retical predictions. " The experiment is difFicult since
the main line is only about SX10 ' ev away from the
continuum, but preliminary measurements at R.R.E.
indicate that the absorption rises here much more
rapidly than E".

4. INDIRECT TRANSITIONS

Transitions to exciton states with K~O may take
place with simultaneous creation or destruction of a
phonon. The transition probability (3.1) is now pro-
portional to

(0, e»~o [Op; e»)(0,~; n»~K„[K,e; I»a1) '

Ep —Ep i

&(5(E»,„—Eo~ka&» —hv), (4.1)

where the sum is over all intermediate states. K„is the
electron-phonon interaction operator which changes the
phonon population number eK by one. The alternative
signs refer to creation and destruction. Momentum
conservation in the second matrix element restricts the
phonons taking part. to have wave vectors —K in
creation and K in destruction.

Expanding the states in Bloch functions as in (2.1)
the second matrix element may be written

O, iPli
pl )'fir

X[@,, », , ;",; "(—q, j'"~K„~K—q,j')
++ ., —,;;- "(q,j"I~.IK+q,j)j, (42)

since the phonon interaction operator has a similar
form for all. electrons and therefore can change either the
hole or the electron state but not both simultaneously.

Exact calculations of (3.1) are clearly quite compli-
cated and it is convenient at this stage to make ap-
proximations and consider a more specific model. We
assume the maximum in the valence band is at K=O
and is doubly degenerate, the minimum in the conduc-

'4 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1954);
Dexter, Zeiger, and Lax, Phys. Rev. 104, 637 (1956).

'5 F. Herman, Physica 20, 801 (1954).
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(0 c~X
~

K co)—2 Oexo'

(K,vox, iO, ii)=B-im„,&
(4.4)

(4 5)

where 1 denotes the two valence bands v~ and ~2. Crea-
tion processes are obtained by replacing e«& by
(nz, +1)'. Thus the summation in (4.1) becomes a
summation over bands and the matrix element is

A ct'pxcv
~

+Z
E (0)—Eco(Kp) & Eyi(0) Ee(KO)

Xexo'* P 4'q, x-g, co,e, ". (4.6)

The first sum represents creation of hole-electron pairs
at K=O and scattering of the electron to K=KO, the
second represents creation of pairs at Ko and scattering
of the hole to K=O.

Thus in this approximation, when the sum of q is
performed as in (3.6), the matrix element can be
written

ZiCiqko. ix "(0)e„ol, (4.7)

where Ci represent the complicated factors in (4.6).
indirect transitions to exciton states give rise to a

continuous absorption since phonons may be found to
give transitions to all K values. For the simple case of
nondegenerate bands on both sides of the gap, the
resultant formulas are simple. There is only one term
in (4.7) and p'(0) as de6ned in (2.6) is independent of

tion band at K=KO and nondegenerate. The lowest
exciton states will therefore have K=KO and for con-
sideration of the band edge we are concerned only with
states of K close to this value. For weak electron-hole
interaction such states are built predominantly from
hole and electron states close to the extrema. Therefore
NK8, KQ;J;i "" are only large if K, Ko, K& 0;J =co
and j'=~&, ~2 enumerating the bands.

To calculate the summation over intermediate states
in (4.1) the energy denominator is neglected for the
moment. The intermediate states can therefore be
chosen to be simple hole-electron pairs for specific pairs
of bands and the first 4 in (4.2) is unity. Because of the
form of O'K" only intermediate states with pairs of
K 0 or K Eo give an appreciable contribution. For
each of these groups of pairs the energy denominator
will not vary greatly, and it may be considered con-
stant —so justifying its neglect in the summation. Only
those groups of pairs for which optical transitions are
allowed will give an important effect so that the erst
matrix element in (4.1) may be considered constant for
each group, and from (3.5) is put equal to

2m-sex,„'and 2m sex'„,K' (4.3)

for pairs in valence band v, conduction band c at point
0 and Ko, respectively. The second matrix element may
also be considered roughly constant over these small
regions. Considering for simplicity only phonon
destruction

K. The density of states in a single exciton band is

]2M„q—:

) [E,-(K- K,)]-:,
&a ) (4.g)

where M is the "density of states" effective mass. The
resulting absorption is proportional to

D(2M /A')l~y'(0) ~'(ki —Eg,p+E, x' "+As)x )''

X (~„,+ -,'~-,') (4.9)

for phonon destruction and creation, respectively. Thus
there are two contributions beginning at diGerent
energies and with a different temperature dependence
given by

ii„,= [exp(ha&„,/kT) —1] '. (4.10)

Each branch of the phonon spectrum will give a con-
tribution with a diferent intensity, determined by the
different phonon matrix elements occurring in C, and
with a different co«.

The simple assumption of spherical bands centered
at K=O and Ko is not so realistic in this case since
even in a cubic crystal the band at Ko will be aniso-
tropic. Nevertheless, it will be used to give an indica-
tion of some of the e8ects because of its analytical
simplicity. The contribution from each exciton band
has relative magnitude given by ~p'(0) ~'~e ' [see
(3.8)], and begins at energies E~,~—G/rPWAa&z, . After
the erst few have been superimposed, the total ab-
sorption is

(G+E)~/3G, E(0 (4.11)

where n=G(E —X)l. If E»G, the first factor is unity
and the usual result for pairs is reproduced:

(2(m, mi, )&) '.=D(~,y-', ~-;)
~ )

X (hi —Eg,ywha)K, )'. (4.15)

[(G+E)1—E&]/3G, E)0 (4.12)

where E=hv —E„~&Ace«.The first exciton band alone
gives a contribution proportional to (G+E)l as may
be obtained from (4.9).

Beyond the series limit, i.e., for E&0, there is
further absorption from the continuum. Using (4.7)
and (2.10) the absorption coeflicient is obtained by
summing contributions proportional to (3.11) over all
values of the relative motion k and over all motion K
subject to the restriction

i''E'/2M+5'k'/2p =E. (4.13)

If we change variables to E and X=A'E'/2M —5'k'/2p,
the absorption coeKcient is

t
~ ~ne ~e&, f2(m.mi,) 'q '

D ' . I, I
(E' X') id', (4.14)—

sinhmn & k' )
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At general E the integral (4.14) has no analytic solution,
but as E tends to zero it has a linear dependence.

For an actual crystal it is probably not valid to use
this simple theory to give anything but crude estimates
of ~P(0) ~' (the probability of electron and hole being
on the same atom) and the density of states.

In general, the form of the absorption edge will begin
like (E+G)'*for each phonon contribution, have a
rather complicated dependence when 8 0 and become
like E' when E))G. At large E, however, the result will

be affected by second-order efIfects neglected in the
preceding calculations.

For degenerate bands, however, the form of the
absorption is more dificult to predict, since the energies
of the exciton bands will not be given even approxi-
mately by the above model and g(0) will not be inde-
pendent of K. Thus the initial (E+G)l law will only
hold when (E+G)«G. The E' will hold as before at
larger E.

Indirect transitions may also take place if the ex-
trema are at the same K values, producing weak con-
tinuous absorption beginning close to the energy of the
direct transition line and increasing with photon
energy. '

5. DISCUSSION

Macfarlane et a/. ' have observed structure in detailed
examination of the absorption in germanium which
may be interpreted in the light of these results. There
are two contributions to the spectrum arising from
each of two phonon branches. The exciton energies so
determined, about 5X10 ' ev are in rough agreement
with a spherical band model with mean effective masses
substituted.

In the general theory developed above, it was shown
that in principle all phonon branches should give a
contribution so that if the extrema in Ge were at
general points in K space there would be six. The evi-
dence of cyclotron resonance" shows that the valence-
band maximum is at K=O, and the conduction-band
minima in the (111) directions. The actual position of
these minima was uncertain. When one uses' the new
accurate measurement of energy gap, the intrinsic
conductivity indicates that the minima are at the edge
of the zone at point L. The occurrence of only two
phonon effects is further strong evidence for this.

A selection rule can be obtained using group-theo-
retical arguments showing which phonons can actually
scatter the electrons and holes in the required way. The
argument can be stated simply in this case since the
wave functions at L have parity with respect to the
inversion operation in the unit cell. Herman's" theo-
retical calculation of the band structure indicates that

"This is in disagreement with a contention of Dresselhaus'
that this mechanism produces a line width.

the wave functions at these minima transform like
irreducible representation L~+ (1.6+ if spin-orbit effects
are included" ) of the group of l.. The wave functions
at the valence band maximum are also even, trans-
forming like Fs+. A hole-electron pair created by a
photon must have odd over-all parity so that the inter-
mediate state in (4.1) must have odd parity. But the
Anal electron-hole pair has even parity I6+&(r8+ so the
phonon interaction must change the parity of the state.
Only the longitudinal and degenerate transverse acous-
tic phonons which transform like L2, L3 can do this-
the optical modes are even. The exciton functions also
transform according to L and this selection rule thus
holds for them as well as for simple pairs. The selection
rule is relaxed away from the actual extrema, but
transition probabilities are still zero to 6rst order in the
preceding theory. If the minima were away from the
edge the optical modes could take part; for example, in
Si four phonon effects are to be expected.

It has not been possible to make detailed calcula-
tions of the absorption expected for germanium, be-
cause of the complicated form of Eq. (2.5) arising from
the degenerate valence bands, but qualitatively it
agrees with the theory discussed above. The two con-
tributions from the longitudinal phonons begin like
(d,E)'* and vary like E' at larger E values, exactly as
predicted. The contributions from the transverse
phonons are weaker, and the exciton contribution is
weaker relative to the continuum than it is in the
longitudinal case. For single bands these contributions
have the same relative intensity [see (4.9) and (4.15)],
but if there is degeneracy this is no longer true. The
relevant factor in the theory is ~g&=&, &C&&.O.P "(0) ~'

from (4.7). The C~ are different for each phonon species
and the weighting in the continuum CP+CP is therefore
di6erent than that for the exciton.

The energy dependence of the transverse phonon
contributions is also different being roughly (AE)~.
This is possible theoretically if (4.7) is very small when
K= Ko so that the major contribution is proportional
to K—Ko. No group-theoretical selection rule seems
possible to give this result and it must be attributed to
a numerical effect which can only be checked by de-
tailed calculation. In general all contributions should
begin like (AE)', and this appears to be the case in
silicon from preliminary results of Macfarlane et al.
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