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In a previous paper a theory of direct exchange and superexchange coupling between d or f electrons
and conduction electrons was given. This led to the possibility of an antiferromagnetic-ferromagnetic tran-
sition. The present paper is devoted to a more complete treatment of this magnetic transition by way of
examining a particular case. Both the molecular-field theory and a cluster theory due to Oguchi are applied.
Each leads to a magnetic transition and both predict that for all such transitions the ferromagnetic state
must have a lower free energy at O'K than the antiferromagnetic state. The transition is found to be of
second order. Expressions are given for the parallel and perpendicular susceptibility in the neighborhood
of the Neel point. A discussion is given showing how the direct exchange interaction with the conduction
electrons makes a magnetic transition possible. A comparison is made between the theory given here and
recent experimental results in Cu-Mn alloys.

I. INTRODUCTION
' 'N dilute magnetic alloys and in the rare-earth metals
~ - one meets the interesting situation in which the
usual Heisenberg mechanism for the coupling of the
magnetic moments does not apply. For a sufFiciently
dilute alloy the average separation of magnetic atoms
or ions will be so great that there will be no direct
exchange interaction. Similarly, nearest-neighbor rare-
earth atoms will have no direct exchange interaction
between them because of the very small radial extension
of the 4f orbitals. Therefore, the magnetic properties of
these materials must arise from some new type of spin
coupling whose primary feature must be the ability to
produce a long-range interaction.

Two long-range exchange interactions were con-
sidered in a previous paper, ' hereafter referred to as I.
The 6rst was the direct exchange interaction between
localized singly occupied 3d or 4f atomic functions and
the conduction electrons. The so-called s-d exchange
interaction has been considered by a number of
writers. ' 4 The second long-range interaction discussed
in I was a superexchange interaction. Here one finds a
coupling between the spins of widely separated atoms
through excited states in which these atoms change
their con6gurations by either gaining electrons from or
giving electrons to the conduction band. Kasuya4 has
shown that a coupling will also appear as the result of
including excited states in which the electronic con-
figuration of the atoms is unchanged but where con-
duction electrons are excited to normally unoccupied k

values.
It was assumed in I that the direct exchange between

bound and conduction electrons was ferromagnetic,
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tending to align the spin of the magnetic atom with
that of the conduction electron. The indirect or. super-
exchange interaction, which is made up of contributions
from all types of excited states, was assumed to be anti-
ferromagnetic in character. A molecular-field treatment
based on these assumptions was given in I and it was
found to show the remarkable feature of allowing the
possibility of an antiferromagnetic-ferromagnetic tran-
sition. That is, the strength of the exchange couplings
could be chosen so that the material would first order
antiferromagnetically on cooling from the paramagnetic
state, and at some still lower temperature the material
would order ferromagnetically and remain so down to
O'K. The molecular-field treatment as given in I did
not allow the possibility of a transition from ferro-
magnetic to antiferromagnetic ordering with decreasing
temperature.

The purpose of the present paper is to investigate
more completely the antiferromagnetic-ferromagnetic
transition. To this end, a particular example has been
chosen which is defined by a fixed choice of the various
exchange interactions, taking S= ~ and assuming that
the paramagnetic atoms can be ordered on a two sub-
lattice structure. Two substantially diGerent methods
are used to examine the transition. Section III contains
a molecular-field discussion of the problem. In Sec. IV
a recent method due to Oguchi, ' which is essentially a
simplified Bethe-Peierls-Weiss theory, is employed.
Since this method is based on an entirely diferent set
of assumptions than those underlying the molecular-
field theory, it serves as a good check on the physica)
predictions of the molecular-field approach. It is found
here that both methods lead to an antiferromagnetic-
ferromagnetic transition for the example chosen and are
in qualitative agreement concerning the transition tem-
peratures and the susceptibility.

Section II of the paper contains a discussion of the
phenomenological Hamiltonian on which both methods
are based. The results and conclusions of the paper are

c T. Oguchi, Progr. Theoret. Phys. Japan 13, 148 (1955).
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discussed in Sec. V. A physical explanation is given
there of the mechanism responsible for the magnetic
transition. Recent work on Cu-Mn alloys is also
discussed.

II. PHENOMENOLOGICAL HAMILTONIAN

As pointed out in the Introduction, we are concerned
here with the spin coupling problem where direct-
exchange interactions between magnetic atoms are
zero. The approach used to solve this problem was 6rst
given by Kramers' and later elaborated on by Lowdin. '
A simple example using the method was given in I,
One de6nes a set of ground states p; all of which corre-
spond to the same electronic configuration but which
cover all possible spin assignments to the one-electron
orbitals such that every p; has the same total M, . The
ground configuration here consists of the collection of
magnetic atoms with their normal configurations and
all conduction. electrons with a 6xed set of k values
doubly occupied and a fixed set singly occupied. In the
particular example to be dealt with here each magnetic
atom is assumed to have one electron outside closed
shells. There will be no loss of generality by taking the
3f, of each q, to be zero.

In general the true state of the system will be some
linear combination of the p, s and of all possible excited
states q~ of the system. Kramers' idea was to treat the
excited states q~ as -a perturbation on the ground states
by setting up an eGective Hamiltonian U& which is
to be diagonalized only with respect to the ground set
p;. The form of UI, to second order is

U= —P J(i,j)S,"S,—P P J(i,P)S; Sp
i&j P

—p p J(P,Q)Sp So. (2.2)
P Q

The lower case letters refer to the conduction electrons
and the upper case letters to the bound electrons.

We shall deal here with the simple case in which the
magnetic atoms can be ordered on two sublattices. For
a dilute magnetic alloy it is assumed that the magnetic
atoms can be divided into two sets A and 8 such that
on the average the nearest neighbor of an 2 atom is a
8 atom and on the average the next-nearest neighbor
of an atom is another atom in the same set.

The interaction integral J(P,Q) will be a function of
the distance between P and Q. Let the value of J(P,Q)
for EP—R@ equal to the average nearest-neighbor
distance be defined as Ii. The value of J(P,Q) for
EP—R@ at the average next-nearest neighbor distance
is defined as Is. In this treatment J(P,Q) will be neg-
lected for neighbors more distant than the next nearest.

The direct exchange integral between the bound and
conduction electrons J(i,P) will in general be a function
of k. This dependence will be neglected here and the
average value of J(s,P) for all k defined as Is will be
used to denote this interaction.

With the above qualifications, the eAective Hamil-
tonian reduces to

U= —Q J(i,j)S,"S,—p p IiSq;.Sii,
Ai Bj

—P P Is(S~'+Ss;) S.
Ai Bj

Hg, ~H~
Us ——IIs +Q

v E—H~~
(2 &)

n.n.n.
Is(Sg;.Sg,+Ski; SBj). (2.3)

i&j

Here HI, is the matrix component of the actual many-
electron Hamiltonian between q I, and p of the ground
set; Hl, ~ is the matrix component of H between yA,

and p~, E is the energy of the system, and H» is the
diagonal energy of the excited state p~.

The excited states p~ are of four types. First, those
in which conduction electrons are taken from the con-
duction band and put on the magnetic atoms. These
states are similar to the excited states in MnO where
an electron from the 0= ion is transferred to a neigh-
boring Mn++ ion. Second, those in which the magnetic
centers retain their normal configurations but in which
excitations in the conduction band take place. Third,
those in which electrons are excited from the magnetic
atoms into the conduction band. Fourth, those in which
a combination of excitations takes place.

The net results of considering all possible types of
states g~ is that the effective Hamiltonian takes on the
form

6 H, A. Kramers, Physica 1, 182 (1934).
i P. 0, Lijwdin, J. Chem. Phys. 19, 1396 (1951).

The first term in (2.3) is the exchange interaction
between conduction electrons which will be assumed to
be of negligible importance in the following. The second
term is the indirect exchange coupling of the A sub-
lattice and 8 sublattice, the summation being taken
over nearest neighbors (n.n.). Ii can in general have
either sign but is taken negative here so as to represent
an antiferromagnetic coupling. The third term repre-
sents the direct exchange between the bound and the
conduction electrons and it is ferromagnetic as I2 is
positive de6nite. The last term is the interaction of the
3 sublattice with itself and the 8 sublattice with itself.
The summation is taken only over next-nearest neighbor
(n.n.n.) Pairs ij and Is can have either sign. With the
first term of (2.3) omitted, the effective Hamiltonian
becomes identical with (73) of I.

III. MOLECULAR-FIELD (M.F.) THEORY

As shown in I, the Hamiltonian (2.3) may be written
as

B'=AMg. Ms+-', r(Mg Mg+Mii Ms)
—i1(M~+ Ms) M, . (3.1)
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The constants are given by

A—=2I Zga/N(gpa)', I'—=4IsZ~~/N(gIza)',

rf =Is/2gfia'. (3.2)

(.0

0.9—

0.8—

Here Z» is the number of nearest neighbors lying on
one sublattice to an atom on the other sublattice; X is
the total number of magnetic atoms; Z~~ is the number
of nearest A atoms to a given A atom and is taken
equal to Z~~ here.

The internal magnetic field acting on the atoms of the
A sublattice is

0.7—

0.6-

0,5—

0 4—

0,3-
Hg ———A Ma+ ifM, —I'Mg.

That acting on the 8 sublattice is

H =—AMg+rfM, —rMa.

(3.3)

(3.4)

0.2—

0,(—

I I I 1 I

0 0.1 0.2 0.3 0.4 0.5 $D
kT

I I, I

0.6 0,7 0.8 0.9The Geld acting on the conduction electrons is

H, =rf(My+Ma). (3.5)
Fio. i. Relative magnetization as a function of kT/~ Ii

~
for ferro-

magnetic and antiferromagnetic ordering.Suppose erst that the material is ferromagnetically
ordered. Then 3fg =3Ig and the molecular-field
equation for M& is

M, can be eliminated from (3.6) by the relation and

Here y is the relative sublattice magnetization
2M'/N glzaS.

f (rlM. AMa I—'Mg) gp—, aS ) The special case to be examined here is defined by the
Mg= ', (NgpaS)-Bal

kT following choice of parameters:

Zgg =6, Zgg ——Zgg =6, Is= gIg,

M, =ripe(M~+ Ma). (3 7) Is'xcN/4»'=ll
I
Ii I

. (3.12)

Thus, (3.6) becomes

p (2rjxc A I')glj, aSM—& q—
M& = ', (NgfiaS)BaI- — I. (3.8)

The ferromagnetic Curie temperature is readily found
from (3.8) to be

T.=C(»,——,'(Ayr)), (3.9)

where C is Ng'p, a'$($+1)/3k.
The general expression for the free energy is given by

F=AMg Ma+-,'I'(Mg. My+Ma. Ma)
—tl'yc(Mg+Ma) (My+Ma)

—kT lng(M~ Ma) (3.10)

where g(M~ Ma) is the number of arrangements of the
spins on the A and 8 sublattices corresponding to a
given M~ and M~. The case of particular interest here
is for S= 2 and with the aid of Sterling's approximation
(3.10) becomes

F/N= f sIiZ&a+I—s'Ngc/4g'Iia'+ 'IsZAA)y'—
+kT ln2 ——',kTL(1+y) ln(1+y)

+ (1—y) ln(1 —y) j. (3.11)

See for example P. W. Kasteleijn and J. van Kranendonk,
Physics 22, 36/ (1956).

(3IIil i
y= tanhl y I.

&4kT )
(3.15)

The free energy is given in terms of y for the ferromag-
netic case, when one uses the values of the parameters
given in (3.12), as

—F/N= (7/4) IIily'+kT»2
—zkTL(1+y) ln(1+y)+ (1—y) ln(1 —y)j. (3.16)

ln Fig. 1, y is plotted as a function of T, and in Fig. 2
fF+NkT 1n2$/N

I
Ii

I
is —plotted as a function of T.

In the antiferromagnetic case M~ ———Ma and,
according to (3.7), M, is zero. The molecular-field equa-
tion for M~ is

(( AMa I'Mg) gfzaS )— —
Mg =-', (NgliaS)Ba I (3»)

Using the relations in (3.2) and in (3.12), we find for
the Curie temperature

kT, =0.75
I
I, I. (3.13)

The equation for the relative magnetization y is found
from (3.8) to be

y IIPxcN IiZ~a)
I

y = tanh
I

+I&Z&z+ I I' (3 14)
2kT ( 2gsfias 2 )

which is, in view of (3.12),
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1.8

1,7

1.6

1.5

1.4

1.3

Ip2

C

0.9zz+
4~ 0.8

I

phase change would be of second order. The molecular-
field treatment of the intermediate states will be con-
sidered next.

Let there be a fixed angle 0 between M~ and M~ with
the spins on the A sublattice quantized in the direction
of M~ and those on the 8 sublattice in the direction
of Ms. Then

(rpxc —r)Mp'+ (vpxo —A)Mp' cos8, (3.21)

where Mp= (Mg (
= (Ms[. Thus,

(3EpgpsS
~p= pNgysSBsI [n'x&

kT

+(tPxo —A) cos8j ~. (3.22)

For the example being considered here, the relative sub-
lattice magnetization as a function of 0 is given by

0.6

0.5

0,4

y = tanh/ (7—cos8)
(8kT )

The Curie temperature of the state of fixed 8 is

(3.23)

0.3

0.2

0.1

The Neel temperature is

T~ ,'C(A r)= )—I—,-(/k. — (3.18)

Equation (3.17) becomes for the specific example con-
sidered here

y = tanh( ( Ii ( y/kT).

The free energy is

(3.19)

F/N= ts t I,ly'+kT ln2 ——tskT[(1+y) ln(1+y)
+ (1—y) ln(1 —y) $. (3.20)

A plot of y as a function of T for the antiferromagnetic
case is given in Fig. 1, and —(+F+NkT ln2)/N ~It~
for this ordering is shown in Fig. 2.

As it stands, Fig. 2 indicates that a first-order anti-
ferromagnetic-ferromagnetic transition occurs at the
intersection of the two free-energy curves. However, it
is possible that there could be states intermediate
between ferromagnetic and antiferromagnetic order in
which the angle between M~ and Ms lies between 0
and x. Such states could have the property that the

0 O.I 0.2 OB 0.4 0.5 0.6 0,7 0.8 0.9 1.0
kT
II) I

FIG. 2. Plot of [F+NkT ln2$—/N)Ii) as a function of kT/[Ix
(

for ferromagnetic and antiferromagnetic ordering. The intersection
indicates the presence of a magnetic transition.

Tc= ,'C {roc I—'+(tpyo——A) cos8}. (3.24)

If A&q'p&, T& steadily increases as 8 goes from zero
to m.

The free energy as a function of 8 is given by

F/N = (I&Z—~s/8+ Is'xoN/8 g'les') y' cos8

+(IpZgp/4+Is'XNAN/8g'p&')y'

+kT ln2 rtpkT[(1+y) In(1+y)
+(1—y)»(1 —y)3 (3 25)

It would be desirable to know at any temperature the
value of 0 which minimizes the free energy. Since y is a
function of 8, as can be seen from (3.23), finding the
maximum of (3.25) as a function of 8 would lead to a
very complicated transcendental equation. However,
the significant details can easily be found graphically.
At O'K, where y is unity, the extremes of (3.25) occur
for 0=0 or 0=x. Thus the free energy of an intermediate
state of fixed 8 will lie between that of the ferromag-
netic and the antiferromagnetic states.

In Fig. 3 the quantity [(F+NkT 1n2)/N —~Ii~ j is
plotted as a function of T for 8=0, 8=pr/4, 8=sr/2,
8=3~/4, and 8=~. It can be seen from the figure that
the antiferromagnetic-ferromagnetic transition is of
second order with the system following the envelope
of curves of the intermediate states. It was pointed out
in I that the molecular-field theory does not allow the
possibility of a magnetic transition in the opposite
order.

The susceptibility just below the Neel temperature,
where Mz is very nearly opposite to M&, is readily
found by using Van Vleck's approach. ' If 8&&" and

' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
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Hs&p& are the molecular fields acting on the A and B
sublattices in the absence of an external field Hp, and
H~ and Hs are the molecular fields in the presence of
Ho, then the magnetization in the direction of Hp is
given by

Ã (H~"'glusSi
M= —gpsS cos(Hx, Ho) Bs[

2 kT

gwsS (H~"'gwsS'1
+ Bs'[

7T E IT
Hs( ')gpsS)

+cos(Hs, Ho) Bs[
7T )

cV=23fpdHg, / [H~ [. (3.29)

Eliminating M, from (3.3) and using the fact that dM~
and dMs are equal and are in the s direction, we find

dH~g ——Hp+ (2tfsxc —A —I')dMg. (3.30)

The absolute value of Hz is found by (3.21) and on
taking 8=m, becomes

where 3fo= [3E~[= [Ms[ and yp= [H~&" [gpsS/kT.
Following Van Vleck, we take

cos(H~, Hp) = (H~, "'+dH~, )/[Hg [. (3.28)

If Hz, "~ is neglected in (3.28) and only the first term
taken in (3.27), we have

giisS (Hs"'gfisS lt+ Bs'
I IdHs i

. (3.26) Thus (3 29)

[H, [ =CVo(A —I). (3.31)

Let Hp be in the s direction making equal angles with
H~ and Hs. Then

g2~B2$2
M =2Mp cos (H~,Hp)+

2kT

Xcos(H&, Ho)Bs'(yo) {dH&+dHs}, (3.27)

M= {H,+(2~'x,—A —r)dM, }. (3.32)
(A —r)

Since M=dM~+dMs or 2dM~, the perpendicular
susceptibility just below T~ is

x.= 1/(A n'xo). — (3.33)
1.8

1.6

I I I I I I I I I I If M~, Ms, and Hp are taken to lie in the sx plane with
M& and Ms making a small angle pp with the positive
and negative x axis, respectively, then H&, &') is approxi-
mately 3Ep(A —I') pp. x~ is then given by

1.4
2Mpq

A —g2Xt.- Hp
(3.34)

1.2

1.0
C

z z+
0.8

I

0.6

0.4

0.2

For Hp parallel to Mg we have cos(Hg, Hp) 1 and
cos(Hs Hp) 1 just below T~. Substituting in (3.30)
gives

Ãg'p, g'S
M = Bs'(yo) {dHg+dHs}.

2kT
(3.35)

Eg'p~'5'
Bs'(yo)Ho. (3.36)

kT

Using (3.9) we find

The value of dH& is given by (3.30) and here it is a
vector in the x direction. Thus,

1Vg'ps'S'
M 1—(2tlsXG —A —I') Bs'(yo)

[

0.2 0.4 0.6
kT

I&([

0.8 1.0
x & I, —Tcl. (3.37)

PEG. 3. Plot of Pt+1VkT ln2]/X Ii[ as a fu—nction of kT/[ Ii[
for various fixed angles between sublattice magnetizations M~
and J[/I~. This represents a second-order magnetic transition with
the system following the envelope of the curves.

The susceptibility for random orientation of the
internal field with respect to. the external field will be
xs= ox~~+ sx, . As the temperature decreases from T~,
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a net magnetization will appear spontaneously and x& comprises our cluster is Ai and 8j, the cluster Hamil-
will rise rapidly. The form of x& is shown in Fig. 4. tonian is

IV. APPLICATION OP OGUCHPS THEORY

Oguchi' has recently developed a very simple theory
of ferromagnetism and of antiferromagnetism analogous
to the Bethe-Peierls-Weiss (B.P.W.) method. Instead
of treating a central atom and all of its nearest neighbors
exactly as in the B.P.W. scheme, Oguchi deals only
with a single pair of neighboring atoms. It can be
shown that Oguchi's theory is a special case of the
constant-coupling method of Kasteleijn and van
Kranendonk. "By carrying out this independent anal-
ysis of the problem it will be possible to check the
results of the molecular-field treatment. In particuar,
we wish to know whether a condition can be foulnd
where T~ exceeds Tz but in which the free energy at
O'K is lower for the ferromagnetic case than for the
antiferromagnetic case.

We derive here the cluster Hamiltonian for a nearest-
neighbor pair of magnetic atoms, one on each of two
sublattices. The Hamiltonian for the entire system is
taken as the last three terms of (2.3). By using (3.7)
the net spin of the conduction electrons S, which
appears in (2.3) can be eliminated leading to the result

12'&xc
U=Q —I1SA;.SB;— (SA;+SB;) (SA+SB)

g,j r 2g pg

—I2(SA;.SA;+SB; SB,), (4.1)~ ~
~

where SA and SB represent the average spin per atom
on the indicated sublattice. If the pair of atoms which

12'&xc
+I2ZAA.

2g pg
(4.3)

The total Hamiltonian (4.1) commutes with the z

component of the total spin. Therefore, the average
value of S~„Sg„S~„,and S~„are zero .This reduces
(4.2) to

II,1 I1SA; S———B; SA;,{E1S—Bg+E2SAg)

SBgg{E—1SAg+E2SB*) (4 4)

Because of the presence of the last two terms in
(4.4), the square of the total spin of the cluster does not
commute with (4.4). Consequently the eigenvectors of
B,i will be linear combinations of the following four
states

6'= ~'(1)v»(2)~(1)~(2) (4.5)

41 '=
4 '(1) 2 (2)P(1)P(2) (4.6)

f10= 40, (1)22;(2)Ln(1)P(2)+P(1)n(2)$/W2, (4.7)

00 &,(1)qr~. (2)La(1)P(2) P(1)a.(2))/v2 (4 8

The secular equation corresponding to this represen-
tation has the form

IIg1 —— I—1SA; SBj SAg {E'1SB+K2SA)
—SB;.{E1SA+E2SB). (4.2)

The constants E& and E2 are given by

I~'Ex
E1= I1(ZA B 1)+-

2g pg

0
0

——,'I) —X

u—b

——,'I1+(a+b) X0—
0 -', I1 (a+b) ——X—
0 0
0 0

0
0 =0,a—b

(7/4)I1 —X

(4.9)

where the rows and columns are ordered as are the states
in (4.5) through (4.8) and 42 and b are given by

2a = —(E1SA,+E2SB,), (4.10)

2b = —(K1SB,+K2SA.). (4.11)

The eigenvalues of (4.9) are

X1= 4I1 ,' {E1SB.+E2—SA,}——2{E'1SA,+E2S'B,—},
X2 =—AI1+ 2 {K1SBg+E2SA g}+2 {E1SAg+E2SBg)y

&2=+AI1+2Q, &4=+AI1—2Q, (4.12)

Tr e B'" =2e "2 coshL(E1+E2)(SAg+SBg)/2kTj
+e ""rcosh(Q/2kT). (4.14)

Self-consistency is introduced through the condition
that

SA, =Tr(SA, ,e B+ )/Tr(e B+ ) (4.15)

In order to evaluate the numerator of (4.15), it is
necessary to find the eigenvectors of the 2)&2 part of
(4.9). The four eigenvectors of the cluster are

where Q is defined as

Q= {I'+ (E'1—E'2)'(SAg SBg)') *'. (4.13)

The cluster partition function Z= Tr e ~+ is given
by

' P. W. Kasteleijn and J. van Kranendonk, Physica 22, 317
(1956).

C2 4'1

~Q
—I1q ' (Q+I1q '*

I
~'+r

2Q 2Q

(Q+I1q & (Q—I1'I ~

c =r rip' —
r

rpo'
2Q ) 0 2Q )

(4.16)
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The self-consistency constraint becomes

sinhL(Ei+E2) (Ss~+Se~)/2kT)+f(Ei K2)—(S~,—Ss,)/Q)e '~'" sinhQ/(2kT)
S~z=

2 cosh/(Ei+E2) (S~,+Se,)/2kT)+2e '~'~ cosh(Q/2kT)

If the ordering is ferromagnetic, S~,——Se, and (4.17) reduces to

sinh((Ki+ E2)S~,/k T)

2 cosh DKi+K2)S~,/kT)+2e '~'" cosh(Ii/2kT)

(4.17)

(4.18)

$(Ei+K2)S~,/Q5e '~'" sinh(Q/2kT)
(4.22)

1+e 't "r cosh(Q/2kT)(4.19)kTe=
3je ry/kTC—

The Neel temperature is given by

The Curie temperature is found from (4.18) to be the (4.17) reduces to
solution of the following equation

Since Ij is negative here, T&——0 is always a solution of
(4.19). A necessary condition for a ferromagnetic state
is that Ei+E2 be positive. If this condition is satisfied,
there will always be a nonzero solution of (4.19) which
gives the actual Curie point. Using the values for the
various parameters given in (3.12) in (4.19) leads to a
Curie temperature of

or equivalently as

(Ei K2+3I—i 't
in!

( Ei E2 Ii )— —(4.23)

(I i (Zgs+ 2) —I3Z~g )
(4.24)

EI,(Zge 2) I,Z~g)— —
kTo ——0.68!Ii I, (4.20)

as compared with kT& 0.75!Ii! as de——termined by the
molecular-Geld treatment.

The limit of S~, as T approaches zero for the ferro-
magnetic case is found from (4.18) to be

Substituting from (3.12), we find that kT~=1.33!Ii!
as compared with !Ii! as determined from the molecu-
lar-Geld method.

As T approaches O'K the limiting value of S~, for
the antiferromagnetic case is

(4.21)
1f 1

2!1+exp)—(Ei+E2)S~, Ii/kT)—
(Ei K2)2 I i2- $

S~.=
4(Ei—E2)'

(4.25)

If (Ki+E2)S~, is greater than !Ii!, the limiting value
is —,. Otherwise it is zero. Therefore, we have the condi-
tion that (Ei+E2) be greater than 2!Ii! in order that
Oguchi's method give a ferromagnetic state at O'K.

If the ordering is antiferromagnetic, S&,= —S&, and

XR

I

I

I

I

I

TN

Fzo. 4. Sketch of the susceptibility for random orientation of
the internal 6elds with respect to an external magnetic Geld.

I2'XMAS

IiZ~ii+ &0. (4 27)

Unfortunately the complexity of the expressions for the

Although there is no antiCurie point, Sg, does not
reach —,'at O'K.

Our purpose in discussing Oguchi's theory is to
compare it with the molecular-field results. The transi-
tion temperatures for the ferromagnetic and antiferro-
magnetic cases agree quite well for the specific example
chosen here. It remains to Gnd out whether Oguchi's
formulation also leads to the possibility of an antiferro-
magnetic-ferromagnetic transition. The summations in
the total effective Hamiltonian (4.1) can be carried out
approximately to give

U= f —XI,Z&s/2 —I2'XNAN'/2g'Ijz') SQ ' Ss
(I2'xc&'/4g'pa'+&IR—~~/2)

X (Sg.Sg+Se Sii), (4.26)

where Ag and S~ are the average spins per atom on the
A and 8 sublattices. The condition that the ferromag-
netic state be stable at O'I is given from (4.26) as
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(kTe)-- =-'
I
Ii

I

With I„- 0, kT~ becomes

(4.30)

Curie point (4.19) and the Neel temperature (4.23) do
not lead to a simple expression for the requirement that
T~ exceed T~. However, for the example chosen here
(4.27) is 5!Ii! so that the ferromagnetic state lies
lowest at O'K and it has already been found that
T~&T~. Therefore, Oguchi's method also admits the
possibility of a magnetic transition.

It remains to be determined whether Oguchi's
method allows a transition in the reverse order where
the stable phase at O'K is antiferromagnetic and with
To) TN. For this to occur, (4.27) is replaced by

IiZAB+Io'Xo&/gl B'&o. (4.28)

However, in order that kT~ be positive, we have from
(4.19) that El+Kg exceed zero. This becomes on sub-
stitution

Ii(ZAB 1)+Io'—xeX/gpB'+IoZAA) 0. (4.29)

First let I3=0. Then the largest possible value of kT~
is 4(El+Kg) as can be seen from (4.19), since Ii is
negative. The largest value of El+Kg consistent with
(4.28) is

! Ii!. Thus,

theory. This is done in the immediate neighborhood of
the Keel temperature where the spontaneous moment
of the system can be neglected. Since the parallel and
perpendicular susceptibilities are equal at T~, only p»
is derived below.

I.et the external 6eld Hp be in the direction of the
magnetization of the A sublattice which is taken along
the positive s axis here. The cluster Hami1. tonian in the
presence of Hp is

Hql = I1SA~' SB& sA'~s(EisBa+E2SAz gI4BHO)

SB,,(K—iSAg+KQB. gI4BHo)—. (4.32)

The energy levels (4.13) are modified in that the term
gp~Hp is subtracted from Xi and added to X2 with X3
and X4 unchanged. It is readily found that Tr(SA, ,e HI "T)
ls

Tr (SA e H /k T). —

((El+Kg) (SA.+SB,) 2gI BHo)—
!

= e"l ' 4Tsinh!
2kT

e """(Ki Ko)(SA S—B) ( Q )
sinh!

e E2kT)
(4.33)

(ZAB+2 l

(ZAB —2)
(4 31)

If one takes SA, =SA,"'+5SA, and SB,=SB,lo& —bS„
the self-consistency condition (4.15) in the presence of
Hp becomes

In order that Te) TN, it must be that lnL(ZAB+2)/
(ZAB —2)])4. Except for the case of ZAB ——2, which
is not ordinarily realized, we see that for I3 zero Tz
will never exceed TN with (4.28) holding at the same
time.

If Io is positive, it can be seen from (4.24) that the
minimum value of kT~ occurs for I~——0. But it has
already been established that for I3=0 the minimum
T~ cannot be less than the maximum value of Tg in
view of (4.28). Therefore, under these conditions the
desired magnetic transition cannot occur.

If Io is negative, ! IoZAA! must be less than !Ii! in
order that Tg be positive. The largest possible value of
kTe is given by (4.30). For ZAB) 4, the smallest pos-
sible value of k TN is ! Ii!/ln5. Therefore, for Io negative
and Z~~&4, the reverse transition is impossible. If
ZAB ——3, kTN goes to zero when ! IoZAA! =!Ii!.How-
ever, T& also goes to zero at that point and can readily
be shown to be less than kTN for 0&!IoZAA! &!Ii!.

Thus Oguchi's method does permit a transition from
the antiferromagnetic state to the ferromagnetic state
with decreasing temperature but, in agreement with
the molecular-field theory, does not allow a transition
from ferromagnetic to antiferromagnetic order with
decreasing temperature. This result is in accord with
the behavior of all antiferromagnetic-ferromagnetic
transitions observed so far.

Finally, we compare the susceptibility as found by the
Oguchi method with that from the molecular-field

(Ki+Ko)eS, g14BHo—
85,=

kTt2+2e "" cosh(Q/2kT)]

The parallel susceptibility is found to be

(4.35)

2Vg'@gal'

Xll=,(4.36)
kT(3+e " ) kTc(3+e»" o)—

where Q has been taken as Ii since SA, is small near TN.
Comparing (4.36) at TN with (3.37) or (3.41) at TN,
we find

Xll(TN)oguchi 0 538 Xll(TN)M. F.

Apparently this large difference comes from the ex-
ponential dependence of X„ in (4.37) on TN and To,
and from the differences in the transition temperatures
as found by the two methods.

V. RESULTS AND CONCLUSIONS

Both the molecular-field theory and Oguchi's theory
as applied to the particular example discussed here lead

Q '(E K)SA, &"e —r l'"T sinh(Q/2kT)
SA.l"+IS.

1+e»'~ cosh(Q/2kT)

[(Ki+Ko)oS, gI4BHo]/kT—
(4.34)

2+2e r'l'"T cosh(Q/2kT)

From (4.22) we see that the first term of (4.34) is justS,(P&. Thus,
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to an antiferromagnetic-ferromagnetic transition. The
two approaches only allow the possibility of going from
the antiferromagnetic state to the ferromagnetic state
with decreasing temperature. Furthermore, we have
seen from the molecular-field theory that the magnetic
transition is of second order.

One cannot write down directly the free energy for
the entire system from Oguchi's theory which deals
only with a pair of neighboring atoms. However, con-
nection can be made between the properties of the pair
and those of the crystal by use of the formalism de-
veloped by Kasteleijn and van Kranendonk in their
constant-coupling method. "In fact, it is readily shown
that Oguchi's cluster Hamiltonian for a neighboring
pair given in Eq. (2.2) of his paper is identical with the
effective Hamiltonian for a neighboring pair given in
Eq. (19) of reference 10 since Ap is —', (Z—1)JS/pn as it
is shown there to be in the limit of high temperatures.
Oguchi's cluster Hamiltonian for the antiferromagnetic
case can also be shown to be the same as the pair
Hamiltonian of the constant-coupling method given by
Eq. (24) of reference 8 in the high-temperature limit.
The work of Kasteleijn and van Kranendonk appears
to be the proper generalization of Oguchi's theory.

It is of interest to have a physical picture of the
mechanism underlying the antiferromagnetic-ferromag-
netic transition. Therefore, consider the 2 set of atoms.
The agency which produces their net magnetization
in the molecular-Geld theory is H&. The temperature
to which the system must be raised in order to destroy
M~ is seen from (3.21) and (3.24) to be

cIe'(T=o)
I

Egyg5p
(5.1)

If the free energy of the system at O'K were for both
the antiferromagnetic and ferromagnetic cases

"(~=O)= ——',(H. M~+Hn Mg), (5.2)

as it ordinarily is, then using (5.1) and taking M"=M&
—s(Ngp+Sp) at O'K, one finds

3ESp
F(T=O) = — kTc.

2(Sp+1)
(5.3)

"J.S. Smart, Revs. Modern Phys. 25' 827 (1953),

This shows that if (5.2) holds for all types of ordering,
that ordering with the highest transition temperature
T& is stable at O'K with respect to any other type. This
result has been obtained in a somewhat different
manner for Sp= —,

' by Smart. "
The reason why this prohibition of magnetic transi-

tions does not apply in the present case is that (5.2)
does not hold for both the ferromagnetic and antiferro-
magnetic cases. The direct-exchange interaction of the
paramagnetic atoms with the conduction electrons

S,=P;S;, (5.5)

the sum over i going over all of the conduction electrons.
From (3.5) and (3.7) we have that S, is directly propor-
tional to M~+M~. This result is also derived on the
basis of the Hartree-Pock equations in I. Thus, S, is
zero in the antiferromagnetic case and (5.2) does
represent the situation. However, in the ferromagnetic
case S,AO and (5.4) must be added to the free energy.
Hence (5.2) does not describe both types of ordering
here and (5.3) is consequently invalid. Thus, even
though Hz(T=O) or equivalently To is greater for the
antiferromagnetic case, the interaction with the con-
duction electrons can make the ferromagnetic state
that of lowest free energy.

The fact that a magnetic transition would be impos-
sible without the exchange coupling with the conduction
electrons and that their inclusion leads to a long-range
interaction of the spins is strong support for the claim
that the theory developed here and in I does apply to
the rare earths where magnetic transitions have been
observed in dysprosium" and erbium. " Furthermore,
these transitions are in the order predicted here. It can
be argued correctly that temperature-dependent mo-
lecular-field constants could lead to a magnetic transi-
tion. However, this does not answer the question as to
the source of the long-range spin coupling necessary in
the rare earths. The treatment given in this paper
would have to be modified in order to apply it properly
to the rare earths by making allowance for the orbital
contribution to the magnetic moment and for the
e6ects of anisotropy.

An interesting comparison between the theory given
here and in I and with experiment can be made in the
case of dilute alloys of Mn in Cu. A comprehensive
investigation of the magnetic properties of this alloy
is reported in two papers. ""Of particular interest here
are the results of reference 15. Alloys of 1.4 and 5.6
atomic percent Mn were investigated at low tempera-
tures for ferromagnetism. In both alloys a small spon-
taneous magnetization was observed at O'K which
decreased rapidly on heating and vanished at the anti-
ferromagnetic transition temperature. According to the
results of Secs. III and IV this is precisely what would
be expected of a material which undergoes an antifer-
romagnetic-ferromagnetic transition.

Owen et ul." carried out electron spin resonance
measurements on the alloys and interpreted the results
as indicating that the strength of the s-d direct exchange

"Elliott, Legvold, and Spedding, Phys. Rev. 94, 1143 (1954).
"Elliott, Legvold, and Spedding, Phys. Rev. 100, 1595 (1955).
"Owen, Browne, Knight, and Kittel, Phys. Rev. 102, 1501

(1956).
"Owen, Browne, Arp, and Kip, J. Phys. Chem. Solids 2, 85

(1957).

contributes a term to F(T=O) which is seen from (2.3)
to be

—Q"'P', Is(s~i+S~;) S'
Here
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(rfp' rj)7f,3fp,
— (5 &)

where gp is related to the exchange coupling of con-
duction electrons interacting more strongly with the A
set than the 8 set, and g is related to the exchange
interaction with this atom in the 3 set of conduction
electrons interacting more strongly with the 8 set. In
reference 15 g was neglected as compared with gp and
on comparing the results with experiment a small value
of gp resulted. According to the picture developed in
Sec. III, the fact that T& and T& are not widely

The appearance of a contribution from direct exchange in the
expression for the Noel temperature, Eq. (7) of reference 15, is
incorrect.

coupling, measured by oi defined in (3.2), was 1/10 to
1/20 of that expected from the free-ion value. Although
an entirely diBerent molecular-held treatment was used
in reference 14, it led to a similar sharply reduced value
of g.

In order that the results obtained here and in I
describe the antiferromagnetic and ferromagnetic
properties found in reference 15, it is necessary to
assume that the strength of the direct s-d coupling is
comparable to that of the antiferromagnetic coupling.
In particular, from Eq. (88) of I, the condition for an
antiferromagnetic-ferromagnetic transition is

(5.6)

In the opinion of the writer the experim. ental results
obtained in references 14 and 15 can be explained
without assuming a very weak direct-exchange coupling
and that (5.6) may be satisfied. If the Mn goes into the
alloy as an Mn~ ion, it presents an extra positive charge
to the conduction electrons. The induced screening
charge is made up of conduction electrons of both spins.
Those of spin parallel to the Mn +-ion spin are favored
by an exchange interaction while those of opposite spin
have the exclusive ability to spend part of their time
trapped on the Mn ion. This latter possibility is
embodied in the superexchange interaction. The net
result of these two effects can be that the net spin of
the screening charge will be very small. It was concluded
in I that a very small value of p may have been found
in reference 14 as a result of not including the super-
exchange interaction in the theory given there.

As indicated above, the interpretation of the electron
spin resonance results in reference 15 indicated a small
value of g. If one assumes that the model on which this
conclusion is based is essentially correct, it seems that
a legitimate objection can be raised concerning the
treatment of the s-d coupling. If the alloy were in the
antiferromagnetic state, then according to (3.'/), M', is
zero. Thus, the hrst-order theory would imply that
the conduction electrons play no role in the antiferro-
magnetic state. " This cancellation would not be
complete in a higher order theory and one would be
led to a molecular held due to the conduction electrons
acting on a Mn ion, say in the 3 set, of the form

diferent in the CuMn alloys and in particular that an
antiferromagnetic-ferromagnetic transition appears to
take place, leads to the conclusion that the screening
charge is made up nearly equally of conduction electrons
of each spin. This means that rfo' and rp in (5.7) must
be nearly equal. If one assumes that the resonance
theory of reference 15 is valid, it is the difference between
gp and g which is measured. A small value of this
quantity is consistent with the theory given here.
Furthermore, it is consistent with the small electronic

g shift found in the electron spin resonance of these
alloys for T))T&.
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Note added oN proof.—Yosida" has raised an important point
concerning the treatment given here. Our results are based on the
Hamiltonian (2.3) which is derived from Kramers' method for
solving the spin degeneracy problem arising from all possible spin
assignments to a fixed set of orbitals. Hence in this theory there
are as many singly occupied Bloch functions in the conduction
band in the antiferromagnetic case where M, is zero as in the
ferromagnetic case where M, is not zero. Thus the conduction
electron kinetic energy is unnecessarily high for antiferromagnetic
ordering of the A and B sets. Yosida suggests that this situation
be remedied by adding the conduction electron kinetic energy to
the Hamiltonian as M, /2x, . To discuss the antiferromagnetic
case we would use a ground configuration in Kramers' method
with no singly occupied levels in the conduction band. In the
ferromagnetic case we would use a ground configuration with
M,/gps unpaired spins where M, is determined by setting the
variation of (2.3) plus M,o/2x, with respect to M', equal to zero.
However, in addition to this suggestion one must include the
dependence of the number of excited states g~, which can couple
two states p; ancf p; in the ground set, on the number of singly
occupied Bloch functions in the conduction band. In general this
dependence can be expressed by expanding II and I3 of (2.3) in
power series in 3I, the first terms of which must go as the square
of 3f,. Hence the Hamiltonian to be used for the molecular field
case becomes in place of (3.1)

(r,+r,M,2)H= (Ao+AiM. o)Mz Ma+
2

(Mg My+Ms Ms)

M.2
ri(Ma+Ms) —M,+

Xc

The molecular fields acting on the A and B sets are still given
by (3.3) and (3.4), respectively, but M, is found by setting
SH/SM, equal to zero instead of from (3.7). One finds that Tc
and Trr are unaltered from (3.9) and (3.18) but that the condition
for the antiferromagnetic-ferromagnetic transition becomes

pox,)A o(1+K))oi'x, (1+K)
where E' is

g~g~yg~52(A1+r1)
2

This can only hold if A&+r& is negative and it becomes the same
condition as that found by the unmodified theory if E' is —~.
A magnetic transition is possible here only because the strength
of the superexchange coupling changes with the conduction elec-
tron magnetization. The qualitative nature of the transition as
given by the generalized theory is the same as that described in
Secs. III and IV.

r' K. Yosida (private communication).


