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more than two or three mean free paths is generated
by the spectrum of unscattered photons. This spec-
trum peaks near 3 Mev (see Fig. 5) reflecting very
strongly the shape of the absorption coeKcient curve.
About one-third of the scattered radiation is produced
in single collisions; the remainder cannot result from
many more interactions since the distributions at the

various angles peak at energies only slightly lower than
the maxima of the single scattered spectra (see Fig. 3).
The lowest energies are suppressed by the high photo-
electric cross section in lead and in this particular case
by the presence of the boundary.

The authors wish to thank Dr. M. J. Berger and Dr.
L. V. Spencer for their help and advice.
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The Boltzmann transfer equation is solved for the distribution function of electrons moving under the
influence of a constant magnetic 6eld and a high-frequency electric 6eld. The power absorbed from the
microwave is calculated for the two customary assumptions: (a) constant mean free time, and (b) constant
mean free path.

For the case of constant mean free time, the absorption spectrum exhibits a "Lorentzian" resonance
peak. The half-width of this line gives a direct measure of the collision frequency. Experimental data in
support of this result are presented. The constant mean free path assumption leads to integrals which can
be evaluated closely by the saddle-point method, and the results are presented in graphical form. It is
found that the line shape is not very sensitive to the dependence of the collision cross section upon electron
velocity.

I~~BSERVATION of cyclotron resonance with slow
electrons in gases presents an opportunity for

determining collision cross sections. The purpose of
the present paper is to examine the simpler details of
this problem, both from the experimental and the
theoretical points of view. It is possible to derive the
relevant equations for~the case of a constant mean
free time by following the method of Lorentz, which
involves nothing more than a damping term and the
force terms representing the electric and magnetic
fields in the oscillator equation for the electron. Here,
all results are derived from the Boltzmann transfer
equation, which is the required starting point for
investigations that envisage more general situations.
A typical calculation shows, however, that equality of
resonance half-width and collision frequency is prac-
tically valid even when this quantity depends on
electron velocities, as it does in the case of a constant
mean free path.

I. BOLTZMANN TRANSFER EQUATION

The distribution function will be approximated by
a three-term series. One term describes the undisturbed
isotropic distribution; the others account for the
anisotropy induced by the fields.

* Supported by the Once of Naval Research.

The Boltzmann transfer equation which describes
the velocity distribution of electrons subject to a
constant magnetic field H and an oscillating electric
field E cos~t reads

Bf/Bt+T cosoit 7f+(rosXv) V'f=Af/Af, (I)
y=eE/m; res= —eH/rlc; E=kE; H= jH,

where i, j, and k denote unit vectors in the v„v„,
and v, directions respectively. f(v, t) is the distribution
function denoting the density of electrons with velocities
about v, and V' is the gradient operator in velocity space.
Af//At indicates the rate of change in f(v, t) due to
elastic collisions. We neglect inelastic collisions and
electron-ion collisions and assume that the electrons
take on that velocity distribution which corresponds
to the combined action of elastic collisions and the
fields. The absence of a space-gradient term in (1)
implies furthermore that the space distribution of the
electrons is uniform.

When only an electric field is present, it is customary'
to expand f(v, t) as a series of Legendre polynomials
in v,/m= cos8. The presence of the magnetic field
changes the symmetry about the polar (n,) axis. It
becomes necessary to add a term to describe the

' H. Margenau, Phys. Rev. 69, 508 (1946).
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azimuthal (y) dependence. We take

v b(v, t)
f(v, t) =fo(v, t)+

taking

&fo m B (v fop kT B |' v'Bfp)

At Mv'Bv 0 li ) Mv'Bv (X Bv)
(10)

Intuition suggests and subsequent calculation shows
that'

b(v, t) = igi(v, l)+kf, ( vl). (3)

It is well to note that (2) may be regarded as an
expansion of f(v, t) in spherical harmonics since it is
equivalent to the series

f(v~l) =Pp(v~1) I p (8~p)+PiF'i +Gi(Fi +Pi ) (4)

provided 8 is the polar angle between v, and v, and q
the angle between v and the projection of v upon
the v,—v„plane. The form of f(v, l) given by (2) will
often be used because it proves more convenient for
the ensuing calculations.

fv b). v t'v b)
a&E v) Z& v)

Here ) is the mean free path for electrons, M the mass
of the gas molecules, k the Boltzmann constant, and
T the absolute temperature.

II. SOLUTION FOR DISTRIBUTION FUNCTION

When the preceding results are collected, the transfer
equation, (1), takes the form

Bf, f, v'B pfiq v... B (gi
+coscply —+——

I

—I+
Bt v v Bv E v ) v Bv E v )

Component Terms of the Boltzmann Equation

Substitution from (2) and (3) into (1) yields terms
which are written and discussed separately below.

Time derivative. —No manipulation is necessary, and
direct substitution of (2) into (1) gives

Bf Bfp v Bb
+——

Bt Bt v Bt

Electric field term. —Since

v Bfp
Vfp=

v Ov

and

v iBb Bfo'
+— —+i.b—pipXb+cosppty =0, (12)

Bt Ov

where i,=v/X is the collision frequency for electrons.
Equation (12) is of the form

v B(vt)
~(v, l)+ =C'oI'o'+C'iI'i'+I'i(I'i'+I'i-')

and we take the necessary average over directions by
first multiplying the equation by I'0' and integrating,
then by I &', etc. In each case the orthogonality of the
spherical harmonics eliminates all but one coefficient.
The following two equations result from this operation:

(v b) b v B ~gi) B (fi)&I=-+- '—
I

—I+'—I

—
I

v v. Bv E v ) Bv E v ) (7) Bfp cosppf B m B f v fp't
+ —(~~.b)

Bt 3v' Bv Mv'Bv ( lI, )
the electric Geld term becomes kT B ( vo Bfp)+ —

I

— I, (13)
Mv'Bv& X Bv)

'fi v.' B (fa)
cos&ply Vf=cospply —+——

I

—
~I

v v Bvl. vJ /B
I

—+i,—pipX Ib= —coscoly
I B& ) Bv., B

hagi)

v LBfp—
I

—I+
v Bv( v) ~ Bv

b= —(Bfo/Bv)Q,

The solution of (14) is elementary and is given in the

Magnetic field term IIsing (.
—6) and (7), we find the Appends. We find

the contribution of the magnetic Geld term to be (13)
(cppXv) Vf= —v (ppbXb)/v. (9) where

Co/vision terms. —Only elastic collisions are con-
sidered, and we follow Chapman and Cowling' in

I
[y(j~+i.)+pp ox']

Q=Re g70j g

(p op+ (jp~+ v.)'
(16)

'Were it not for the fact that E and H are perpendicular, it
would be necessary to include a third term in b to account for
electron motion along H. See R. Jancel and T. Kahan, Nuovo
cimento 12, 573 (1954).' S. Chapman and T. G. Cowling, The Mathemutica/ Theory of
Nonuniform Gases (Cambridge University Press, Cambridge,
1939), pp. 348 B.

B fv' cospily. b mv'fp kTvp Bfpq
I
=o.

Bv& 3 3A. 3A, Bv)
(17)

To solve (13), we assume fp(v, l)= fp(v). Then (13)
reads
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(cosa&ty b)~= —sv,A(&o, v,) (8fp/8v),

We now perform the time average of cosp&ty b and we then find on carrying out the integration:

f,(v) =C exp( —x') L1+x'/(x, +n)]., (26)

where for brevity we have de6ned

1
A (~,v,)=—

I + !. (1g)
2 E Vc + (Gp (db) — va + (M+Mb) j

Equations (17) and (18) lead to the solution

M t'eEXq2
n= I, I, x'=nsv'/2kT', xg m—d—/2kT'

24m &kT'j

A more manageable form is available by expanding

x2

lnfp=lnC —x'+n ~ e ~

xg+n 2(xi+n)' 3(xi+n)'
22bvdv

!p(v)=Cexp, —
J, kT+MA/6j'

(20)

fp(v) =C exp — x'—
xg+n

x4,
2 (xg+n)'

where
(a) Constant Mean Free Time

For the case of constant mean free time, evaluation
of (20) is quite simple since the denominator of the 4 g2kT~&
integrand is independent of v. We get for fp

Terms of order x' and higher may be neglected, with
which, for en~=a, is identical with that obtained in the result that
reference 1. We will evaluate the integral in (20) under
the assumption of (a) constant mean free time and (b)
constant mean free path.

222 ) ' ( 22bV' y
p(v) =22 ! exP

E22rkT*j I 2kT*&
(21)

Xexp— x2-
xg+n

nx4
(2g)

2(xg+n)2 l

where
T*=T (1+MA/6k T),

III. CURRENT DENSITY AND POWER ABSORPTION

and the constant C has been axed by requiring

~00

4n fpv'dv =22,

The current density, I, is given by

ice pI=
I bv'dv.

3 p

(2g)

where e= electron concentration.

(b) Constant Mean Free Path

We rewrite 3 as

Because of (15), I assumes the form

42re t" BfpI=— '

Q v'dv.
av

(30)

p92 1
(23)

(v2+y2(~ ~b)2 v2+g2(~+&b)2 j
and introduce the parameters

a=M799/12 c= 'A2((a+cob)'

z=v', d=X2(co—s)b)2.

Equation (20) now reads

(222/2) ds
fp (v) =C exp I— (24)

"p kT+a/(s+c)+a/(s+d) &

Since c&)v2=2' in order that resonance be observed, 4 we
simplify the calculation greatly by taking a/(s+ c) =' a/c.
On letting

(a) Constant Mean Free Time

The integration is elementary since Q is independent
of v. A single integration by parts leaves us with

I=eQ42r fpv'dv.

Because of the normalization restriction on fp, this
is simply

I= 22eQ.

The average power absorbed by the electrons (P) is

I'= (I E cosset)&.

T'= T(1+a/ckT), (25) ee28' &c

4 It is necessary that ~&v, (and thus co) &v,X=v) if the electrons
are to gain enough energy between collisions to exhibit resonance. 4222 v,'+ ((o—o)b)2 v.2+ (co+cub)2.

(32)
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where
f' X ds

J„(x;)= I exp (—tix' —Px'),
p X2 X;

I0
)C

«Q
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FzG. 1. Half-width of cyclotron-resonance curve as function of
pressure p for electrons in hydrogen gas.

J (xi) = x dx exp( —tix' —Px'),

mc
P= $2

xt+n 2(xi+n)' 2kT'

For P we have

tse'E'X — Js(xi)+Js(xs)

6(2mkT') I

The constant mean free time case can be realized
experimentally for electrons in hydrogen when the
average electron energy is above 3 or 4 volts. Thus,
breakdown experiments in hydrogen at cyclotron
resonance provide a check of this case.

If we express the power absorbed by the electrons

t Eq. (32)7 as P= tie'E, '/4tnv. , with

2v
p2

v.'+ (o~—a)s)' v.'+ (o~+oio)'

(b) Constant Mean Free Path

Since we are interested in (I Ecosoit), , we need
calculate only the part of I which is parallel to E and
which varies as cosset. We denote this portion as I„.

2s.Aycosoot ~" ( e' o'
I„= + /d fo.

3 & o (e'+c e'+d ~

Substituting for y and for dfo from (27) and (28) we get

tse EX coso~I Js(xi)+Js (xs)
Iy—

3 (2risk T') ' J*(xi)
Jr(xi)+Jr(xs)

+2P
J*(xi)

(33)

it is helpful to view breakdown as a function of magnetic
field for a given pressure as a constant E,process. Thus,
using only the second term on the right above when
~=too and (or+&os)'»v, ', we see that P as a function of
cob should have a half-width equal to v..

Experimental verification of this, and anticipated
deviations therefrom below the pressure where diffusion
no longer governs loss, is shown in Fig. 1. These data
were taken at 3000 Mc/sec frequency at cyclotron
resonance in a T3fp&p-mode cylindrical cavity with a
uniform magnetic Geld at right angles to the electric
field in the cavity. Each point corresponds to the
"half-power" width (hors) of a breakdown curve
obtained at the indicated pressure. For comparison
the value v, =5 X10oP is also plotted where P is pressure
in mm Hg.

Jr(xi)+Jr (xs)
+2P

J*(xi)
(34)

When the resonanc econdition (oo = coo, xi——0) is satisfied,
P takes the simpler form

ee'E'X I'(-,')
6(2mkT')-: I'(-,') (2n)-:

(35)

provided we ignore the nonresonant term Jr(xs) which
is quite insignificant in comparison with Jr(xi=0).
Evaluation of J~(xi) and J'*(xi) by the saddle point
methodt introduces an error~ of not more than two
percent in P. In Fig. 2 we plot~ P/P, as a function of

P/-
Pmoa

eIIO I.t 0 I.RO

FIG. 2. Power absorbed in cyclotron resonance as function of
frequency. The full curves were calculated for constant mean
collision frequencies, the dashed curves for constant mean free
paths, the parameters for the two cases being adjusted to give the
same maximum absorption P, .

$ For further discussion see H. Margenau Lphys. Rev. (to be
published) g.

~ The error depends rather crucially on the form of the integrand
{variable of integration) chosen for these calculations. The most
suitable form is ascertained by making checks where exact
evaluation is possible or by accurate numerical integration.' For values of cas/ra near unity, we need compute only

~am J,(X1)+2PJV(~1)
~(2~sr'}~ " J*(~)
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»/ co. For comparison we plot this same quantity for
the case of constant mean free time. We have taken
o.=10', xt= (1—»/co)'X10' and cr=10s, xt ——(1—»/&o)'
X 10s, which correspond to M = 3680m (molecular

hydrogen), 8= 18 volts per cm, kT'=0.06 ev, co=5.00
X10' cps, and X=0.03 cm and 0.3 cm, respectively.
The values of v, used in Fig. 2 have been computed by
equating (32) and (34) (at co=»), using the above
values of ), kT'. and 0..

It is gratifying to note that the curves for constant
X and for constant v, agree so closely; for many purposes,
then, the simple theory of constant v, may be relied

upon to give quite meaningful results. f

1
I
—+~.+s» II

—+..—~» Ib
&ctt ) (ctt )

1ctfp
(L~(j + .)+ XV3e'"'

2 88

+Le(—j~+u)+~sXVle t"'), (& 1)

where ca&X~&X has been replaced by —co&' since
tap b=0. Delne

D=ct/ctt; r= —u,+jcoa,

APPENDIX

We wish to solve Eq. (14) for b:
Then (I.1) becomes

(D—r) (D—r*)b= B(po,t)+ B*(co,t),

which has the solution

B*

(I.2)

One operates on both sides of (14) with $(8/ctt)+u,
+csex j to get

)Note added in proof Further c.o—mputations show that for
similar parameters a curve almost indistinguishable from a reso-
nance curve results even when ) is proportional to 1/e.

( —j )(*—j ) (+j )(*+j )

In terms of our definitions, this is

~fp I:v(i~+u.)+~sxy]
b= — Re et"' (I 3)

Bv (os'+ (jco+o,)'
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Theory of Moving Striations
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It is pointed out that the author's previous experiments on moving striations indicate that undamped
sinusoidal wave solutions (treated in recent theoretical studies of striations) cannot correctly represent
moving striations.

S OME papers have recently been published in The
Ehysica/ Eevim dealing with the theoretical inter-

pretation of moving striations in electrical discharges. ' '
Of special interest is the paper of Robertson, as it
contains a very profound and thorough analysis of this
problem. The general equations of this theory, it seems,
take into consideration all the main microphysical
processes that could be of basic importance for the
production of moving striations.

For comparison with theoretical results, and also for
the type of solution required, experiments are con-
sidered which were carried out by various methods on
spontaneously existing moving striations. The greater

' H. S. Robertson, Phys. Rev. 105, 568 (1957).' S. Watanabe and N. L. Oleson, Phys. Rev. 99, 646 (1955);
99, 1701 (1955).

part of this experimental material is due to the very
thorough and extensive investigations of Donahue and
Dieke. ' All these experiments were carried out on
spontaneously existing moving striations in the state of
stationary self-excited oscillations in the discharge. In
such a state it is difficult, however, to find the condi-
tional dependence and temporal evolution of processes,
which cause the existence of moving striations.

It is the purpose of this note to point to some publi-
cations, 4' which are of direct consequence to the
theories quoted, dealing with experiments on moving
striations. In contradistinction to experiments men-
tioned above, a method of artificially introducing small

' T. Donahue and G. H. Dieke, Phys. Rev. 81, 248 (195l).
4 L. Pekoe, rek, Vestnik Moskov. Univ. No. 3, 73 (1954).
m' L. Pekoe, rek, Czechoslov. J. Phys. 4, 295 (1954).


