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Radiative Corrections to the Ground-State Energy of the Helium Atom*
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The radiative corrections of relative order Z'0, ' (absolute order
Z4n ry), corresponding to the Lamb shift terms arising from the
nuclear Coulomb potential, and some of the Zn' corrections,
arising from radiative interactions between the electrons, are
calculated for the ground-state energy of the helium atom. The
Z'e' corrections are all calculated, but of the ZcP corrections, which
are expected to be much smaller, we retain only those containing
lno, as a factor—these may be estimated rather easily —and
neglect the rest, regarding unity as being small compared to lno. .

The Z'cP corrections require the calculation of an "average
excitation energy" similar to the one defined by Bethe for the
hydrogen atom. It is found that virtual transitions to states (1s)
X (continuous p) 'P are the most important, and these are calcu-
lated using the momentum matrix-elements obtained by Huang,

who used a six-parameter Hylleraas wave function for the ground
state, and a product wave function with Z=2 for the s-electron
and Z=1 for the p-electron (full screening), for the excited states.
Transitions to states other than (1s)(continuous p)'P are also
considered, and the value of the "average excitation energy" for
helium is found to be 80.5&10 ry, where the limits represent an
estimate of the probable error of the result. The radiative cor-
rection to the ionization potential, which will be the difference
of the corrections for the two-electron atom and the ion, is found
to be —1.26&0.2 cm ', where the error includes an estimation
of the Zn' terms which are not calculated.

The corresponding radiative corrections are calculated, less
accurately, also for Li+, and the results generalized for helium-like
ions of higher Z by an extrapolation formula.

ECKNT improvement' in the determination of the
6rst ionization potential of helium has renewed

interest in the theoretical calculation of the ground-
state energy of the helium atom. Several investigators' '
have extended Hylleraas' ' variational calculation of
the nonrelativistic eigenvalue to the point that Kino-
shita's' value,

I~g ——198 316.97 cm ',

obtained with a wave function of 39 parameters, is
probably within about 0.3 cm ' of the true eigenvalue.

The relativistic corrections, of relative order Z'n' and
Zn' have all been calculated' and evaluated with the
39-parameter wave function, ' as also the "mass-
polarization, " which is a correction of the same nu-
merical order of magnitude. The sum of the relativistic
and mass-polarization corrections calculated by Kino-
shita' is

ItIrt (—5.36&0.2) cm '.—— (2)

Comparing (1) and (2) with the experimental value'

I o= (198 310.5&1) cm ', (3)
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.and remembering that the variational eigenvalue (1) is

a strict lower bound to the "nonrelativistic ionization
potential, " we see that AIIt(2) is not large enough to
bring the theoretical ionization potential down to the
experimental value (3). Therefore, we must invoke the
radiative corrections arising from quantum electro-
dynamics to avoid disagreement between theory and
experiment. These have been estimated by Gunther'
as —1.6 cm ' and by Hakansson" as between —0.7 cm '
and —1.7 cm ', respectively. While the sign and order
of magnitude are in the direction of improved agree-
ment, the uncertainty in these numbers is quite large
and we see that a more detailed examination of these
higher order corrections is warranted, particularly in
view of the planned refinement of the experimental
determination (3).

All the corrections of relative order Z'cr' (absolute
order Zen'ry) and some of the Zcr' corrections are
calculated in Sec. lI. For the one-electron ion that
remains when a two-electron atom is ionized, the
radiative correction to the ground-state energy of
relative order Zsn' is just the (lowest-order) Lamb shift,
which has been calculated by many authors

8 Z' 1 Ec 19
E&, Zcc' 21n————ln— —+—ry,

3 x Zn Z' ry 30

where Ep=19.77 Z'ry is the "average excitation en-
ergy" for a 1Sstate as de6ned by Bethe, "and evaluated
by Hakansson" and Harriman. "There are no terms of
relative order Zn'.

For the two-electron atom, the only radiative cor-
rections of relative order Z'n' are also Lamb shift terms
arising from the nuclear potential, described by the
Feynman diagrams in Figs. 1(a) and 1(b), giving for
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"Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950)."J.M, Harriman, Phys. Rev. 101, 594 (1956).

1256



GROUND —STATE ENERGY OF THE He ATOM

the total correction of relative order Z'o.3

lnkp= ~„p' inca„pdf p ~~o df~o, ~no=&n &o, (6)

where the integrals are to be interpreted in the Stieltjes
sense and extend over all states e to which dipole
transitions are possible from the ground state, and f„p
is the nonrelativistic oscillator strength (without re-
tardation) for transitions from the ground state to the
state n. The calculation of kp is described in Sec. III.

For the two-electron atom, there are, in addition, a
large number of terms which contribute to order Zo.'.
These arise from radiative interactions between the two
electrons, and a complete treatment of these terms
would require the use of a fully relativistic treatment
for two electrons in an external field. Now, for high Z,
these corrections will be small compared to the Z2n'

corrections and even for low Z, these corrections which,
in a simple approximation, are proportional to the
expectation value of the operator B(r»), are numerically
not very important because (8(rts))oo is many times
smaller than (b(rt)+8(rs))po, the factor appearing in the
Z20.3 corrections. For He,

(8(rt)+~(rs))op=34 0(~(rts))oo,

8 kp 19
Er„s=—Zrr'(8(rt)+8(rs))oo 2 ln——ln—+—ry, (5)

3 n ry 30

where (&(rr)+8(rs))pp is the expectation value, in
(Hartree) atomic units, of the operator Lb(rt)+8(r, )j
for the ground state of the helium atom. The average
excitation energy kp is defi.ned in a manner analogous to
that for one-electron atoms, " and may be written in
the form

while for Li+,

(8 (rt) + 8 (rs) )oo =25.2(5 (r») )oo.

Moreover, since the Zn' corrections which contain lno.

may be calculated rather easily, we retain only these,
regarding unity as being small compared to lno. . The
sum of the Zn' inn corrections will be shown to be

28
Ec, s = ——Q (8(rts))pp ln—ly.

3 Q

The radiative correction to the ionization potential
of a two-electron atom is then

~IL +L1 +L2 +L2 )

and the results are summarized in Sec. IV.
In Sec. V, we discuss the radiative corrections to the

ionization potentials of helium-like ions of higher Z, on
the basis of a calculation for Li+ and an extrapolation
formula.

The Lamb shift for a one-electron atom is so well
known that we need only quote the result (4).

For the two-electron atom also, the major contri-
bution is from virtual photons of "low" momentum,
and this is calculated by the method of Bethe."Using
this for photon momenta 0(k&5., where X um so
that retardation may be neglected, we obtain the non-
relativistic contribution to the self-energy correction
for the electrons (in natural units A= c= 1),

g2 «'k IP. -o"'I'+ IP. -o"'I'
~S.iVR=

4x'2m2 n e~f~ k2 jv —jvp —k

x (&.—& ) (&)
28

Z LI p-o"'I'+
I 1- "'I'1

3' m2 n

FIG. 1. Fcynman diagrams for helium atom Lamb shift.

X(E.—Eo) ln
E„—Ep

where we have neglected (E —Ep) in comparison with
A, in the numerator of the logarithmic term.

We consider next processes in which one electron
emits the photon and the other absorbs it. A large part
of this e8ect has already been included in the relativistic
corrections, Eq. (2), by virtue of the Breit operator;
this operator is exactly the part obtained by neglecting
(E Ep) compared with k in the energy denominators
of the exact expression. Subtracting this oG, we obtain
as a further correction'4 similar to (8),

g2

+B,NR
n a~I 6 k

(OIP."'c'" "IN)(~IP "" '" "Io)
X (&-—&o) (9)E„—Ep+k

r' E. K. Salpeter, Phys. Rev. 87, 328 (1952).
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If we explicitly calculate (8) and (9), it is seen that (9)
exactly cancels the part of (8) which arises from the
interelectron interaction if we replace the exponential
factors in (9) by unity. However, this cancellation
occurs only when retardation is neglected in (9), and
there will be a finite difference for "high" photon
momenta. If we combine (8) and (9) together, we obtain

WNs= Zl&ol»+vol~)l'
3xm2

X (8 —Eo) ln ~ (10)
Iz„—z, l

Apart from the slowly varying logarithmic factor, the
sum over n can be expressed in closed form. It is there-
fore convenient to write

El&ol»+»l~) I'(&-—~o)»

=(Zl &oI»+»l~) I'(&-—&o))»—, (11)
kp

since

8
War g= ((Vp+Vo +2V1' Vo) V)oo ln—, (13)

37rm2 ko

2-l&oi»+p l~) I'(~.—~o)
o&(V1 +V2 +2V1' V2) V)oo~

where V is the potential in the helium atom, including
the Coulomb interaction between the electrons:

Zg2 Zg2 ~2

V= — — +
~1 ~2 ~12

(14)
V,'V=4ore'LZb(r;) —8(r1o)7, V1 VoV=4re'8(r12).

Thus
4o;2Z

Wag= &&(r1)+&(ro))oo ln—.
3m2 kp

(13')

%e now consider contributions from high photon
momenta k& X. In this region the electron, after emitting
an energetic virtual photon, is practically free in the
intermediate state, so it is permissible to treat it by
Born approximation. This is essentially a scattering
approximation, and the results on the radiative cor-
rection to electron scattering" may be used. These

"Z. Koba and S. Tomonaga, Progr. Theoret. Phys. Japan 3,
290 (1948); R. P. Feynman, Phys. Rev. 76, 769 (1949); J.
Schwinger, Phys. Rev. 76, 790 (1949).

this being the deanition of kp, which is easily seen to be
equivalent to (6) since

f-o=o I&~l11+»!o) I'/(&- —&o). (12)

Then we may write

from photons of momentum greater than X, where Vp

is the nuclear potential only. Added to (13'), this yields,
for the Z2o.' corrections to the ground-state energy

4Zn'
p m 19'

+—l(&(r1)+|(ro))oo, (16)
3mo & 2uo 30)

which is identical with (5), when written in atomic
units. The Zu'lno. correction arising from a similar
process, described by the Feynman diagrams LFig. 1(c)7,
is similarly found to be

8' m
W1, z= — »—&~(r1o))oo,

3m' 2A,
(17)

which is exactly what we would have obtained by
including the interelectron interaction in the potential
in (15).The low-momentum contributions to this term
were exactly cancelled by the correction (9) to the Breit
interaction. In the self-energy terms which lead to (16)
it can be shown that" retardation may be neglected for
all values of the photon momentum k and the value of
X does not appear in (16).Retardation can be similarly
neglected in the terms which lead to (17). In the terms
leading to (9), however, an actual exchange of mo-
mentum k occurs between the two electrons and a
retardation factor is present explicitly. This retardation
factor decreases the contribution of these terms severely
if k is large compared with nm, the Bohr momentum.
In keeping with our scheme of neglecting unity com-
pared with inn in terms of order Za', we put X=nm,
retain (9) without any retardation correction (since
k(X) and omit the high-frequency terms (k) X), which
correspond to (9), completely.

Finally, we must consider the processes involving the
exchange of two transverse photons between the
electrons. These contribute corrections of order Zn' but
a nonrelativistic calculation reveals no terms containing
lno. . However, we do obtain a term containing inn if we
consider processes involving negative energy states, and
these can be estimated quite easily by ordinary per-
turbation theory. "These processes are described by the
Feynman graphs in Figs. 1(d), in which the time-order-
ing is significant, and if the photon momenta are taken
as k, q —k, contributions to order Zn'inn come only
from values of q&o,m, o.m&k&m. Then the contribution

r

"H. A. Bethe and E. E. Salpeter, Encyclopaedia of I'hysics
(Springer Verlag, Berlin, 1957), Vol. 35, p. 186.

refer to the scattering by a static potential, described
by the Feynman graphs (a) in Fig. 1. If we include the
vacuum polarization, represented by the diagram in
(b), we obtain for the contribution to the Lamb shift,
due to the nuclear potential,

e'
p m 5 1q

Wz, g=
I

ln—+-—— I&(V1 +Vo') Vo)oo (15)
3mm' 5 2X 6 5)
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to the level-shift is found to be

2us (m p~r= — »~ [(8(ris))oo,
m' ™ function give C=1.958; using a two-parameter func-

tion, Vinti obtaining C=2.09. Summing over all the
discrete states, we obtain the two sums

Wg, o' ———(14/3)n' in(1/n){8(rio))oo,

which, written in atomic units, is (7).

(19)

and if we add the Zn' corrections (17) and (18), we
obtain

2 ".o'f.o=1.19 ry',
n=2

P".os»(~~o/ry) f o=o 59ry. ',
n, =2

(20)

The calculation of the average excitation energy ko,
defined in (6), requires a knowledge of the oscillator
strengths for transitions to all states which may be
reached by dipole transitions from the ground state
1'So. These must all be 'P states, and may be classified
in two groups:

(a) Those states which give rise to lines of the He
atomic spectrum, in which one electron remains in the
lowest (1s) state while the other electron is excited to
a higher p state. This may be either (i) one of the higher
discrete states, in which case the configuration of the
excited state is (1s) (np)'P, or (ii) one of the continuum
states, in which case the excited state configuration
is (1s) (continuous p) 'P.

(b) In addition, there are the states in which both
electrons are excited to higher levels. By the Laporte
rule, the only such states that combine with the ground
state 'So are the singlet con6gurations arising from
(ms)(ep), (mp)(nd), (md)(ef), etc. There are then
diferent subgroups arising from the various possibilities
that (i) both m and e are discrete levels, or (ii) one is
a discrete level, and the other belongs to the continuous
range, or (iii) both belong to the continuous range.

Since exact eigenfunctions of the helium energy
levels are not known for any of the states, we are obliged
to make use of oscillator-strengths derived from matrix-
elements calculated with approximate wave functions.
The calculation for the (1s)(continuous p)'P states,
which are responsible for by far the largest contributions
to the integrals in (6), will be considered in detail, but
for the others we either make use of previous calcu-
lations or give rough estimates. We now discuss the
contributions of the various groups of states.

(i) The oscillator strengths for transitions to the
discrete states of the "principal series" have been cal™-

culated previously for e=2, by Wheeler, "who used a
six-parameter wave function for the ground state, and
for n=3 to 7 by Vinti, "using a two-parameter wave
function. We have used these numerical results and for
x=8 to ~ the asymptotic form f„o=C/I' From.
requirements of continuity it follows" that the constant
C equals 2df/dE evaluated at the series limit. Our
results (next section) with a six-parameter ground-state

"J.A. Wheeler, Phys. Rev. 43, 258 (1933).' J. P. Vinti, Phys. Rev. 42, 632 (1932).
'~ J. Hargreaves, Proc. Cambridge Phil. Soc. 25, 91 (1928).

the contribution of &z=8 to ao to these two sums being
only 0.062 ry' and 0.037 ry', respectively. About half
the contribution to these sums comes from m=2. The
error of the two sums in (20) is probably of the order
of ~0.2 ry'.

(ii) Oscillator-strengths for transitions to (1s)(con-
tinuous p) 'P states have been calculated by Wheeler"
and by Huang, ' using a Hylleraas six-parameter wave
function' for the ground state and a product wave
function of hydrogen eigenfunctions with charge Z for
the 1s-electron and with charge (Z—1) (full screening)
for the p-electron, for the excited state. Since this must
also be a singlet state, we must use the appropriate
symmetric combination

P, , -=Leo(1)e,, -(2)+No(2)e„-(1)j/~2 (21)

for the evaluation of matrix-elements, where

I =m sZ e ~"' e = —-'Z'
0 & 0 2

and

(22)

where

(eow(z —i)/k 1)

16 o (1+~m~)(Z —1)fk'+(Z —1)'$.

&&e~& "'"Pi"(cos8)e' &R (r), (23)

~ik
—2iR, =r e*"(x+ik)'+"z "i"(x ik)' 'iz 'il"dx—

—iA:

a,nd where we use (Hartree) atomic units throughout,
unless otherwise specified, k= (2o) 1. The normalization
of'v is Js~ v~idr=h( oo)'

While Wheeler calculated only the dipole matrix-
element, Huang considered the equivalent forms

l9 8
iso„= e + O =(~~',+', ~O), (24)

E„—Eo Bx] BS2

which lead to identical results when exact eigenfunc-
tions are employed, but may here di6er from each other
(and from the correct value). According to Chandra-
sekhar, " the values derived from the momentum
operator are more reliable. Huang found that, while the

"S.S. Huang, Astrophys J. 108, 354 (1.948).
2' S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
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always be written as

30 n=sp+ Vs,
e—Jlp

(26)

25

20

where vp is a plane wave solution of (e—Hp)e=O, and
V is the potential seen by this electron. For high exci-
tation energies, the second term is negligible compared
to the first, so the matrix element M„p (24) takes the
form

I drrdrpIup+(r&)e '"'rP+Np*(rp)e '"'~)0$(r, , rp)

0
I

1

10

I

io' lo

FIG. 2. The weight function &o'(d//des) plotted against the
energy E of the excited electron. The four graphs correspond to
momentum and dipole matrix elements obtained with the one-
and six-parameter wave functions.

dipole and momentum matrix-elements gave almost
identical results over the range of frequencies in which
the oscillator-strength is appreciable, at high fre-
quencies the f-values derived from the two matrix
elements, while small and showing the same general
dependence on energy, differ considerably, " the values
obtained from the dipole moment being appreciably
higher. Since high excitation energies are weighted
quite heavily in the calculation of the mean excitation
energy ko, this leads to quite diGerent values of k& in
the two cases. In Fig. 2, we exhibit the values of

pps (df/d~) =pp'(df/d 1no~) for the two matrix-elements in
the two cases when a six-parameter and a one-parameter
function are used to describe the ground state.

Tabulated below in Table I are the contributions to
the integrals fpp'df and J p~s Incpdf calculated with the
different oscillator strengths. As a check, we also give
the values of (8pr/3) (8 (ri)+8 (r&) )pp for the corre-
sponding wave functions, since we have the sum rule

where p(ri, rs) is the ground-state wave function and 0
is taken as (xi+xs) or (c1/(E &p) j(&/&—xi+&/»p)
according as the dipole matrix element or the momentum
matrix element is desired. In either case, we see that
the Fourier transform with respect to one of the argu-
ments of the ground-state wave function is involved;
if the ground state is described by a variational wave
function which yields a good value for the energy
operator, we may be confident that it will furnish a
good description of the actual wave function for those
Fourier components which contribute strongly to the
energy operator, but there is no guarantee whatever
that it will yield accurate values for the Fourier com-
ponents to which the Hamiltonian is relatively insen-
sitive, in particular for the very high momentum com-
ponents which contribute little to the ground state.
However, by writing the Schrodinger equation satisfied
by the ground-state wave function in momentum space,
we have a means of determining the asymptotic form
of the transition matrix element, when the excited
electron may be described by Born approximation,
without explicitly requiring a knowledge of the high-
momentum behavior of the ground-state wave function.
For, written in momentum space, the momentum
matrix element is

) cp„p'df„p=-s'zZ(8(rr)+8(rp))pp. (25) Dj d pld ppip (pl, ps) (pl+ps) $(pl pz)

It is seen that the oscillator-strengths derived from the
momentum matrix element give quite good agreement
with the sum rule, provided there are no large con-
tributions from states other than (1s) (continuous p) 'I',
whereas the dipole matrix elements violate (25) rather
badly.

The reason for the differences between the two
f-values at high frequencies is not hard to find. The
wave function p of the excited electron in (21) may

D; = (8s.k) * 'dpilp(pi) (p,+k);y(p, ,k),

TAsr, z I. The two integrals involving the weight functions.
All quantities are in units of ry2.

Ground-state
wave function

Svr—(~(r )
3

+&(r2))oo
fe02 ln—df

ry
e02dj

Dipole Momentum Dipole Momentum

where P is given by (21), in which we take" e= (4rrp) &

X&(p—k), k= (2e)'*, so that

~ There is a misprint in Huang's paper. Equation (25) on p.
358 of reference 20 should read

Mp'=yzIp', M '= (4/E)yiI P, 3f '= (16/E)piI ',
instead of

1-parameter
6-parameter

102.51
121.76

165.24 93.25
188.21 122,41

719 12 383 32
954.28 542.85

~d /&Id r Hm, Pllrrp r ~tP +11+ ~

The results in his Table II are, however, correct.
"The factor under the square root sign makes the normalizationj'p, p, d&=S(&—p'), which is the normalization employed in (23).
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where the ground-state wave function g satisfies the
equation

(Mp —Pi' —k')@(yi,k) =pr-' d'qr'L —Z@(y,+iI, lr)

Now the ground-state wave function falls oG rapidly
when either of its arguments greatly exceeds the Bohr
momentum. Therefore, if k is much larger than the Bohr
momentum, the contribution to D; of the second term
on the right-hand side, which is essentially from values
of pl lr, will be much larger than those of the other two.
This term contributes exactly

and the leading term in powers of 1/k is

f
Dp ——(8)4—&Zk k 'f' ' d—'sd'pgp*(y)y(y, s)

which in coordinate space has the simple form

Dp, —SZk;k 'f' dsre—p*(r)g(r&0).

This can be calculated quite easily with even the most
accurate known wave function and leads to an asymp-
totic form for the oscillator-strength which is found to
be not nearly as sensitive to the details of the ground-
state wave function as that obtained directly from the
matrix elements. In Table II, we give the coeKcients
for the asymptotic behavior of the oscillator-strength

df/de= Ce 'ls, -
(2&)

where e is measured in rydbergs, together with the
corresponding coeKcients obtained directly from the
asymptotic forms of the matrix elements. It is evident
that the correct asymptotic coeKcient must lie close
to the value derived directly from the momentum
matrix element and it would appear that a value of
C=286(ry)' could not be far wrong. An asymptotic
curve with this value of C is indicated by the dotted
line in Fig. 2.

Huang's momentum matrix element, which we have
used in our calculations, appears to be reliable both at

TABLE II. Values of the coeKcient C in Eq. (27) in (ry)'i'.

Wave function
Matrix element

Dipole Momentum New method

1-parameter
6-parameter
10-parameter:

Chandrasekhar
Kinoshita

360.1
591.4

181,8
290.9

255.4
288.3

286.4
285.7

(Swk) ~Zk,~ ' d'sd'pip*(y) (k'+ p' —2Ep) '

X I&—sl '4(y, s),

low excitations, where it agrees with the dipole result
and may therefore be trusted, and also at very high
energies, where it agrees with the correct asymptotic
value, and also gives good agreement with the sum
rule (25). However, we see from Fig. 2 that it is exactly
the intermediate region, where the reliability of the
result is not so well established, that is of greatest
importance for our integrals (6). The agreement
between the dipole matrix elements and the momentum
matrix elements at low excitations indicates that the
assumption of full screening is a fairly good one for
these states, whereas the asymptotic behavior obviously
depends only on the first term in (26) and is independent
of the choice of distorting potential. But it may be
questioned whether the assumption of full screening is
a valid one in the intermediate range. However, lacking
a more certain guide to the intermediate region, we
retain the f-values obtained from the momentum
matrix-element with the wave function (21) as the best
representation of the oscillator-strength over the whole
range. In order to obtain an estimate of the possible
limits on lnkp, we make modifications in the f values -in
the intermediate range, holding fppsdf constant at the
value prescribed by the sum rule (25) since this is
known very accurately. These modifications are shown
in Fig. 3, and the values of lnko obtained thereby are
given in Sec. IV.

(iii) We 6nally consider transitions to doubly excited
states. Vinti" has discussed the oscillator strengths for
transitions to the discrete doubly excited states,
explicitly calculating the first few and estimating the
rest. Using his results, we estimate the contribution
of all discrete doubly excited states to fry'df and
J'aPln(cp/ry)df to be about 0.39 rye and 0.62 ry',
respectively.

(iv) For the doubly excited states in which at least
one electron is in the continuum, co is not bounded.
Therefore, even though their f-sum is small, as shown

by Vinti, it is possible that they may make large con-
tributions. We therefore proceed as follows. Green
et a/. '4 have expanded the six-parameter helium ground-
state wave function in a series of central field functions
representing various configurations. From the coef-
ficients of the higher terms in these series one can
estimate that the f-values for transitions to (2p)(ed),
etc. should be less than 10 ' times those for (1s)(ep).
We therefore restrict ourselves only to doubly excited
sp-states. For transitions to these states we should get
a reasonable order of magnitude estimate by using the
simple hydrogenic wave function with Z'=Z —~'~ for
the ground state (the overlap integral between this
function and the much more complicated six-parameter
function, for instance, is as large as 0.993). In this case
the matrix element to a doubly excited state (es) (mp)
is simply the product of an overlap integral C (between
the 1s hydrogenic function for Z'=Z ——,'6 and the

IL. C. Green et al , Phys. Rev. 85, .65 (1952).
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TAszz III. Various contributions to the two integrals involving
the weight function (in units of 121.28 ry').

Range

Discrete single excitation
Discrete double excitation
(1s)(continuous p) 'I'

e'=0—10 ry
e= 10—400 ry
a=400 ry —

0.0098
0.0032

0.1981
0.5743
0.2370

Sum 1.0224

co~ ln—df

0.0048
0.0051

0.3478
2.3470
1.7812

4.4859

a e is the energy of the p-electron. For e)400 ry, the asymptotic form of
Huang's formula was used, and the integration performed analytically.

ns-function for Z'= Z) and a one-electron dipole
matrix element Mp„. We find (for Z= 2) that C is= 0.98,
Cg'=0.0i, C3'=0.002& and therefore that the sum of C

for all s-states in the continuum is considerably less
than 0.01. For states in which the s-electron is in the
continuum with high excitation energy, one can show
that the oscillator strength decreases more rapidly with
increasing excitation energy than for the (1s)(con-
tinuous p)-states. We finally consider states in which the
s-electron is in a low excited state and the p-electron in
the continuum. These states will contribute of the
order of 1% to the integrals J'pppdf and J'cv' ln(&o/ry)df,
but it can be shown that (at least for the product type
ground-state wave function) df/Cku arising from these
states has almost the same shape as that arising from
(1s)(continuous p). Thus the contributions of these
states to the ratio of the two integrals, which occurs in
the definition of the mean excitation energy ko, is much
smaller. To summarize, we expect the error introduced
into our value of ko, due to the neglect of doubly excited
states" to be of the order of one percent or less.

~' For a more detailed discussion, see P. K. Kabir, Ph.D. thesis,
Cornell University, 1957 (unpublished).

The contributions of the states other than (ii) have
already been given. The contributions of the states (ii)
were calculated on the Cornell IBM 650 computer
using Huang's formulas, and the integrals evaluated by
Simpson's rule.

In Table III, we show the contributions of diGerent
states to the desired integrals, calculated with the
momentum matrix element, in units of the sum-rule
value snZ(8(ri)+6(rp))ps=121. 28 ry' calculated with
Kinoshita's 39-parameter wave function.

As discussed already in the previous section, the con-
tributions of the other states, while amounting perhaps
to as much as two or three percent of those from the
(1s) (continuous p) 'I' states, are proportional to them
and consequently have a much smaller eGect on the
value of lnko. The ratio of the two integrals in Table III
thus yields

ln(kp/i'y) =4.39 kp= 80.5 ry

ln (kp/ry) =4.39+8, (28)

where 6 most probably lies between &0.2 and almost
certainly between —0.2 and +0.6. Substituting this
value in (5), we obtain for He

EI., s = (5.009—0.8238&0.005) cm ',

where the error corresponds to a probable uncertainty
of 0.1% in the value of (8(ri)+5(rp))pp calculated with
the 39-parameter wave function. Now, for Z=2,

and
E1„~=3.535 cm '

El„s' —(0.210+0.——043tf&0.002) cm ',

allowing an error of 1% in (5(rip))pp evaluated with the
39-parameter function, where we have rewritten (f) as

+I s (28/3)Q (~ ( l r))sDpp(n1/ )+ajt)ry

~ —in Ry
ydf .

dIII

20

lo

I I I

I IO I02 lo IO5
I

IO4

FIG. 3. The heavy curve is the "Momentum-6" curve of Fig. 2.
The thin curves are two arbitrary modi6cations. The dotted curve
is the asymptotic form of the weight factor.

which is nearly equal to the "mean excitation energy"
for He+: 19.77Z' ry=79.08 ry. The main uncertainty,
however, arises from the question of the reliability of
the oscillator strengths for transitions to (1s)(con-
tinuous p) E states with intermediate excitation ener-
gies. In order to determine the effect of this uncertainty,
we recalculate the value of lnko in the two cases where
the f-values in the intermediate range are altered so as
to yield the curves marked A and 8 in Fig. 3, respec-
tively. These curves are so adjusted as to give the same
area as the original curve, since this is determined by the
sum rule (25).

The values of log(kp/ry) thus obtained are

Modification In(kp!ry)
A 4.3
8 5.0

The curves A and 8 represent rather extreme distor-
tions of the original curve and it is unlikely that the
value of lnko lies outside the limits given by them.
We therefore write
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The term p is included to take account of the Z'o, 'ry
corrections which we have not calculated. Thus, the
radiative correction to the ionization potential of the
helium atom, to order o.' ry, is found to be

~IL.=EL, x EL, 2 EI, 2

= (—1.264+0.8235+0.043g&0.007) cm ', (29)

where 5 is estimated to be of the order of %0.2, and g
is a number of the order of unity. If we add (29) to (1)
and (2), we obtain a value for the theoretical ionization
potential

It,h, =198310.35 cm '

which is in excellent agreement with the experimental
result (3). However, the quoted experimental error is
almost as large as the total electrodynamic correction;
consequently a sigei6cuet comparison of our calculation
with experiment must await a re6nement of the experi-
mental determination, in which case also a more
accurate evaluation of lnkp will probably be necessary.
Principally, this would require the development of an
improved treatment for the (1s) (continuous p) 'P states
with int'ermediate excitation energies.

V.

In order to estimate the corresponding radiative cor-
rections for helium-like ions of higher Z, the value of
lnkp was calculated, less accurately, for Li+. A six-
parameter wave function was constructed for the ground
state, and oscillator-strengths for transitions to (1s)-
(continuous p) 'P states were calculated with the same
approximations used in the case of helium. Transitions
to discrete states of the principal series were estimated
using two-parameter wave functions to describe both
ground and excited states. No other states were con-
sidered. The value of kp thus obtained was kp, L'+

=191.6 ry which, within the accuracy of our calcula-
tion, is the same as the "average excitation energy" for
the one-electron ion Li++. Since in the case of helium
also, we found the "average excitation energy" to be
very nearly the same as that of ionized helium, we may
conclude that the average excitation energy for helium-
like ions of higher Z will all be very close to Ep= 19.77Z'

ry, since the effect of screening will become less im-
portant as Z increases. For the energy correction, we
also require the probabilities of inding an electron at
the nucleus and at the position of the other electron,
respectively. Using the results for Li+ and 0 + obtained
by Kinoshita et a/. 26 with the 10-parameter wave
functions of Chandrasekhar and Herzberg, ' we construct
the extrapolation formulas

(~(r~)+~(r2))oo=
2Z' 0.653 0.138

1— +
Z Z

Z' 1.877 1.189
(8 (r~o) )oo =—1— +

8m Z Z2

and if we adopt the value of 19.77Z'ry for the mean
excitation energy kp for all Z, we obtain

8Z4o.'
DII, =

3'
1—7.490+2 lnZ+ —(11.93—2.61 lnZ)
Z

1——(6.12—0.55 lnZ) ry,
Z2

leading to values of AII„as shown below, in cm ',
together with the corresponding "observed Lamb
shifts"" for Li+ and 0'+.

z
—EII.—(aIzl, b.

3 4 S 6 7

8.2 27.5 66 134 236
6.6~25

385
565&600

These values lead to improved agreement in each
instance, but since the experimental errors are larger
than the radiative correction in each case, a meaningful
comparison of these results with experiment is not yet
possible.
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