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Vibronic States of Octahedral Complexes
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The interactions which occur between nuclear and electronic motions in electronically degenerate states
of octahedral molecules are investigated.

frequency" polarizations of the electronic motions: if V
is the electronic Hamiltonian, which difFers from the
total Hamiltonian in the absence of the nuclear kinetic
energies alone, then

INTRODUCTION
' "N 1937, Jahn and Teller" showed that electronically
- ~ degenerate states of nonlinear molecules are un-

stable with respect to certain asymmetric displacements
of their nuclei. This effect has been adduced in the
interpretation of certain magnetic efFects, ' 5 and pre-
sumably also accounts for certain facts of stereo-
chemistry. ' '

Recently' "it has been shown that when due account
is paid to the role of nuclear kinetic energies, this
"instability" may often be regarded, not so much as
leading to configurations of lower symmetry, but rather
as giving rise to a special coupling between low-fre-

quency electronic motions and vibrational modes. A

very similar situation was investigated much earlier

by Renner, "with reference to the vibrational structure
of linear triatomic molecules in II states. In the present
note we analyze the form which this coupling takes for
the degenerate states of octahedral complexes.

We consider a particular electronic level which is
g-fold degenerate in a regular octahedral Geld. For
simplicity, we suppose this level to be well separated
from other electronic levels. An orthonormal set of
functions fx', (E=i, ,g), is then chosen to repre-
sent the electrons when the nuclei are held in an octa-
hedral conGguration which, without loss of generality,
we may take to be stable with respect to totally sym-

metric displacements. These functions may be "con-
tinued" in a unique fashion by the addition of power

series in the nuclear displacements, so that they repre-

sent the electronic state for distorted nuclear arrange-

ments also. ' The latter set of functions, which we call

(E=1, ,g), contains the nuclear coordinates

parametrically only in so far as it includes "high-

Vyr, P~—x—Vrrr„(E, 1.=1, ,g),

where the V~~ are power series in the nuclear displace-
ment coordinates and span a gag matrix representation
of V referred to the Pic as basis. With a "normal"
choice for the nuclear coordinates'Q„, (r= 1, ,p), the
matrix V takes the form

Up+-', Q„k„Q„'+V',

where Vp, k„are constants and V' contains, in addition
to the usual anharmonic terms, certain other, and in
particular linear terms which characterize the Jahn-
Teller effect. Since it is the appearance of linear terms
in V' that is. immediately responsible for "instability, "
we shall take for it the simplified form

V =Zr~rQrur,

which may be said to define the "linear" Jahn-Teller
effect; here l„and Q„are both real, the one a potential
constant and the other a nuclear coordinate, and u„ is
a dimensionless gg g Hermitian matrix. We shall choose
our origin for the energy in such a way that Vp= 0, and
may note that V' contains nontotally symmetric dis-
placements only. It should be remarked that this simple
form for V' may lead to certain "accidental" degener-
acies which are removed by the inclusion of quadratic
and higher terms. Also that, just as the set pres and
therefore its continuation Prr are arbitrary to the extent
of a unitary transformation, so is V'. In the sequel, we
shall specify V' in that representation which displays
its structure most conveniently.

When the composite electronic and vibrational
(hence "vibronic") problem is considered, we must add
to V the kinetic energy T of the nuclei, namely,
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T= s Z.~'lu. ,

where P„ is the momentum canonically conjugate to
the nuclear displacement Q„of effective mass p„. The
full Hamiltonian is therefore

H= T+V=Hp+V',

HD 2 Zr(I r +Jr oir Qr )/prl
d

where we. have set k,=p~,'. It has been shown' that,
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when V' is represented by the gag matrix referred to
the Px, the use of this Hamiltonian is the analog for
electronically degenerate states of the Born-Oppen-
heimer approximation. Since we take V' to be linear
in the Q„, it is clear that those vibrational modes whose
coordinates do not appear in V' are una6'ected by the
Jahn-Teller effect; we therefore omit them from Ho.

If the nuclei are very heavy, or if V' is very large,
the nuclei may be treated as moving on the potential
energy surfaces defined by the latent roots of the matrix
V. This situation has been treated in some detail
already by Van Vleck'4 and by Opik and Pryce. ~ The
vibronic problem is also simple when the matrices v„
all commute, since the matrix H may be brought to
diagonal form by means of a unitary transformation.
Each nonvanishing element then represents a set of
displaced harmonic oscillators. However, the physical
situation is often complicated by the fact that the
various v, 's do not commute. Accordingly, the forces
tending to distort the octahedral configuration will

compete with each other: an interesting coupling be-
tween electronic and nuclear motions arises.

In what follows, we shall list the forms taken by V'

for the various degenerate states of octahedral com-
plexes (of point group Oi). After briefly reviewing the
appropriate potential energy sheets in each case, we
shall discuss in greater detail the concomitant vibronic
problems. However, before proceeding, we shall define
the notation we adopt for the vibrational modes: Jahn
and Teller showed that only nuclear displacements of
species e, and v2, appear linearly in V'. If our molecule
consists of six equivalent atoms I', octahedrally ar-
ranged about a central atom X, then there is only one
mode of either species. In any case, we shall suppose
that if there are more modes, only one of each type is
involved; this merely requires us to distinguish between
the effective masses of each. The r2, mode is triply
degenerate and the specification of suitable normal co-
ordinates is therefore arbitrary to the extent of a real
orthogonal transformation. We take as a suitable set
Qi, Q2, and Q3, which transform like—or, for XY6
molecules, are to be identi6ed with —Van Vleck's Q4,

Q&, and Q&, respectively. ' The e, mode is doubly de-
generate, and we choose as our coordinates q~ and q2,
which transform, respectively, like Van Vleck's Q3 and
Q2. The convenience of our alternative notation will

appear almost immediately.

Eg AND E„STATES

There are two doubly degenerate, single-valued
representations of the point group O~, namely E~ and
E„.Electronic states may be said to have either sym-
metry under two different conditions. In the first place,
when spin-orbit and spin-spin forces are very weak: the
species symbol then refers to transformation properties
of the orbital coordinates alone —for the effective
Hamiltonian is invariant under the full spin rotation
group, so that we may confine ourselves to a two-

dimensional manifold subtended by the eigenfunctions
with a particular set of values S, M8. In the second
place, the spin-orbit forces may be very strong for a
molecule with an even number of electrons: the species
symbol then refers to properties under transformations
applied simultaneously to both space and spin
coordinates.

In either event and for both 8, and E„states, the two
contributions to the vibronic Hamiltonian may be
written

Ho" = 2L(pi'+ p2')+u '~.'(Vi'+V2')7/u. ,

V =i (illa 1+$2%2)

where o-~, o-2, and o-3 are the Pauli matrices

(4)

(0 1) t'0 i )— p1 Oy

E1 0) Ei 0) (0 —1J

It may be noticed that only the e, mode is active in
the Jahn-Teller eBect.

The potential energy sheets have been described
elsewhere' '' "; sufFice it to say that they have cylin-
drical symmetry "accidentally, " with a continuous
series of minima on the circle of radius ~l,/k,

~
in

q~, q2 space. These correspond, in general, to con-
6gurations of symmetry D», and at three diGerent
points to the higher tetragonal symmetry D4&.

This same symmetry is shown by the vibronic prob-
lem: it is easy to see that

&=2nz3+0-3=2A '(gip2 —g2pi)+03

commutes with H=HO+V' and has an infinite dis-
crete spectrum formed by the odd integers, both posi-
tive and negative. Indeed, the operator O=Eo-~, com-
mutes with H and anticommutes with A, E. being a
reBection in the q& axis, so that each energy level is
doubly-degenerate and characterized by equal and
opposite values of h. .

This vibronic problem arose in a different context, '
and has already been solved numerically elsewhere. "
We shall therefore devote the remainder of the section
to rederiving the results of second-order perturbation
theory, introducing a method which will be useful in
the sequel.

Suppose that l of (4) is small, so that we may de-
velop the eigenvalues of H as a power series in /. This
means that the Jahn-Teller effect is weak and may be
treated as simply modifying the normal pattern for the
relevant vibrational mode. We adopt a representation
in which Hp is diagonal, so that its rows and columns are
labeled not only by E, referring to the electronic func-
tions, but also by e, b—here E„ is an eigenvalue of Hp
and the index b serves to distinguish its various eigen-
functions. In the present example, E = (e+1)hate, and
b takes (m+1) different values, the eigenvalues of m3,
say. Now, the matrix elements of V' in this representa-
tion connect only states for which the quantum number
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lc changes (by unity). The second-order energy eigen-
values and the correct zeroth-order functions are there-
fore determined together as the latent roots and latent
vectors of the matrix H2—the second-order energy
matrix —whose elements are typi6ed by

(&~b lH2l &'~b') =2 E Z(~.—&.)-'
L m a

X (Eeb
l
V'l Lma) (Lmu

l
V'l E'lcb').

Now, since the elements of V' vanish unless m=v+1,
we may replace (E„—E ) ' by (E„—E„)/(A&a)'. Ac-
cordingly our typical element becomes

(I:~bl v'(E. H,) v—'la'~b'),

by matrix multiplication, and this is just the appro-
priate representative of

—,'P(H„V), V)/( )2=H„ (5)

which we have therefore identi6ed with the second-
order energy matrix. It should be remembered, how-
ever, that H2 has been defined over a manifold with a
fixed value of e, and it is therefore generally only in
this sense that the identi6cation is made.

For the present problem it is easily seen that the
energy matrix, correct. to the second order in /„may be
written Ho+Hq, where

H2= lg (1+5130'3)/cia(de ~ (6)

In this approximation, both ns3 and o-3 commute with
the Hamiltonian —indeed, together with IIO, they form
a complete set of commuting observables. The second-
order energies are therefore found by inserting on the
right-hand side of (6) the eigenvalues n, —e—+2, ,
or e for m3 and &1 for f73. It might be noticed that the
term in m3o. 3, which is responsible for the splitting of
each level e, after the first (le=0), is entirely analogous
to the term describing spin-orbit coupling in a diatomic
molecule.

Tgg, Tltcy Tgg AND T2„STATES

As in the case of the E species, we speak of electronic
states as having symmetry T either when spin-orbit
interaction is very weak, or when it is very strong. In
both cases, and irrespectively of whether the states are
more specifically characterized by subscripts 1 or 2,
g or I, V' contains both e, and ~2, modes and may be
written

V = /s (pl&1+ $2&2)+i~ (Ql&i+ Q2&2+ Q87'3) ~ (7)

Ho contains, in addition to the term so designated in

(4), also

H. =-'t(~ +~"+~.')+..'-,'(e"+e"+e")]/.
(g)

respectively,

1(1 0 0) v3 t'
—1 0 0)-lo 1 ol, —

l
o 1 ol;

2(0 0 —2) 2 0 0 0 0)

0 0 0) 0 0 1 0 1 0)
lo o il, lo o ol li o ol
Eo 1 0 i Ei 0 0) Eo 0 0)

They have the following useful properties: regarding
~~, ~~, v 3 as the components of a vector ~,

~X~= —Q,, g'=2,

where the three components of the vector matrix 2 are

~0 0 0~ p
0 0 iq po —i 0~loo —il, l oool, li ool,

Eo i Oj ( —i 0 0) (0 0 0

respectively. These may be identi6ed with the angular
momentum matrices, in units of A, for a I' state, since

&X&=i0, 0'=1(1+1)=2.
Finally, we note that ei2+e22=1, the unit matrix.

The potential energy surfaces may be constructed
somewhat arduously. Opik and Pryce have given the
stationary points, of which three represent equivalent
tetragonal distortions (Dci) due to the e~ mode alone,
four represent equivalent trigonal distortions (Dad) due
to the r2, mode alone, and the six remaining stationary
points represent configurations of lower symmetry (C~)
obtained by combining both modes. They have shown
that the last six are never stable. The tetragonal con-
figurations are stable if and only if i,'k,/l, 2k,(c3

whereas the trigonal arrangements are stable if and
only if i,'k, /leak, )c. It is clear that the solutions of the
vibronic problem are not simple.

I.et us first consider the case where /, vanishes, so
that we have only to deal with tetragonal distortions
due to the e, mode. The Hamiltonian is now diagonal,
since Bo, e~, and ~2 are all diagonal. The vibrational
spectrum is therefore very simple, and indeed di8ers
from that of the undistorted octahedron (l, =o=l,)
only in a uniform shift —lP/2k, of all levels. The de-
generacies are not split at all, to this approximation,
and each row of the Hamiltonian refers to states which
are distorted along one of the three equivalent te-
tragonal axes.

Next, consider the case where l„=0, so that we have
only to deal with trigonal distortions. Since the com-
ponents of ~ do not commute, the problem involves a
coupling between the electronic and the nuclear degrees
of freedom. Its general solution is not obvious, and must
probably await numerical treatment —as was the case
for the vibronic problem (4). However, it is not dificult
to obtain the results, correct to second order, of the
eigenvalue problem whose Hamiltonian is

The matrices e and ~, in their order of appearance, are, H"+i,(e.+e."+e."), (10)
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in the event that /, is small. Adopting a representation
in which Hp' is diagonal, it is easy to verify, by use of
equations (5) and (9), that the second-order energy
matrix is

P3' ——-'i'(M 2—2)/P~, 3,

where M is the vector 5 '(}XP representing the angular
momentum of the nuclei in Q-space and 2, in a certain
sense, may be regarded as the electronic angular mo-
D1entum, both being in units of A. The second-order
problem is therefore closely analogous to Russell-
Saunders coupling in atoms: it has spherical symmetry
"accidentally. " Indeed, M', 3P, (M+2)3, and M3+4,
together with Hp', form a complete set of commuting
observables. In this approximation, therefore, the
energies are just

(33,+33)Acd, +33l 3LL(L+1)—M(M+1) —6j/P a) 3 (12)

where L(L+1) and M(3E+1) are the eigenvalues of
(M+2)3 and M', respectively. For a given value of
m„M ranges from e„n,—2, , to 0 or 1, depending
on whether e, is even or odd; for a given value of 3f, L
takes the three values M+1, M and 3II 1when M &1,—
or the single value 1 when M =0.

At the other extreme, namely when Il, l
is very large

(though E, still vanishes), the stabilization which may
be attained on assuming one of the four equivalent
trigonally distorted configurations is much greater
than A~, . The potential energy sheets are cubic hyper-
surfaces, all of whose equipotentials are determined by
constant values of Qi'+Q3'+Q3' and QiQ3Q3. Their
minima are determined by the conditions

IQil = IQ3I = IQ3I, QiQ3Q3= —~' ~=2i /»
which are satisfied at the corners of a tetrahedron in
Q-space; each corresponds to a molecule of symmetry
D3~, rather than 03, which is some /, d =2l,3/3k, more
stable than the octahedral arrangement. In the event
that l,h))Ace„ the motion is confined to regions about
the four minima, at least for low energies. For example,
near the point Qi ——Q3 ——Q3= —6, the form taken by
the vibronic problem may be obtained as follows: we
first introduce new coordinates referring to displace-
ments from this point, namely

Di=Qi+&, D3=Q3+~, D3=Q3+~,

whose canonically conjugate momenta are Pj, P2, P3 as
before. At low energies, the D's are small with respect
to 6, which prompts us to make a similarity transforma-
tion such that (3.3+~3+r3) of

V = le( 6 (7 1+7'2+3'3)+D17 1+D272+D3T3)

is diagonal. The new form taken by V' is most easily
prescribed in terms of "normal" coordinates referred to
the D3& symmetry group. We define

Q3 ——(Di+D3+ D3)/V3,

and its conjugate momentum P» which refer to a

parallel displacement (ni, ) with respect to the three-
fold axis, and

Qi= ( 2D—3+D3+D3)/Q6,

Q3
——(D3—D )3/V2,

togethel with thell conjugate momenta Py P2 which
refer to perpendicular (3,) displacements with respect
to Dsd, . The transformed V' may now be written

~'=i,{-~"+(1/~3)Q3"+(Q."+Q".)),
where 7j, r2, 7.3 are, respectively, the matrices

(0 1 1) 1 ( 0 i i —
p (2 0 0)

I1 0 —2l
I

i 0 —2il IO —1 0l.
6(1 2 0) V'6E 3 2i 0) &0 0 1J

Correspondingly, in the new coordinates and momenta,
Hp' becomes

L(P12+P32+P33)+P 233 2(Q12+Q22+Q 2)j/P
+l,h —(2/V3)l, Q3.

It will be noticed that the state which labels the first
row of the matrix t/' has a term —2l,h from the latter
which, together with /, 6 from Hp', amounts to the net
stabilization l,h. The remaining states lie some 3l,h
above this level. Moreover, the term linear in Q3 in
the leading element of V' is exactly canceled by the
corresponding term in Ho, showing that the first state
is stable with respect to small displacements. The
remaining states are unstable by the same token. Since
l,A))fur, in this limit, it is easily shown that the lower
energy levels of the trigonal site are given by the formula

—i.~+L~.(&)+13&~.(&)+L~.(II)+33~.(II), (13)

where 33 (J ) is an integer representing the vibrational
quantum number for the doubly degenerate 3, (D3&)
mode of angular frequency co, (J ) = (2/3) id, and 33,(ll)
is the vibrational quantum number for the n&, (D3$)
mode of angular frequency cu, (ll)=&a, . (Formally, the
vibrational levels are now split by the possibilities of
internal tunneling from one to another of the four
equivalent sites—in which case we return from D3d
to Oz by converting the symmetry number 4 into a
degree of freedom. However, in our limit 6 is large and
therefore the neglected terms in V' (at first quadratic
in the Q„) are likely to influence the behavior as much
as any we should consider at this time. We shall not,
therefore, pursue this analysis now although the effect
of a low-frequency internal degree of freedom may
prove to be of interest in discussing, for example, para-
magnetic relaxation phenomena. ")

Finally, we consider the case where l, and l, are of
comparable magnitude, but both are small so that
second-order perturbation theory may be used. To this
approximation, it is easy to see that the tendencies for
distortions via the c, and 7.2, modes do not interfere.

"J.H. Van Vleck, Phys. Rev. 5?, 426 (1940).
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As a result, we simply add to (12) the term

(e,+1)her, ——l,2/p, a& 2. (14)

Xo additional splitting occurs, and the problem retains
its spherical symmetry.

Gg' AND G„' STATES

When spin-orbit interaction is strong and the number
of electrons is odd, the electronic eigenfunctions 1t~'
span two-valued irreducible representations of the
point group 0& or, equivalently, single-valued repre-
sentations of the double group OI," formed on augment-
ing 0I, by Bethe's fictional symmetry element, a rota-
tion through 2m about an arbitrary molecular axis."
The two-dimensional representations E~,', EJ ', E2,',
and E&„'are unaffected by the Jahn-Teller effect, which
is electrostatic not magnetic in origin. '"."However,
states whose symmetries conform to either of the two
four-dimensional representations, G,' and G ' are for-
mally unstable with respect to displacements of both
e, and v.2, symmetries. In the case of either odd or even
states, it is easy to show that V' may be written in
the form

V'= l, (qtpt+ q2p2)+ p3lr (Qro r+Q2I72+Q30 $) & (15)

where the vector matrices y and e are just Dirac's
4&(4 matrices. "These satisfy the commutation relations

Ly, e)=0, pX y=2iy, rrXrr=2irr

Moreover, since the square of each component of each
vector is unity, y and e may be treated as independent
sources of electronic "spin" angular momentum, in
units of ~~A.

As in the case of E, and E states, the vibronic prob-
lem has a high "accidental" symmetry. In the q&, q2-

subspace, we again encounter cylindrical symmetry,
since the observable

X=2mB+ pa

commutes with the Hamiltonian Ho+ V'. In the 0-
subspace, the problem exhibits spherical symmetry,
since the vector

J=M+-,'a, JXJ=iJ
commutes with the Hamiltonian and its components
obey the commutation rules characteristic of angular
momentum. Further

P,J]=0,
so that we may label energy levels by the good quantum

'4 H. A. Bethe, Ann. PhySik 3, 133 (1929).
~ H. A. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930)."E,Wigner, Gott. Nachr. 546 l1952l."P. A. M. Dirac, Quuntlm Mechanics (Oxford University

Press, New York, 1947).

respectively. The former are stable when l,'/k, )l,m/k,

and the latter are stable when the sense of this in-
equality is reversed.

Once again, the solutions of the vibronic problem are
easily obtained when /„l, are small. The corresponding
second-order Hamiltonian is

IIe= lg (1+1Sap3)/pg(dg
—i,'(3+2M e)/2p, (u, '. (16)

It is evident that m3, p3, J', M', and J3 all commute with
H2, together with Ho they form a complete set of com-
muting observables. The energies, correct to second
order in /, and l, are therefore

(e.+1)Ace, —i.2 (1+m3p3)/p„(o, '+ (e,+-,')A(u,

i,'$3+4J(J+—1) 4M(M+1) j/—4p ~' (1&)

Here nz3 ranges from —e„—n,+2, , to n„p3 takes
the two values +1;M, for given rs„may be e„n,—2,~, to 0 or I, depending on whether e, is even or odd,
respectively; and 6nally, J=M&-,', the latter value
being excluded when M=0.

In the event that l, is negligibly small, the effective
Hamiltonian is just (4), whose solutions are known. "
Again, when l, vanishes although /, may be appreciable,
it is not dificult to tabulate the energy eigenvalues,
owing to the spherical symmetry in Q space. (The
analogous problem for T states poses much greater
difhculties since this symmetry is absent. ) These solu-
tions have been obtained and will be published else-
where. However, when neither /, nor /, may be regarded
as small, the problem is unlikely to be solved by any but
rather arduous numerical methods.

numbers J, J3, and A. Since J is half-integral, we see
that all levels are at least doubly degenerate, as indeed
they must be on other grounds. ""Further, if in their
respective subspaces R is a reQection in the q& axis and
5 is a reflection in the Q2, Q3 plane, it is easy to see that
the operator 0=RpjSr j commutes with the Hamil-
tonian and with J'. However, since 0 anticommutes
with both A. and Ja, it is evident that each level is
2 (2/+1)-fold degenerate.

The potential sheets naturally exhibit similar fea-
tures. They are doubly degenerate and may be expressed
by the function

—,'k,r'+-,'k,R'a (lPr'+i 'R') &

r2 —
q 2+q 2 R2 Q e+Q 2+Q 2

Their critical points lie on the spherical surface

r=O, R=)i, ~/k„

and on the circle


