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Contribution to the Theory of the Surface Electronic States in
the One-Electron Approximation
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A formal treatment has been given of the surface states associated with a semi-infinite crystal. The treat-
ment assumes that the surface states are produced by a potential which is a function only of the distance
from the surface but is otherwise unspecified. A formal expansion is made in a complete set of Wannier
orbitals, but the conclusions of the paper are based on the assumptions that (a) it is sufhcient to use the
orbitals of a single band, and (b) the tight-binding. approximation is adequate for that band. Some theorems
are given on the localization of Wannier orbitals, the localization of surface states, and the number of
surface states for a given penetration of the surface potential.

'
PREVIOUS work on the theory of surface electronic

states made use of drastically simplified models
and methods. The method of studying the inhuence of
defects in the periodicity of the crystal lattice on the
states of electrons, as proposed independently by
Lifshitz, ' Koster and Slater, ' and Baldock, ' has made
possible a considerably general formulation of the whole
problem of surface states. This formulation is subject
to only two conditions: (1) the applicability of the one-
electron approximation; (2) the Hamiltonian of the
electron in the crystal which is confined between two
parallel planes can be written in the form

H=Pp+V,

where Ho is the Hamiltonian of the electron in an infinite
ideal crystal and t/" the perturbation potential, which
is a function only of the distance from one of these
planes representing the surface of the crystal.

It is the primary aim of this paper to present a
derivation of the fundamental equations of the state
functions and energies of the electrons localized near
the crystal surface that is free from arbitrary assump-
tions and ill-defined logical steps. Furthermore, the
applicability of these equations will be shown by cal-
culating a hitherto unsolved case which furnishes
some information on the general character of surface
states.

where k is the component of the wave vector in the
direction of the elementary translation g of the re-
ciprocal lattice, which corresponds to the elementary
translation y of the crystal. y has been chosen in such a
manner as to be the only elementary translation in the
lattice which is not parallel to a pair of parallel planes
S», S2, which in the considerations to follow shall con-
fine the crystal. e contains all the remaining quantum
numbers.

Let us define the one-dimensional Wannier functions

N—1

a (r src9) N—$ p e swiem/Ny (r)

These functions are suitable for our purposes only on
the condition that they are localized. We shall therefore
prove the following theorem:

Let S be a very large number. There can then be
found a number M such that, if g&m&M, then

a~(rt —srs9) '

a„(r,)

where p, &0 is an arbitrarily small number, and the
vector r» is confined to the elementary cell in which we
have placed the coordinate origin.

H we introduce the variable t by the relation
GENERAL RELATIONSHIPS

t =27rs/N

1
a„(rt—srs9) =—' e ""N&p„(t,rt)dt. —

2sr p

Since the integral

13

Let us start with an infinite ideal crystal, represented
by a "cyclic" crystal, in which any state function is and replace the sum by the integral, we obtain
invariant with respect to an E-fold elementary transla-
tion in the lattice (Born-Karman conditions). Let P, N'p„(t, rt) = p ei™a„(r,—sassy),
be the state function of the electron in the ideal crystal mM

and E„, the, corresponding energy. Then let s be de-
Qned by the relationship

h=2~s I el/N,

(eg) =1, (2)

r I. M. Lifshitz, Zhur. Eksptl. i Teoret. Fiz. 17, 1017 (1947);17,
1076 (1947).

s G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954); f
96, 1208 (1954). N P„ t,rt 'dt

' G'. R. Baldoclc, Proc. Cambridge Phil; Soc. 48, 457 (1952). 0
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is limited, all the conditions for

lim la„(r,—mp) I'=0

then for E—P&rri' X it follows from (11) that

are fulfilled, as follows from the theory of the Fourier
series. This establishes the localization of the Wannier
functions.

If we now change the Hamiltonian of the electron
in the sense of Eq. (1), then the state function of the' 8~~
electron, satisfying the characteristic equation

&( 2 Ie '. 'I)/IV' —Wi+e ol~ (19)

(II W)E—=0,

can be represented to any degree of accuracy by the
following linear combination of Wannier functions:

where

e,„=max (le„ I). (20)

N—1

"=P P e„a„(r—my). (10)

where

and

N—1
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V„„,„.„.= a„(r—my) Va„(r—im'p) dr.

(12)

For Wannier functions which belong to the various
irreducible representations of the group of translations
parallel to 51, the last integral vanishes.

Proceeding now from the infinite crystal to the
finite one, let us assume that

v() =v'»2
I -I (14)

Mi((ry)/I pl'(Ms,

Here the coeflicients e„are given by the following

system of equations4:

N—1

P g e„„[e„, 5„„—W5 8 +V ~; )=0, (11)
n m-0

The right side of Eq. (19), however, is a very small
number according to the assumptions (14) and (17).
The coefficients in the expansion (10) of the Wannier
functions, localized in the region of a high constant
potential, will therefore be very small for energies
which are not too large. Thus, it is possible to write
Eq. (10) with suflicient approximation in the form

P
=P P e c„(r—my). (21)

A suitably chosen potential barrier evidently repre-
sents the situation of the electron in the finite crystal
quite well. The region of constant high potential lies
outside the crystal. Also the indices m=0 and m=P
belong in general to cells outside the crystal. In the
usual approximation these cells have always been
placed in the surface of the crystal, so that the expan-
sion (21) with the aid of atomic functions (in the ap-
proximation of tight binding) involves only the atoms
within the crystal. Since we are interested in a general
theory of surface states, we shall not make use of this
approximation.

Because of definition (21), we shall let the indices m
and tN' in Eqs. (11) run through all values from 0 to P.
If we multiply these equations by exp (—2s.ism'/1V) and
if we sum by m', we obtain, assuming

lz„.,—wlwo,where V' is a constant. If we choose the difference

M2 —M& sufficiently large, there will certainly exist a
number P such that with a suitably selected origin after a short rearrangement,
of coordinates the following relations can be written:

(22)

For j/I —P(m(N,
V„.,„=V',

V„., ~ &p, for m/m',
(16)

1
Q e ~ e ' ""'iN—

I (w —z„„j .~
P

X[P e 2risns'INV-
where P&(Ms —Mi) and p is an arbitrarily sms, ll

number. If we assume the existence of a state, the
energy 8'& of which is much smaller than the constant
potential V',

N—1

m~ P+1

V'&&W1,

4 p. Feuer, phys. Rev. 88, 92 (&952).

(17)
We multiply these equations by exp(2mips/&) and
after a further rearrangement we obtain the anal
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formula for the coeflicients in (21):
P

e„„=PP e„„
n ~

N—P—1

rtaea', ea+meaa', m'+m~aaaa' ja

where
e2+ius/N

From this derivation it is evident that Eqs. (28) and
(29) are of general validity for very large crystals; if the
crystal is a foil it is necessary to start directly from
Eq. (24) to determine the energy and state functions of
the electrons in such a foil.

Finally we now proceed to show that the state func-
tions described. by the relations (28) are actually
localized if only relation (23) is valid. From the proper-
ties of the functions g .,„ it can be seen directly that
lim

I e„,„I
=0; we can, moreover, easily prove the

localization in the sense of the validity of the inequality

e (lV—gaa, e)
(25) &=2 2 le-I'/2 2 le-I'» (30)

For suKciently large P there exists a certain number
I such that with E& I

m
I &P, there will be

(26)

Because of the localization of the Wannier functions
and because of the fact that the perturbation potential
V imposed by the limiting pair of parallel boundary
planes S1and S2 is negligible in the bulk of a suKciently
extensive crystal, there exist numbers Z and Z' such
that

where y is a finite number (see Chirgwin and Coulson').
From (28) we obtain by successive use of the Schwarz

inequality

P N

e—2~'am'lN

=BIZ Z Z V„',„e„
e ea m=o m'-s (lV —g„,)

if {m)Z or m'&Z}, then IV„, ~ ~ I&aa;

and

if {m&Z' or te')Z'}, then
I
V r „,„r I

&p, ;.
0&Z(&—P, 0&Z'(&—'P.

(27)

M M—m e ~asm'/N

—Z E
m=o m'-i (lV—g„,)

Since for very large values of I the magnitude of g„,„,
as defined by Eq. (25), approaches zero, our problem
for a large crystal can be divided into two subproblems:
%e obtain the surface states localized in the neighbor-
hood of the plane S1, and states localized in the neigh-
borhood of plane S2,. this can easily be seen, by substi-
tuting the conditions (26) and (2'/) into Eqs. (21).
For the states localized in the neighborhood of the
plane $1 which we place near the cells with the index
m=0, we obtain Eqs. (24) in the form

2 g
e. „=P P P 4.', ~m V. ', mme.

K K—m

s„,m~ em„m. (m28)

The energy 5' is given by the determinant

n ~om'=0

n m=o

A=min(l W —E„., I). (31)

The definition for e„„has been extended also for
p& I', by defining, for p) I', these coefficients again by
the relation (28).

Our theorem has thus been proved, since

M M

R&v=9(Q Q Q Iv; ~ ~ I'
nn' ~O m'=0

M M

+2 2 E le-'. -+-I'3 '
n' ~0 m'-1

S
ea—m Vaa m

K—m

Saaaa' P Qaa', e'a+m', saa'm+m~aaaa'~mm' I

m'=1

APPROXIMATION OF TIGHT BINDING

As an illustration of the method elaborated in this
paper, we shall discuss in detail the surface states for a

(29) case when it is possible to consider one energy band only
and. where the energy of the defectless infinite crystal

H we put M=max (Z,E), this determinant is of
order M.

' B. H. Chirgwin and C. A. Coulson, Proc. Roy. Soc. (London)
A201, 196 (1949).



JAROSLAV KOUTECKY

is given by

E„,=0„0+201 cos (22r2$/Ã). (32)

This approximation corresponds to the approximation
of tight binding. If it is sufhcient to consider one band
of permitted energies in an ideal crystal, then the num-
ber e involves only those components of the wave
vector k which are parallel to the plane S~. According to
the note following Eq. (13), the derived procedure can
be applied to the state functions, characterized by a
single value of e.

We shall now attempt to ascertain the number and
character of the states localized in the neighborhood of
the plane limiting the semi-in6nite crystal, for the case
in which the perturbation potential is not confined
only to the elementary cells in the immediate neighbor-
hood of the plane S&, as it is usually supposed to be.

If the energy of the electron in an in6nite crystal
depends on the parameter s according to Eq. (32), then

(2 'll'
g

'cv ctdOt

I, (33)
22r ~ 0 (W &n0 201 cosc2) 01 E»2»1~

where

where the matrices U' and A are de6ned as

~~-'= &n-+0~1.-+e~~-,
~2lm (»1+»2)~2lm»1~2l0~m0 ~

(41)

From this it can be seen immediately that the energy
of the surface state is determined by an equation of the
order (2Z+1). The form of (40) is suitable for a direct
calculation of the energy of the surface states, or for
the determination of the number of states in the case
where the numerical values of V„are given.

It is worth noting that the energy of the electron in a
foil with a thickness of Z-elementary cells is given by
the equation [see relations (24) and (33)]:

I
v' (w/p)—ll =o, (42)

where
QU'et= Z,

E;;=E;S;;,

(43)

where I is the unit matrix. The determinant is of the
order Z.

For a general discussion of the number of roots, a
further rearrangement is helpful. Since U' is a Hermitian
matrix, there exists a unitary matrix Q such that

and
», ,=-',P[1 ~ (1—4/P')-:]

p= (lf' — o)/

(34)

(35)

and the dagger represents the Hermitian conjugate.
Equation (40) can also be rearranged into the following
form:

as can easily be found by integration in the complex
plane [»=exp(in)]. The equation for the coefficients
e„„can then be written in the form

2 Z

e „= [p p»1~2 '~V ~ em »12l+'e0]—, (36)
g2 —g& ~o ~~=o

I Ql I

~' —~
I I

Q'I

where

» P e

=II ~'[&'-»1-»2]»»2+ Q
i=o 1-0 (&;—»1—»2)

and the energy is given by equation
z

Ip» ~~ '~U„„—8 0» ~+' e(»2 —»1)l =—0,
m'=o

where we have put

~ = Ie'»I', (45)

(37) and the asterisk denotes the complex conjugate. From
the definition of »1, »2, and P in Eqs. (34) and (35), we
finally obtain

(46)
(3g) where [see (34)]

For a general discussion, it is more suitable to put
Eq. (37) into a different form. Thus, if, for instance,
we multiply (37) by the determinant ISI, where the
matrix S is de6ned as follows:

(47)

(4S)

s„=s„=»,/(», —,);
S;;=(»1+»2)/(»2 —»1) for jWO, Z;

S;;Pl=S;; 1 1/(»1 »2)——, —

and for all other cases

S;I,=O,

we obtain the relation

lv'-~I=0,

(39')

(40)

p(p) is a decreasing function, composed of (Z+2)
branches. Only on Z branches do there exist the points
P such that P(P))0 and at the same time points P such
that p(p) (0. For one branch there is p(p)) 0 and for
the other one g(p) (0.If we now assume that E0 E„
&—2 and E„+~ Ez& —1, then the branch between
E~. and E„+~ does not intersect the negative branch

since p(—2) )—1. By the same argument, if
Eo .E~&j. and E~~ Ez&2, then the root of
Eq. (46) does not lie between IC„and E~l. Having
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APPROXIMATION OF TIGHT BINDING
FOR THE CASE S=O

The solution of this case, the one usually considered,
which is characterized by the condition

U ~ =U& ob 0=(V/01)b 0& o,

follows from the derived relationships in an extremely
simple manner. According to (40),

z2= U.

Since z2&1, there exists a surface state only if

V/01) 1,

(50)

and then the energy and the state function of the sur-
face state are given by

W = 0 0+V+ (012/V),

"/eo=( /V)",
(52)

derived these auxiliary theorems, we proceed now to
the determination of the maximal possible number of
roots of Eq. (46). Let us assume that Eo. E„&—2,
noting that the considerations to follow are still valid
if there does not exist any E;(—2. If E~& is in the
interval (—2, —1), there may exist a solution of Eq.
(46) lying between E2, and E~1. If E~2&2, there
exists one branch of the function g that does not inter-
sect with p (i.e., the branch between E~1 and E~2).
If, on the contrary, E~»2, there again does not exist
any intersection on the branch, between E~& and
E~2, with the positive branch of the function p, since
in that case E~i& —1(1.If E~i is in the interval
(—1, 2) there will not be any solution of Eq. (46) be-
tween E„and E~&. If, finally, E~»2, the branch of
g lying between E„and E~1does not intersect with the
positive branch of f since in that case E„&—2(1.
Thus, in any case, at least one of the (Z+2) branches
of the function P does not intersect with f. There then
follow the theorems:

(1) There exist at most Z+1 surface states.
(2) If there are s values E; such that !E;!&1, there

exist at most Z—s surface states.
(3) If there are s values E; such that !E;!)2, there

exist at least s surface states.
(4) If s')0 and there are~~s' values E; such that

!E;!(2, there exist at most (Z—s'+2) surface states.

The matrix U' has now the form

t' Uoo U01+1)
!U'=!

&U10+1 U11 &
(53)

P Uo—o
~(p) =

(P—Uoo) (P—Uu) —
! Uo1+1!'

(55)

For the sake of illustration, we shall now consider the
case in which Upp, Up&, and U» are real positive quan-
tities. The positive branch of the function P Lsee (47))
is an increasing function of P and P(P))1 for P)2.
Therefore, if Eq. (46) has to have two positive solutions,
one must have p1) 2, p2) 2, where

P1, 2 2 (Uoo+ U11+1)
~I3(1+U» —Uoo)'+

I
U»+1I'i' (56)

are the roots of the equation

~(P) =1. (57)

Hence, we obtain as a condition for the existence of
two surfaces states with energies lying above the band
of permitted energies of the infinite defectless crystal,
the simultaneous validity of the following two in-
equalities:

Uoo+ U11)3,

(Uoo 1) (Ull 1) Ull ) U011 +Uol+ Ulo
(58)

Similarly, the sufhcient and necessary condition for
the existence of one surface state is

Uoo+ Uu& 1. (59)

Two localized states may thus exist if the defect
caused inside the crystal by its surface is suKciently
strong and essentially affects the second cell under the
surface, and 6nally, if the value of Up& is not too large.
From the condition (59) it is evident that the formation
of a surface state does not require as strong a defect
on the surface as in the case considered in the last
paragraph; the surface intensity of the defect may be
compensated by a deeper penetration into the crystal.

To clarify the character of the surface states further,
we shall now calculate the ratios e;/eo. According to (36),
we have

Furthermore,

E1,2 2(U00+Ull)&Lg(U00 U11) +!U01+1! g (54)

and

which are the well-known formulas. e1/eo = (P—Uoo)/(1+ Uo1),

i&1: e;/er=s1&' 0 (60)

APPROXIMATION OF TIGHT BINDING
FOR THE CASE Z= 1

In this more general case it is possible to determine
some properties of surface states, where the perturba-
tion potential is not conGned to the elementary cells in
the immediate neighborhood of the surface of the
crystal.

so that

and according to (56)

!e;/e, ! &1, (61)

el (1+Ull Uoo)~ L(1+Ull Uoo) +4(U01+1) $~

ep 2(i+ Uo1) (62)
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&oo& &ii+1, (63)

then for the state with the higher energy there follows

8i/8o( 1

whereas for the state with the lower energy

ei/tlo &—1

(64)

(65)

CONCLUSION

The results of this investigation can be summarized
as follows.

(1) The state function of an electron in a crystal,
which is limited by a pair of parallel planes, can be
approximated to any desired degree of accuracy in the
one-electron approximation by a linear combination of
one-dimensional Wannier functions, having a maximal
amplitude within the crystal, and one-dimensional
Wannier functions having a maximal amplitude at not
too great a distance from the crystal surface.

(2) After having proved in a general way that the
Wannier functions are localized, we have shown that
the energy of the surface states is determined, for a
sufficiently extensive crystal, by a determinant with M
rows and columns, where M is the larger of the numbers
Z and E, defined by (26) and (27) and M«P, where

If condition (63) is valid, the amplitudes of the sur-
face state with the higher energy, monotonically de-
crease with increasing distance from the crystal surface.
The amplitudes of the state with the lower energy have
a maximum in the second cell below the surface and then
monotonically decrease. It is necessary to point out
that the existence of these states can be expected from
general considerations of the "tearing" of the cyclic
crystal by a high potential Lsee relations (14)]. The
surface states usually considered are, from the point of
view of this high potential barrier, subsurface states:
it depends on what energies we still consider to be
admissible, that is how far outside the crystal we shift
the plane characterized by the relationship m=0 Lsee
the inequality (17)$. If there did not exist "subsur-
face" states, this procedure would not be self-consistent,

P+1 is the number of elementary cells between the
planes limiting the crystal.

(3) The localization of the surface states, the energy
of which does not fall into the band of permitted ener-
gies of an infinite crystal, has been proved generally.

(4) To the approximation in which the energy of the
electron in the defectless crystal is given by Eq. (32)
and if the considerations can be con6ned to a single
band of energies of the nonperturbed in6nite crystal,
there exist at most (Z+1) surface states, if the per-
turbation potential penetrates into a depth of Z+1
cells below the crystal surface.

(5) The case of Z=O, which is usually considered,
follows very readily from the general procedure.

(6) For the case Z=1, criteria for the existence of
one or two states localized in the neighborhood of the
surface can easily be given.

(7) For the case Z=1, the existence of "subsurface"
states can be demonstrated, the wave functions of
which do not have a maximum amplitude at the surface,
but below it. These states may have lower energies than
the true surface states. If the perturbation potential is
positive, volume states will be occupied Grst, followed

by subsurface states, and finally by the surface states.
At this point it is necessary to point out the usual
confusion with respect to the surface charge caused by
the surface states. In the one-electron approximation,
if we do not take into account electron interaction, the
wave functions of the volume states have lower ampli-
tudes near the surface. By filling the subsurface and
surface states, an even distribution of electrons in the
entire crystal is attained, as follows from the general
theory of the molecular orbital method' (see Artmann').

To sum up, it has been possible to show that the
number and distribution of energetic levels, correspond-
ing to the states localized in the neighborhood of the
crystal surface, depend essentially on the depth of
penetration of the perturbation potential into the
interior of the crystal.

~ C. A. Coulson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 36, 193 (1940).

r K. Artmann, Z. Physik 131, 244 (1952).


