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Many-Body Problem in Quantum Field Theory
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A formalism for the covariant description of scattering processes involving composite particles is derived
from first principles. Its basic ingredients are the Green s functions of quantum field theory combined with
a physically sound formulation of the adiabatic hypothesis. Explicit expressions are presented for various
examples of nucleon-nucleus and boson-nucleus collisions. It is shown that the impulse approximation can
be formulated for such problems. A general method of obtaining electromagnetic moments of nuclei, based
on the scattering formalism, is also derived. The normalization condition for covariant amplitudes is dis-
cussed and its application to bound-state problems reviewed. In particular, a method of carrying out per-
turbation theory for the discrete spectrum is suggested.

I. INTRODUCTION

'OST recent studies of local field theories have
- ~ employed the formulation in the Heisenberg

representation. Almost all aspects of the problem have
received some attention in the literature. For example,
the energies of bound states should in principle be
obtainable from the Bethe-Salpeter equation and suit-
able generalizations, ' and indeed at least one idealized
case has been worked out in full detail. ' Again, the
definition of the 5-matrix in the Heisenberg representa-
tion for processes involving only elementary particles
has been studied extensively. ' Perhaps the least amount
of attention has been accorded the problems of scatter-
ing involving composite particles, though even here a
number of aspects have been treated. 4 There remain,
nevertheless, several issues outstanding in connection
with the problem of composite particles which require
clarification, particularly with regard to the formulation
of the adiabatic hypothesis for scattering problems, the
orthonormalization properties of bound states and the
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proper description of charge-current distributions in
bound states. In addition to a thorough discussion of
these matters, the account which follows contains
several novel elements such as the introduction of the
impulse approximation' for covariant problems, a
method for obtaining the electromagnetic moments of
nuclei, and a suggested form of perturbation theory for
bound states when the unperturbed interaction is non-
instantaqeous. ' The original intention of the authors in
undertaking the investigation of the many-body prob-
lem was to achieve a set of starting formulas for certain
two-nucleon reaction processes (such as pion-deuteron
scattering and photodisintegration of the deuteron)
which have hitherto been treated only by noncovariant
techniques. It is intended to develop these and other
applications in a subsequent publication.

For the sake of definiteness we shall consider, unless
otherwise specified, two interacting renormalized fields';
the nucleon (fermion) field will be represented by a
Heisenberg operator' f(x), the meson (boson) field by
a corresponding operator p(g). We commence our study
with a survey of the premises underlying the
development.

A. The physical significance of the field operators is
provided by their algebraic properties ~is u vis the con-
stants of the motion, of which there are a full comple-
ment besides the generators of the space-time trans-
formations, such as charge and nucleon number. The
latter, for instance, is defined by the normal product4
of operators,

X=)": P(x)y„P(x): do„,

~ G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952)~' For an instantaneous unperturbed interaction, perturbation
theory was first formulated by E. E. Salpeter, Phys. Rev. 87,
328 (1952).

7 We shall be dealing throughout with closed equations, which
can presumably be renormalized by a scale transformation. We
assume that this operation has been carried out on all quantities
in the theory, i.e, , that we are dealing from the start with a finite
theory.

Isotopic and spinor indices as well as charge and spin variables
will be suppressed throughout, the space-time, or momentum
label also including these variables.
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In this description, the notion of "particle" applies
equally well to single quanta and to stable bound states.
The observation that in scattering problems of physical
interest, the interparticle interactions are ineRective
at remote times motivates the so-called "adiabatic
hypothesis"; specifically, that no error is introduced
into the treatment of a physically realizable scattering
process by a formulation of the theory in which the
interactions among the particles of interest are "turned
off" at remote times —provided, of course, that the
turning-o6 procedure is suSciently gradual that it
does not, of itself, create disturbances.

The presence of a decay mechanism for excited bound
states replaces the discrete level structure defined by
the binding interaction by a continuum and true energy
eigenstates for such situations include components
possessing one or more radiation quanta. Here, a dis-
tinction between outgoing-wave and ingoing-wave states
is again of importance. A wave packet of outgoing-wave
states describes the decay, in the course of time, of a
state which initially consisted of a bound excited nucleus
only. In contradistinction to the scattering case, where
the energy widths of the packets may be made arbi-
trarily small at the expense of localization, the packeted
bound state has an irreducible width associated with the
strength of the decay mechanism. If the latter is weak
compared to the binding, the density of states will be
appreciable only in the neighborhood of the discrete
energy levels and only at these levels may narrow
packets be constructed at all.

Finally we may note that S is to be so normalized
as to leave the one-particle states, in&), (as well as the
vacuum) invariant,

~I~i) = l~i).

where f(x) =ft(x)ys f——t(x)P, and

[~t ( )8'3=4( ), [It t( )Pj=—~t'(*). (2)

B. There exist two alternative complete sets of
states ln&+&) and lo. & &) which are eigenstates of total
energy-momentum and of a complete compatible set of
constants of the motion. The two sets are differentiated
in the usual manner —the superscripts distinguishing
the outgoing-wave boundary condition (+) from the
incoming one (—). Excepting only the vacuum, the
states of both categories possess energies, momenta, and
perhaps other quantum numbers lying in a continuum.
Wave packets constructed by a superposition of neigh-
boring outgoing-wave (ingoing-wave) states represent,
for times in the remote past (remote future) assemblies
of localized isolated particles and thus correspond to
experimentally realizable situations. The probability
amplitude that an assembly n of particles localized in
the remote past will be observed as a new assembly P
in the remote future is then obtained by applying the
packeting operation to the matrix element Sp of the
scattering matrix,

C. The theory will be developed with the aid of the
renormalized Green's functions'

GL, 3=G(*,"'.;*', *.'; S, S.)
=(1" ~IG[~; P„" t„ql1".~)
='" ""'(0IT(f(*) 4( -)~t( .') 4(*')

&&~(&)" ~(&.))10), (5)

where [s»$ signifies the enclosed integer if & is even,
the nearest (smaller) integer if & is odd, and T is the
chronological ordering symbol used by Kick.'

For v=0, we are dealing with the rs-nucleon propaga-
tion function, G[n], which satisfies a differentio-integral
equation of the symbolic form"

{G[ts—1] 'G„'—1[tsjI([ts—1J, n)}G[ts]=1[n]. (6)

Here G„ is the single-nucleon Green's function for the
tsth particle, I([&s—1j, n) the interaction between the
nth particle and the ts —1 others, and 1[tsJ the anti-
symmetric 8 function in e variables, i.e., the deter-
minantal form

1[tsj=g e(x.i' x..)5(xi-x.i') h(x -x.„'), (7)

with e the alternating symbol in e variables. The form
of Eq. (6) is obtained by induction from the two-nucleon
case,

{Gi Gs 1[2]Its}G[2)= 1[2))
and

n—1

I([&s—1j, ts) =Q (I„,G,)Gi ' .G
7'=1

+ Q (I„,,6',G,)Gi ' G„ i
—'+ . +I». . .„) (9)

i+7=1

comprising interactions of at least two particles and

up to m particles at a time.
An equivalent relation employing the single-nucleon

Green's function is

{G ' G„'—1[ts)I[tsg}G[tsj= 1[tsj, (10)

where I[N) is the total interaction among all groups of
nucleons:

I[ts]=Q(I;,G,G,)Gi '. G„'
2+7

+ Q (I';sG;G,Gs)Gi ' .G~ '+ .+I»" (11)
i&7&k

When the interaction of the mth particle with the
other particles is neglected, the e-nucleon Green's

~ R. P. Feynman, Phys. Rev. 80, 440 (1950); J. Schwinger,
reference 1 and unpublished lectures; E. Freese, Nuovo cimento
11, 312 (1954); P. T. Matthews and A. Salam, Proc. Roy. Soc.
(London) 221, 128 (1953);F. Coester, Phys. Rev. 95, 1318 (1954);
H. Umezawa and A. Visconti. , Nuovo cimento 1, 10'?9 (1955);
Y. Nambn, Phys. Rev. 100, 294 (1955); 101, 459 (1956); J. M.
Jauch, Helv. Phys. Acta. 29, 287 (1956).

0 G. C. Wick, Phys. Rev. 80, 268 (1950).
1'Equation (6) has been derived in unpublished lectures by

J. Schwinger. See also Schwinger, reference 1 and Umezawa and
Visconti, reference 9.
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function assumes the form

G(», *„;»', . *„')~G[~—1]G„1[n]
Q s(+81 1' ' '+&n )G(») ' 'Sn —lp&1 |' ' '+&n—1 )

&& G (x„,xe„'), (12)

whereas, if all internucleon interactions are neglected,
G[e] reduces to G[e]'sl,

G[ts]"l=P e(xs, ', .x8„')G(xr,xst') G(x.,x.„'). (13)

Equation (10) may also be written in the integral form

G[e] G[e](ol+G[e]&olI[ts]G[n]. (14)

In the construction (6)—(13), the detailed form of both
the single-nucleon Green's functions as well as of the
various interaction operators is assumed known, but
need hardly concern us until we confront the problem
of applications. We merely require the existence of
equations of the given structure. The generalization to
include bosons will be made at the apposite juncture.

To accompany the propagators G[ts], we require the
associated amplitudes

X l+l[nr, ass]

ol I'(lt(»)" 0(*-r)4(yr)" W(y-s)) l~'"),
X '+&[er,ass]

=&~'"IT(lf(X-s) lt(yr)0(*-r) 4(»))I0&, (1~)

which may be interpreted as probability amplitudes
for the presence, in In'+l), of e, nucleons and ns anti-
nucleons. For simplicity, we shall confine ourselves to
the treatment of (positive-energy) nucleon systems.
With this restriction, we need only consider the nucleon
amplitudes

x."'[~]=x '+'(1" ~) =(o
I &(lt (1). 0 (~)) l~"'),

x-"l[~]=x-i"(1 . I)
=(n+lr(y(~) .

~t (1))lo). (16)

For syp ''' s p+syp', x p the inequality hold-
ing for every member of the unprimed set relative to
the primed set, we can write, after introduction of
either complete set

I n),

G(1 & 1' &') = (s)"2-x-(1 ts)x-(1' ~'), (17)

the sum extending only over those states permitted by
the conservation theorems. By means of the limiting
procedure of Gell-Mann and Low, ' the essential aspects
of which are reviewed in Sec. II, one can then demon-
strate that the x [fs] satisfy the homogeneous equations

{G[ts—1]-'G„-'—1[v]I([e—1], ts) }x.[e]=0,
x [e]{G[e—17 'G„'—I([fs—17, e)1[e]}=0. (18)

Finally, we shall require a notation for the T symbol
in the limiting instance wheri two or more times are
equated. We shall write

where, for example,

llx~(1 ~—1)xs(~) II

=fs—
&[xg(1 n —1)xs(e)—xg(1 ts —2, fs)xs(e —1)

+ + (—1)" 'xg(2 N)xs(1)]. (21)

Thus, in terms of the operation

B(1). 4(~)]' =»m[4(1) . 4(~)],g~ao
(22)

and the definition

' I:x-"'(1 ~)7'"=(01[0(1) f(~)]'"l~'+'), (23)

we infer from (20)

Lx '+'(1 &)]'"= Ilx~ (1 ts —1)x.(ts) II (24)

At the other extreme, if Irr&+&)=
I (ar a~) + ), that

is, consists asymptotically of e single nucleons, then the
right-hand side of Eq. (24) would be replaced by the
usual determinantal form in xa, (j),

Equations (24) and (25) are illustrative of the as-
sumption that we may effectively turn off the inter-
action between particles, but not the self-interaction or
the interactions which produce bound states. In Ap-
pendix A, it is shown how our adiabatic hypothesis

to indicate the average over all possible modes of
approach to equality.

D. The adiabatic hypothesis is adopted, but only in
a restricted form which doesn't gainsay our physical
experience. "Consider, for example, the matrix element

x '+'(1 fs). Let ln(+&)=I(A, a)&+') signify a state
which when properly packeted consists, in the remote
past, of a localized stable nucleus of atomic number
n 1, sta—te IA) and a localized single nucleon, state

I a). Anticipating application to a process in which the
nucleon-nucleus interaction will be ineffective at very
early times, we expect that a representation of x &+) in
terms of I& and x„ the corresponding steady-state
amplitudes for

I A) and
I a), obtained by disregarding

the nucleon-nucleus interaction will be adequate for
such times. In this approximation, by choosing x]p,
x s)»s', . x s' and rewriting Eq. (12) with the aid
of Eq. (17), we obtain for the partial sum over states
of the above-specified character

Zxs(1" N)x~(1'. "I')=Z (* '," *-')
P

XQ x~(1 fs —1)xn(sr s r)xs(x.)xs(x..)
B,b

=—Zllxn(1 &—1)xs(&)llllx~(1 .&—1)x,(~)II, (20)
B,b

»m TQ (1) lf (~))=L~f (1) 4 (~)]
xsP=t

~ "See the paper of Haag, reference 3 and those of Nishijima
(19) and Klein, reference 4, for further discussion of the underlying

ideas.
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follows directly from an asymptotic condition on the
field operators themselves.

Similarly with respect to the states In( )), we can
define a limiting procedure "out" exemplified by

I:4 (1). .
~t (&)7'""=»ml:4'(1) "4(&)] (26)

with its accompanying form of the adiabatic hypothesis.
By means of assumptions A—D, we shall proceed in

the next two sections to the construction of formulas
for the S-matrix, for most cases of interest. In Sec. II
we deal with nucleon-nucleus collisions, and in Sec. III
with boson-nucleus collisions. It is shown in Sec. IV
that the impulse approximation can be formulated
simply for the various transition amplitudes under
discussion. In Sec. V the normalization condition for
the covariant amplitudes which enter these expressions
is derived, and the method for obtaining matrix ele-
ments of an arbitrary observable brieQy discussed.
Section VI takes up the question of finding the bound
states of the systems considered. Here, the ortho-
normalization problem, the application of perturbation
theory, and the relation to the contents of Sec. V are
given consideration. Finally, Appendix A discusses the
foundations of the adiabatic hypothesis, Appendix B
establishes the equivalence of alternative forms for
certain amplitudes for inelastic processes, and Appendix
C contains further discussion of orthonormalization
conditions.

II. NUCLEON-NUCLEUS COLLISIONS

We proceed upon the basic observation that the
known structure of the propagation function GLe, i]
permits the identification of a certain subset of the
matrix elements of S. Considering, for instance, the
Green's function Gi e], we first define the operation
L,(t,t') as follows:

~(t,t)GI.]='-«II:~(1)
Xg(~')" &(1'))' I0) (27)

Upon introduction of the complete sets of states In(+))
and (p( '

I
and subsequent utilization of the relation

ge —(p(—)In(+)) (28)

we have immediately

1(t t')Gi ~]='- P (ol8(1)".
~t (I)]- IP -))

XSe.(n(+) Ii P(ii') . . y(1')]'"IO). (29)

As will be seen in detail below, Sp is then recognized
from the form of GLe] when the asymptotic relations
satisfied by the amplitudes of Eq. (29) are noted.

In the work to follow, we shall frequently encounter
equations with the structure

~
dxi .dx„)(e(1 N)P(') P(")xe (1 I)=&e e~. (31)

When (31) is not applicable, one may nevertheless
write (30) in the form

p e 'ee'X—e(x, x„)Ae„x.(xi' x„')e'e.'
=p e—'ee'xe(xi x„)Be )( (xi' x„')e"e-'. (32)

Exploiting the validity of (32) throughout the intervals
~)t)

I Ti and —IT'I )t') —~ for sufficiently large

I Ti, I
T'I, we may conclude that

Z Xe~eaxa=g Xe+eaXa) (33)

where the restricted summation P' extends over ampli-
tudes of states

I
p' )) and (n(+'

I
with common energies

Ee and 8 respectively. Two states
I
Pi( ') and IP2' ')

with a common energy are now distinguished by dif-
ferent values of some constant of the motion. A con-
sideration of the transformation generated by this
constant of the motion suSces to demonstrate the
orthogonality of the associated amplitudes in the sense
of (31).

As a ready illustration, let us first consider the well-
known case of nucleon-nucleon scattering. Here we
make use of Eq. (8), or rather of the equivalent integral
equation

G(1 2; 1' 2') =G(i 1')G(2 2') —G(1 2')G(2 1')

+ ~LG(1 1')G(2 2') —G(1 2")G(2 1")]

XI(1"2"; 1"'2"')G(1"'2'"; 1' 2'). (34)

According to the definition in Eq. (27) and the adiabatic
hypothesis,

I (t,t') LG(1 1')G(2 2') —G(1 2') G(2 1')

=P P x„(1)x„(2)Ix„(1')x, (2') —x„(2'))(„(1')]

=~' E Ilx.(1)x, (2)IIII'.(1')xn (2')ll

which hold when the common value 3 of the time com-
ponents x,o lies in the remote future and the common
value t' of the components x;o' lies in the remote past.
From (2.3), we desire to infer that

~Pa ~Pa)
for each pair (p,n).

If the amplitudes are antisymmetrized products of
one-nucleon amplitudes, one need only apply the
orthogonality relations

2 xe(1. ~)~e-x-(I' . "I') 2 (0 I L4 (1)0(2)]'""1(P,f ') ' '»(I —p")

P, a
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exhibiting the unit term of the S-matrix. Applying the
same procedure to the remainder of Eq. (34), we find

&PP'I ~
I
P"P"'&

= l r~(P —P")~(P' —P"') -~(P—P"')~(P' —P")]

+2'
ll &~n(1)x"(2) III(1 2; 1' 2')x"" "'+'(1' 2') (36)

An alternative version of Eq. (36) that will be useful
for our later considerations can be obtained if we
replace Eq. (34) by its symbolic algebraic solution

G[2]= [1—G1G2I12] 'G1G2

G1G2+G1G2I12[1 G1G2I127 G1G21 (37)

where the antisymmetrization has been suppressed.
From Eq. (37) we then conclude that

been preferred for the purely formal study of this paper
on the grounds that they do not lend themselves as
readily to such conciseness and uniformity of expression
as found in (41) and corresponding equations to follow.

For the elastic scattering we require a diferent
version of (39). Noting, for example, that

Gi 'G2 '—112I12——G[2]—' (42)

or indeed starting most simply from the dif'ferential
equation (6), specialized to 22=3, we have

G[3]=G[2]G2+G[2]G2I ([2],3)G[3].
From Eq. (43), we may first of all obtain a different
version of Eq. (41):

f
&hih2h2I5'IhP&=i' ll&t»»' &(»)x»(3)II

&PP'I (~—1) IP"P"')= 2 "ll&~.(1)&~'(2) II

X (1 2 3
I
I([2],3) I

1' 2' 3')&t2„&+&(1' 2' 3'), (44)

whose equivalence to the former is established in
ring, on the otherAppendix B. For the elastic scatte

' ( ')x'"( ')ll ( & (hPls —1lk'P'&=i Il&t (12)xy, (3)ll
As a second example we take up the inelastic scatter-

ing of a nucleon by a two-nucleon bound state which we
call the deuteron. We simply record the integral equa-
tion for G[3] in the form

X (1 2 3
I
I([2])3) I

1' 2' 3')&c2„'+&(1' 2' 3')

II x.(1 2) x2(3) II

G[3]=G1G2G2+ G1G2G2I [3]G[3]s (39)
with

I[3]=I12G2 '+I12G2 '+G22G1 '+I123, (40)

The matrix element in question can then be read off
essentially from Eq. (39),

&hih. h2i&lhP&="~ ilx"(1)e (2)x" (3)II

X&1 23II[3]I1'2'3'&y"1&+&(1'2'3'), (41)

where the h, designate the outgoing nucleons and h, p
the incoming nucleon and deuteron respectively. The
6-function term is missing, of course, for the inelastic
process. An alternative version of (41) would result
from inserting for &t»i+&(1 2 3) the symbolic solution
of the inhomogeneous integral equation which it satis-
fies [see Eq. (47) below].

The reader should be cautioned against concluding,
from an examination of Eqs. (40) and (41), that the
latter is patent nonsense. One is tempted to this con-
clusion by the observation that the G, ' acting on the
free-particle wave functions on the left apparently
annihilate them and thus the contribution to the ampli-
tude of two-body interactions is missing. In truth,
however, the diGerentio-integral operators G; ' act to
the right in (41), and since we are dealing with scatter-
ing states, an integration by parts is hardly justified.
Alternative versions of the scattering matrix elements
are available which eschew this pitfall. These have not

X(1 2 3
I I([2],3)[1—G[2]G2I([27,3)] 'l1' 2' 3')

Xllx. (1'2')x'(3')ll, (45)

the second form following from the utilization of the
symbolic solution of (43) [compare Eq. (37)7,

G[37=G[2]G2+G[2]G2
X{1—G[2]G2I([2],3)}—'G[2]G2, (46)

or by inserting directly into the first form of (45) the
corresponding solution for X2~&+&(1.23)

X2.'+'= {1—G[2]G2I([27,3)} 'Ilxyxkll (47)

The procedures that we have exposed for the simplest
cases can be generalized in a straightforward manner
to the situation involving an arbitrary number of
nucleons. The elastic scattering of a nucleon by a
nucleus of e—1 nucleons is described, for example, by
the formulas

&hpl5' —1lh'p'&=i" "llx.(1" ~—1)x (~)ll

X &1 22
I I([22—1], 22) I

1' 22'&&t2„&+& (1'. 22')

=i" "lip. (1 "22—1)x2(22)ii&1 22II([12—1], 22)

X[1—G[22—1]G„I([22—17, 22)7 '
I

1'. 22')

XII&. (1 ~—1'»'(~)ll. (4»
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On the other hand if we were interested in a reaction
in which the final state consisted of three fragments, a
nucleon (k) and two nuclear fragments (in their ground
states) of atomic weight p and n —1—p (p and q), then
in Eq. (48) we would merely make the replacement

llx.(1" ~—1)x~(~) II

llx.,' '(1 ~—1)x.(~)ll (49)

The forms (48) and (49) follow directly if one invokes
Eq. (6) for the propagator G[e7. As in the the three-
body case, diferent versions can be obtained for in-
elastic processes.

At least a word is in order about the possible utiliza-
tion of these results. What is required is some knowledge
of the covariant amplitudes of many-particle systems
for scattering states, a subject on which the literature
has been notoriously silent. " A possible approach
which has proved useful in the nonrelativistic limit is
the impulse approximation, the application of which
necessitates knowledge of two-particle scattering ma-
trices and amplitudes for bound states, requirements
which one should be able to meet at least in approxi-
mate terms. The formulation is given in Sec. IV.

It then follows from (50)—(52) that

(pp'klsl p"p"'&=i' t IIX„(1)x„.(z)x, (p)ll

x«2I~([27, )) I1'2'&Ill. (1')x '"(2')ll. (55)

The method of obtaining R([27,$) will be given below
subsequent to our treatment of one additional example,
that of boson-deuteron scattering. We take the Green's
function in question to have the form

GL2; k,n =G[27~(~,k')

+ G[27~(~,Y'P([27; ~"~'")A(~'",~')Gl 27, (56)

which readily yields the formula (elastic scattering)

(apl (s—1) le'p'&

=' "-,(»)-.(~)(»l~([27; ~e) I

1'2'&

Xx. (1'2')x~ (g'), (57)

III. BOSON-NUCLEUS COLLISIONS

The treatment of such problems requires nothing
novel in principle if we postulate suitable forms for
the relevant propagators. Let us study the case of
single-meson production in nucleon-nucleon collisions.
By analogy with Eq. (29), we recognize the appropriate
matrix element from the form

rvith a corresponding expression for the inelastic
sl tuatlon.

The R matrix in Eq. (56), for instance, may be con-
sidered achieved by the solution of the equation

Gl:2 ' H'7 =G[27~(ke)

I.(t,t')G(1 2; 1' 2'; g)

2

yl 27/ t ~l /I
(ol[4(1)4(2)e(k)7'"'I(&,p,p')' ')

where

+, G[27A((e')I([27; e'5"')G[2,t"Y7 (58)

I([27 $ 5 ) Il($ $ )+I2($$ )+I12($$') (59)

with

is a sum of terms in which the meson interacts with
one nucleon at a time (and is thus characteristic of

X((p" p'")&+l I[lt (2')p(1')7' I()& (50) scattering by a single nucleon) or with both in a non-
decomposable manner. " Comparison of (56) and (58)
demonstrates that

G G ~(k e)&([27,$')G G, (53)

where

a(p, p') =~(ol r(y(p)y(p') lo&. (54)
"See however, ¹ Kemmer and A. Salam, Proc. Roy. Soc.

(London) 230, 266 (1955); S. Mandelstam, Proc. Roy. Soc.
(London) 237, 496 (1956).

(ol[~(1)~(2)~(~)7 "'I (&,p,p')'-'&

=&ol [p(»ll (2)7'"'I (p p')' '&«Iy(() I &&, (»)
and

(ole(~) l»=x (~). (52)

For the application of (50)—(52), we suppose that
G(1 2; 1' 2'; $) can be reordered in the form

G(1 2; 1' 2', $) =G[2; (7

2= I{1—G[276I} ' (60)

z'(*)=S(x)y(x). (61)
"S.Deser and P. C. Martin, Phys. Rev. 90, 1075 (1953) have

studied the Green's function for the sing1e nucleon-meson system."Compare the work of the authors mentioned in reference 11.
"Introduced into the work for the 6rst time.

in analogy with the nucleon case.
A more general approach to the E functions is con-

tained in the idea that the Green's functions G[e,v7
are all determined for a closed physical system once
the G[n7 are given in the presence of an arbitrary ex-
ternal source. '~ The following formulas provide all the
requisite tools. We suppose the external field to be
characterized by a source function J(g) coupled linearly
to the boson field, described by an addition to the
Lagrange density" of the form
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(o(+ )IQIo( —")&
(Q[~)&=

(o(+ )lo(—
which —+ (0IQI0)

(62)

In the presence of J(x) (assumed to vanish in the re-
mote past and future, at which times one can dehne
vacuum states), the vacuum matrix element of any
operator Q is defined by the expression

%2=I12[1—GiGdi27 ', (70)

n—1

the corresponding matrix for two nucleon scattering.
Assuming that it is permissible to neglect many-body
interactions, we may write

n—l
I([e—1],e)=Q (Gi G ) 'GG I;„

as J—+ 0. We have the basic formula'5

(oI7'(Q~(~) ~(~.)) Io&

=p G&"[I] 'G,G„I; (71)

We also recall that G[e—1) satisfies the integral

=II [(&(«)—'~/»(8'))(QP)) I
=o (63)

As a special case we recall that

~(~,~') =~(~u) &/»(~') I.='
Applied to the propagators, Kq. (63) yields

(64)

G[e—1)—G&o&[N —1)
=G&o&[~-1)I[~-1)G[~-1]
=G[e—1)I[e—1)G~'&[n —1). '(72)

If the algebraic identity

D '=Do '+Do '(Do —D)D '

L, ]= ""'ll [( (&')&
— /»(«)]G[ ) ~) I &=0, (65) is applied with the choices

(73)

and thereupon, we have for our first special case (with

«I e(k) I
0&~=o= o)

G[2; g)
= —~(~/»(4))GL2]
=—iD(p, p')GiG2

&&[Gi 'G2 '(~G[2)/~(&(&')))Gi 'G2 ']GiG2 (66)

the limit J=0 being henceforth understood. Upon com-
parison with Eq. (53), we can thus write

~(I2);5)= G'G—'(&G[2)lt(4($)&)G 'G ' (67)

whereas a corresponding procedure yields for the case
of boson-deuteron scattering,

Z([2); gg')

=G[2) '{~'G[2)/~Q(&)&~(&(&')&}Gl 2) ' («)

D= 1 G—[N 1—]G I(„[e 1—)e),,
Do 1—G'0&[e)——I([e—1), e),

we ascertain by means of (72) that

[1—G[N —1]G„I([n—1])e)]
= [1—G"&[a]I([e—1],n)] '

+[1—G &o&[~]I([~—1],~)]-

)& [G[m—1]I[e—1]G"&[n—1]I([e—1],e)]
&[1—G[~—1)G-I([~—1],&)) '

=[1—Q G G I ] '+ [1—Q G Gg ] '

G[N 1]I[e 1]G [+ 1]I([N 1] )]

(74)

Of course, we could have based the entire discussion
of fills sectloil oil Eq. (65).

IV. IMPULSE APPROXIMATION

The general formulation of this approximation for
the noncovariant treatment of scattering is well

known. s In this section we show that the same type of
treatment is applicable to the relativistic case, a single
instance, such as Eq. (36) for elastic nucleon-nucleus

scattering, suScing to demonstrate the generality of
the procedure.

Let us define

Z[e) = I([e—17, n)

X{1—G[e—1)G I([e—1),e)} ', (69)

y[1—G[m —1]G„I([~—1],m)]-', (75)

the second form resulting from the application of Eq.
(71).By ignoring temporarily the second term of (75),
which represents the correction for nuclear binding, we
have approximately

~5~]=Z G o
I ~) 'G,G„I,„[1 ZG,G„I;.] . (—76)-

Equation (76) thus represents the solution of the prob-
lem of the scattering of a nucleon by n —1 others in
which the interaction among the latter is neglected.

By repeated application of the iden. tity (73) Eq. (76)
can be exhibited as a multiple scattering series. For
this purpose we Qx the index i and select for D the
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reciprocal operator in (76), whereas for Do we choose of V„(x).In the formula

D0= j —G,G„I; .

We then find, remembering Eq. (70), that

(77) BG[e]/bv„(g) = —G[e]{8G[e] '/h V„(g)}G[e], (83)

we may then utilize the bracket in (82) for G[n]—'.
With the definition

G"&[e]R[e]=P G iG~.i
a 1=1

+ P GaiGaRalnGa2GaRa2a
a1&a2

r."'(6)= &G—* '/~V. (5)

we thus obtain

~G[ 7/~v. (k) =GL 7{Zr."'(8GG"'[ ] '

(84)

+ Q GaiGaRainGa2GnRa2nGa3GnRa3a+ ' ' (78)
a1/amga3

the sum of single, double ~ scattering terms.
We may now return to Eq. (63) to see that the previ-

ously neglected second term is subject to a similar
analysis. If we denote the right-hand side of Eq. (78)
by M and the factor in (75), G[n —1]I[a—1), by B,
inspection shows that G&"[m)R[n) can be represented
by the symbolic double series

G"')e]R/e] =M+ MBM+MBMBM+ .

=M Q (BM)"=M[1—BM] '. (79)
v=0

The conventional impulse approximation consists in
retaining only the first term of M, Eq. (78). This yields
for Eq. (48)

&I pls Ilu'p—'&=i", llx. (1 "~—1)x~(~)ll

x&1 N[G"'[I] 'P R,„I1' e'&

+1[v]SIC]/8V„(P)}G[N]. (85)

On the other hand it follows from (81)'5 that

sG[~7/sv„(p) =~.+i&ol T(4 (1)" p(N):4(phd (q):
XP(~') .&(1')

I 0&. (86)

Applying the same limiting procedure to (84) and (85),
I.(I,I'), as in the case of scattering (keeping t in the
finite domain), we thus deduce the formula

&e'-'I:&(8~A(S):I '+'&='" x~'-i(1" )

x(1" IK r„&'&(p)G,G~o&[~7

+@[~)/SV„(g)]I1'" ~'&x. '+&(I'" ~'). (87)

As the only trivial instance available, let us apply
Eq. (87) to a one-particle state of momentum p. We
have

&pl &I p&=»m(Ii ~ p')b(ii —Ii') = V(2~) ', (88)
a

where V is the volume of the system. On the other
X llx„(1' e—1')x&.(e') ll. (80) hand for a renormalized theory (see Appendix A)

It need hardly be added that in view of Eq. (60), similar
considerations may be applied to the case of boson-
nucleus scattering.

x.(*)= (2~) 'p(p)~'"

(pp+m) p(p) =o, p(p)p, p(p) =1. (90)

V. NORMALIZATION OF AMPLITUDES AND
OTHER OBSERVABLES

An essential requirement for the utilization of the
results of the previous sections is a knowledge of the
normalization of the covariant amplitudes. A conveni-
ent method uses either the conservation of charge or of
nucleon number. To see how to employ the latter, we
introduce into the Lagrange density the term

Z'(x) = :It(x)y„iP(x):V„(x), (81)

which describes the coupling of an external vector field

V„(x) to the nucleon "particle current. " If we consider
the equation for G[e), in the version

{Gi . .G '—1[I]I[a]}G[e]=1[m]) (82)

its general form will be unaffected by the introduction
of (81), except that the terms are now all functionals

Taking cognizance of (88) and (89) and (87), the latter
reduces to the condition

1=V-' fd d 'd „(g)p(p) '*r„(x p, p
—x—') ' *'p(p—)

=.-(p)'(p, p).(p). (»)
Comparison of (90) and (91) informs us that I'0(p, p)
=p0, as we require for a renormalized theory.

It is characteristic of the covariant theory that ex-
pectation values and matrix elements involve integra-
tions over both space and time; when the causal nature
of the interactions is not disregarded, a knowledge of
the amplitudes for all (relative) times is required

As a further illustrative example, let us apply Eq.
(87) to the normalization of the deuteron covariant
amplitude

x~(»») = &o I I'(&(»)~l (»)) ID&
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By (1), the normalization condition may be written carried out, we And

(DiziD)=2,
where, in view of (87),

(92)
Xg ——(2~i)',

"dydee(dq2y*(q))
I(qg, y)

(D~X~D)=i t xg)(x,x2) {1'p(')(x),x)'P)G2(') —'(x2)x2')
eJ

X (+&+II&—E)'(~—~)I(y, e)4 (e)

= "dye*(y)(I —I )&(y) (1oo)+I o (x2,S2,$)Gy (x),x), )

+W(x„x, ; ~,'x, ')/~V, (p) } The result for E2 is identical. Thus, in the limit con-
sidered, the covariant normalization condition differs
from the more familiar expression in terms of equal-
times wave functions only in that negative-energy
components contribute negatively to the normalization. '

Delaying further study of Eq. (87) until Sec. VI,
we turn briefly to the consideration of observables
other than the 5-matrix. The general problem may be
viewed as that of obtaining matrix elements of various
T products (or normal products) between states other
than the vacuum. In all cases these may be handled by
a suitable generalization of the methods described for
the S-matrix and for the normalization integral. We
shall not consider any hypothetical cases, since in
practice the most important quantity is the energy of a
bound state, to be studied in detail in the ensuing
section. Ke merely complete the considerations of this
section by a special technique available for the compu-
tation of the electromagnetic moments of a nucleus.

Toward this end, it is convenient to study the
scattering of the nucleus by a weak external electro-
magnetic field A„(g), which vanishes in the remote past
and future. The Green's function G[n] will now also be

In order to exhibit the relationship between (93) and
the conventional quantum-mechanical normalization
conditions, we consider the former in lowest order.
Then bI/BV is disregarded and

Gy 2(0)—& —(spy~) o), (2) goo), (2) —yo(&), (2) (94)

Then in momentum space, (93) is the sum of two terms

(D(I(I
~
D)= J)I,+X„

where

+1 &

J dp AP2xy (ply P2)70 (Vp+'I) xD (ply P2) y (93)

and a similar expression obtains for E2. For a deuteron
at rest of total energy E, Eq. (95) expressed in terms of
the relative momentum p reads

dPC'*(P) [II2 kE+P03@(p—) (96)

a functional of A„. To 6rst order in the latter we have
where C* p =C (p yo")yo(" is the relative momentum-
energy wave function. As Salpeter' has shown, the
amplitude C (p) may be related to the "equal times" G[n,A]=G[e]+ ~ d&{&G[e]/&&„($))~=o&&($) (101)
wave function Q(y),

gl

4 (y) = C (p)dpo, (97)

when the interaction I is instantaneous, by the equation

C'(P) = [II~ 'E Po] '[II—2 -2E—+Po] '—
x)I I(y, q)p(q)dq (98)

and g(y) satisfies

@(y)= (2m i) (Hg+II, —E)—'(P+—I'—)

It, is clear that the operator L(t, t') can be applied to
the right-hand side of (101), thus yielding for the
scattering of the nucleus (in its ground state) from
total momentum p' to total momentum p, the result

(PI (~—1) lP') = —i") d&x. (1

~~SG[~7-'/u„(P) ~1'" ~')

Xx„(1'" ~')&,(k). (102)

The various moments can be extracted from (102) by
X~' I(y, q)Q(q)dq, (99) special choice of A„(().

where I is a projection operator to the positive-energy
components of both nucleons, whereas I' is a projection
operator to their negative components. But if (98), and
its adjoint, are inserted into (96) and the P() integration

VI. BOND-STATE PROBLEMS

%e turn to the bound-state solutions of the equation

fG [e] '—1[m]I[I])x(1 n) =0. (103)
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Now the workers who have grappled with actual cases'
all overlooked Eq. (87), as the proper normalization
condition to be imposed on permissible solutions. "At
the same time, one must remember that the same equa-
tion does not provide a useful orthogonality theorem.
To see this, let us apply the condition to the "ladder
approximation, " i.e., to an equation of the form

(yp+m)(') (pp+m) ('))((x„x,)

To see this we write

(pp+~)(i) =»(i)$a(i) .p+po(i)~ po
—=7o"'L3'i —kEj,

(pp+~) (&) —po(2)
I

a(2) .p+go(2)~+ po
—=yo("[X2-—,'E).

In relative coordinates we then contemplate the two
equations

yo"'yo"'hei ——',E]pseg —-,'E7y~ (x)
dxi (fx2 1(xl)x2 j xi )x2 )x(x1 yx2 )y (104)

with I specialized to

I(xi,x2, xi',x2') =0 (x,x') I) (X,X'),

—
J ~(x,x')y~(x) =0, (112)

(10') 4 s (x)7o' '7o"'L~i —kE'L~2 kE 3

and X, x total and relative coordinates, respectively.
Under these circumstances, we may consider s'(x,x') to
be independent of V„($) when that external field is
turned on. Applied to states of total momentum zero
and energies E, E', the integrated form of Kq. (87)
becomes

2(2x) 'V()(E—E') = dxi dx2'do. „($)xs(xi)x2)

—,"@s(x)S(x',x) =0, (113)

where as usual @p= —pg. Following a standard pro-
cedure, together they imply that

,'(E' E)
J y -. t(x)—$(Se,—-', E)+(Se,——,'E)

)&(1 2~ {y ("($)(yp+m)")+(yp+m)")p (')($)) ~1'2')

&&)r~ (x,',x,'). (106)
Recalling that

(1~y„(t) ~
2)=y„&(1—2)b(1—$), (107)

2~ V6 (E E') de (x)—

choosing a surface $0
——constant, inserting

g~ (xix2)=e '~'
@r~( )x, gs(xi, x2)=e'says(x), (108)

and performing the integration with respect to the total
coordinates, the right-hand side of (106) reduces to

+ (Xi——',E')+ (3'.g —-,'E') )Ps(x) =0, (114)

and if EWE', we may conclude the vanishing of the
integral. In deriving (114), we have presupposed the
validity of various integrations by parts, i.e., the
Hermiticity of the operators involved. The integrals in
(114) and (109) are the same.

The appearance of the last result suggests a matrix
form of writing. Indeed, if we introduce the vector

( y). (x)
Cs(x) = (Ki—-', E)ys(x)

((X2——',E)yg(x) j
and select a suitable normalization, we may write

&& L»"'(~p+~) "'+(~p+~) ")»"))&~(x). (109)

In the limit as 8—+ E', we can infer that

-', (2~)'JI dxyg (x)

J
4E~ t(x)9RC'@(x) =(1@@'q

where OR is the Hermitian matrix"

(0
m=-',

I 1 0 0 [.

(1 0 0)

(116)

(117)

&L~o")hp+ )")+(~p+ )")7o")34 ( )=1. (110)

On the other hand, for E~E', it is inviting to conclude
the the corresponding integral is at least finite. Under
that supposition, it is then amusing to remark that
one can prove directly from (104) that it vanishes,
in fact.

"The relevance of this condition was noted afterwards by
Nishijima and Mandelstam (reference 4 and see below).

In Appendix C, the generalization to an arbitrary
number of particles is considered. The establishment of
(116), together with the plausible assumption of an
expansion theorem, will permit us to develop below a
perturbation theory for the many-particle system.

"5K is in fact a singular matrix and for this case we could
equally well have introduced a two-dimensional vector space with
a nonsingular metric. This will affect none of the ensuing results,
however.
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Prior to that, however, let us review briefly the bearing
of (116) on previous work.

Mandelstam' has argued that the imposition of
(116) or its equivalent together with its associated
Hermiticity requirements rule out the existence of a
discrete spectrum for the parameters considered by
Goldstein, in striking analogy with the situation occur-
ring for the one-particle Dirac equation in a Coulomb
Geld for Z& 137."On the other hand, the same equation
could well yield a discrete spectrum for suKciently
weak coupling.

For the other example in the literature, Nishijima'
has applied a corresponding normalization condition to
the solutions of Wick and Cutkosky' and found them
perfectly satisfactory except in the extreme situations
of zero total energy and zero binding energy. "It is our
opinion that the work of the latter authors represents
an example with no remaining ambiguities.

We turn then to the formulation of perturbation
theory, restricting ourselves to the two-body problem.
In the perturbed equation, we admit an energy-
dependent interaction s'~(x, x'). Let E, be the energies
of the unperturbed system. From the equations

X;= (124)

From Eq. (123) there follows, by means of Eqs. (116)
and (120) the equations

~r

(W E)—
P t'Us, )l's —(W—E) I 4, tMXE

J

+a,+Q(W —Ep) 4~, &9RXp,

)I 4 ~&5R%')( ——1+(W E)))4ESEX—s

To determine the a, , we construct from Ps the vector
4~, that operation dehning simultaneously the right-
hand side of the equation

+w 4'w, E+Z a&4)p 1

=4~+(W—E)X&;++ a [4 +(W E)X—7 (123)

where

yp(')yp(') (K(——',W) (Xp——,'W)P&r(x) +P ap(W —Ep) 4~tORXg„(125)

"S)r(x,x')Ps (x') =0, 118

P (x)yp")7()")(X(—pE,) (Kp ——'E,)

y, (x')a(x; x) =0,

( )
the first of which serves for the determination of the a;,
the second defining the normalization integral on the
left-hand side. Toegther with Eq. (122), they determine
the energy, represented according to Eq. (120) by the

(119)
expression

W=E+ P&.*'Us P&r i~4 tan+&r (126)

following the same standard procedure as for Eqs. (112)
and (113),we derive the result

(W—E;) 4~;tOR@&r—— y;~'U p(Pg, (120)

where 0'~ represents a vector constructed as in Eq.
(115) and

Us ypo)yp(p)Lg&r y7 (121)

4w=4E+ Z ate (122)

"K.M. Case, Phys. Rev. 80, 797 (1950).
~ Though we are in agreement with Nishijima's conclusions, we

do not con6rm the precise form of the normalization condition
that he imposes.

Equation (120) is reminiscent of the fundamental
formula of Brillouin-Wigner perturbation theory.

To carry the treatment forward, however, we must
assume an expansion theorem. Kith an appropriate
choice of normalization of @&p we suppose the validity
of the representation

APPENDIX A

The treatment of the S-matrix in the Heisenberg
representation in the absence of bound states is usually
based on the ie and olt operators, e de6ned loosely by
the equations (we consider for example the nucleon
operators)

(A.1)lim Q(r, t) —»t;„(r,t)7 =0,

lim g (r,t) —P.„,(r,t)7=0. (A.2)

and f, & then satisfy free-field equations, and the
total Hamiltonian when expressed in terms of either
set of operators has the aspect of the Hamiltonian for
uncoupled fields, The associated creation and annihila-
tion operators in conjunction with the physical vacuum
state are then used to construct the complete sets of
states ~a(+)) (constructed by means of the f; ) and
~n( &) (obtained by means of the P, &). The physical
signilcance of these operators (i.e., of the states erected
by their use) is that they describe isolated real particles.

In the event that bound states occur, we extend Eqs.
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lim [P(r, t) —&P.„i(r, t) —
&P» (r,t) 7=0,

taboo
(A.4)

where of the &Pe (the bound state operators) it is only
assumed that they are dynamically independent of the
iN and out operators. Thus they commute (anticom-
inute) with the latter, which form a reducible repre-
sentation of the commutation (anticommutation)
relations of block form with respect to the subspaces of
given bound state character.

To explain what is meant by the last statement, we
construct the states In&+». We cannot give an explicit
construction for those states which in the remote past
contain only composite particles but we merely assume
that there exist an appropriate set

I
8&+», including the

vacuum state. Let 0;„, ~ be the complex of "in"
operators which defines the state In&+&) with incoming
free particles only. Then the complete Hilbert space is
spanned by the vectors

l(~II)&+&&—g, tlII&+&& (A.S)

and, if Q;„ is any "in" operator

((&i',8')&+& IQ; I (o,,B&+&)&=(&i'&+&IQ; I&i&+»&&»», (A 6)

i.e., between states of given bound state character, it
has the same matrix elements as if the bound state
character were ignored and replaced by the vacuum,
whereas between states of different bound state char-
acter, the matrix element vanishes. Of course, there is
a corresponding set of states

I
a& &) constructed from

the "out" operators.
We turn to the study of the consequences of Eqs.

(A.3) and (A.4) and subsequent statements in regard
to covariant amplitudes. For a one-particle state

I p)
we consider the amplitude

(A.1) and (A.2) to the statements

lim g (r, t) —&P;„(r,t) —Po(r, t)] =0, (A.3)
taboo

to which we apply the operation'[I)', as defined in
Sec. I, Eq. (23),

Lx-"'(*,*)]' =(0I[It (*)4(*)]' I
"') (A 11)

If now ln&+&) is a bound state =
I p(2)), we have

Lx„(*„*,)]*-=(0
I [~t (x,)4 (»))*-Ip(2) &

= &0I pe(»)ys(»))" I P(2)) (A 12)

whereas if Iu&+» is a continuum state
I (pi, p2) &+&),

[xpipg&+& (xix2))'
=(0I [~I (*)4(*')]' I (P P )'+')
=(0I[~t'-(*)0'-(»)]' I (P P )'+')
= (21) I[X~i(xi)Xn2(x2) —Xui(x2)X~~(xi))", (A.13)

as follows directly from the representations available
both for the ie operators and for the corresponding
states.

As a final example we study the asymptotic form of
a mixed three-particle state

I (k,p(2))'+'), with

[x~,,"'(xi»»)]' =(0I [~t (»)4 (»)4 (»)]' I (»P(2)) "')
—(0 I [&PB(xl)&i&B (x2)4'in (x3)+4'B (xl)4'in(x2)4'B (x8)

+4 .(»)A(x2)A(xi))" I (»P(2)) '+')

[Xy(xix2)xk(x3) Xy(xix3)xk(x2)

+x„(xix3)xi(xi)]' . (A.14)

The normalization factor has been explained in the
introduction.

It is clear that by continuing this procedure we can
obtain the general formulation of the asymptotic con-
dition described in the introductory section.

APPENDIX B

We seek to establish the equivalence of Kqs. (41)
and (44) of the text. We limit ourselves to the case
that particle 3 is considered distinct from particles 1
and 2. We must then establish the equality

„ II O»(1)x~*(2) II x"(3)&123 II[3]I
1'2'3'&x"'+'(1'2'3')

xn(x) =(0I4 (*)IP& (A.7)
x&„„,&

—
& (12)x„,(3)(123 I I([2],3) I

1'2'3')
Since we suppose ourselves to be dealing with a pre-
renormalized theory, &P(p) satisfies

We recall that
Xx&„&+'(1'2'3'). (B.1)

(vp+ )x.(*)=o, (A.S) I[3)—I([2],3)= Ii2GS '. (B.2)
and indeed, since we are dealing with a single elementary
particle

&0I4 (*)IP&= &0 I 0'-(x) IP&= &o lf-i(x) IP&
= (2ir) Ip(p)e'i', (A.9)

where t&(p) is a free-particle spinor normalized to
p +=i,

For states of nucleon number two we study the
g,mplitude

x«"'(* *)=&012'(0(*)|t( )) I
"') (A 10)

Now x»& ~ satisies the equation

x»' ' —llxix2ll+x»' 'I»GiG2
= IIxix~II[1—Ii~oio&] '
= llxix~ll+ llxix2III12G1G2[1 I12GiG2]-'
=

II xix~ll+ II xixnllI»G» (B.3)

Inserting the last form of (B.3) into the right-hand side
of (B.1) and comparing the result with the left-hand
side, we are left to prove that

gg Xi)3&+&=G»I([2],3)x», &+&.
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But the latter equation follows immediately from one
form of the defining equation for x»3~+&,

X123 X12 +2+G12Gol([2]y3)+122 (+ 5)

since G3 'X3=0.
APPENDIX C

We demonstrate that the orthogonality theorem,
Eq. (95), can be extended to the case of any number 22

of particles. If kg[22] is the relative-coordinate ampli-
tude, we study the integral («= E/I)

+ 4 [N][~ [~]—~ [~]]4 [~], (c.1)

which vanishes in virtue of the fundamental equation

(C.2)

and its adjoint.
Ignoring for the moment the energy dependence of

the interaction, we transform the erst term by means
of the identity (verification left to the reader)

the curly bracket being symmetric in E and E'. By
means of (C.3) the first term of (C.1) can be written as

(C 4)

OR.s(s, 22—1—s) = [222(22—1)!]s!(22—1—s)!. (C.S)

For an energy-independent interaction and a suitable
normalization, we would then have the orthogonality
theorem

4@te5Ke4@n (C.6)

if we define the quantities involved as follows: Cg[N]
is a column vector of 2"—1 components comprising the
sequence&E[22], (X1—«)PE[22], , (X —«)Qg, (X1—«)

X(Be2—«)pg, .
) (Geo—«) . (BC„—«)4E,. Cg', is the

adjoint vector; OR[22] is a square matrix with rows and
columns labeled by the indices 0, 1, n, 12, 13,
23 e, whose nonvanishing matrix elements 5K, p can
be read off from (C.3): Let p(n) be the number of
integers (1 to n 1)—other than zero specifying the row n,

p(P) the corresponding number for the column P. Then
OR, E vanishes unless p(n)+p(P)=N —1. If the latter
condition is satisfied and p(n) = s, p(p) = 22—1—s, then

II(x'—«) —II(&'—«')
~1 i=1

=I '(E' —E)(Z II(B!"—«)(~1—«)
'

j=l i=1

+(~—1) ' Z II(~'—«)(3'- —«) '(~12—«)
'

jl/72

X (BCg1—«')+ 2![(I—1) (22 —2)]—'
f17 $28/8(

X (Be,—«) (BC11—«)-'(ago —«) '(SC12—«)
'

X (Se11—«') (KJ2—«')+ + (22—1)-' P II(~1—«')
71+72

X (~il «) (~12 «) (~11 «)

+Q II(x,—«') (sc,—«')—') (C.3)

However, in the general case, even under the simplest
assumptions, there is an unavoidable energy dependence
of the interaction. Thus if we assume only two-particle
forces, we have

g g[12]=p Vo(' Vo ' II Vo «(~«)
iAj k=1

X (BI'.,—«) '(X —«) 'I . (C.7)

where we suppose I;; itself to be independent of energy.
It is clear, though, that the integral containing the
difference (SE dg) can then b—e written in a form pro-
portional to (E' E) times a suitably —defined matrix
product in a space of 2" '—1 dimensions. Corresponding
remarks will obtain if three and more-body interactions
are involved. In general then the orthogonality theorem
will be more complex than (C.6). Further details will

be left to the reader.


