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and would probably be somewhat higher than that
needed to cause the growth of a nucleus in a static
experiment.

If this speculation were correct, the transition pres-
sure at a given temperature would be lower in the static
than in the dynamic experiments as is observed. An-
other conclusion is that the shock-induced transfor-
mation might be easier to analyze theoretically because
the microscopic transition mechanism is subject to

severe constraint and should be relatively easily
determined.
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Measurements of the magnetoresistance coeflicients at 4.2' K and at 20.4' K in single crystals of copper,
silver, and gold in the low magnetic field range, and in single crystals of silver for high magnetic field are
reported. The low-field results were analyzed under the assumptions that a relaxation time exists and is a
function of the energy alone, and that the Fermi surface is a single closed surface within the first Brillouin
zone and not touching its boundary. It is found that for copper the magnetoresistance cannot be fitted very
well on this model. We assume that at low temperature the hypothesis that a relaxation time exists is a good
approximation, and suggest that in copper the Fermi surface touches the boundary of the first Brillouin zone.
The magnetoresistance of silver in high magnetic fields shows marked anisotropy and no sign of saturation.

I. INTRODUCTION

'HE change in the electrical resistance of a wire
in the presence of a magnetic field (magneto-

resistance) depends, among other factors, upon the
nature and shape of the Fermi surface and its relation-
ship to the first Brillouin zone. If we consider a spherical
Fermi surface and a constant relaxation time, the
electrical resistance will not be altered by the magnetic
field. In order to account for the experimental phe-
nomena, anisotropy of the energy surfaces and/or
relaxation time have been postulated. '

Recently' ' considerable attention has been paid to
the interpretation of magnetoresistance in high mag-
netic fields. By high magnetic fields we mean fmlds such
that the radius R, of the electron cyclotron orbits
becomes smaller than the mean free path / of the
electrons; this criterion can be expressed by
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where co is the cyclotron resonance frequency, r the
relaxation time, JI the magnetic field, p the resistivity
of the sample, 37 the number of conduction electrons
per unit volume, and e the charge on a proton.

The usual Boltzmann transport theory seems to be
unable to give a satisfactory explanation of high-held
observations. The most peculiar of these e6ects is a
linear increase in the electrical resistance with the
magnetic field over a wide range. The discrepancies
between theory and experiment seem to arise from the
assumption that a relaxation time exists and is un-
aGected by the magnetic field. ' For metals, even at high
fields in the sense defined above, eRects arising from
the quantization of the orbits are negligible. In fact
quantization is expected to become important only for
fields of the order of 10' gauss such that —,'Acr = op where
ep is the Fermi energy. "However, for low magnetic
fields and low temperatures there are strong theoretical
arguments that indicate that the Boltzmann transport
theory is a good approximation. 7 In particular this
theory has been successful in interpreting magneto-
resistance in bismuth. ' Our samples of copper, silver,
and gold had coo- values ranging from 0 to about 0.2 for
the low-field measurements and a maximum of ore-=3
for high-field measurements in silver. We shall assume

~ S. Titeica, Ann. Physik 22, 129 (1935).
6I. M. Lifshitz, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 814

(1956).
7 R. Peierls, Quantum Theory of Solids (The Clarendon Press,

Oxford, 1955), pp. 115-142.
e B. Abeles and S. Meiboom, Phys. Rev. 101, 544 (1956).
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that the standard Boltzmann theory is adequate to
interpret the low-field results.

We shall now give arguments supporting the assump-
tion that, in the residual resistance temperature range,
a relaxation time exists. In the residual resistance range
the main contributions to the resistivity come from
elastic scattering by impurity atoms and 1attice defects.
The relaxation time r(k) is the characteristic time in
which the electron distribution function f(k) returns
to its thermal equilibrium value after it has been mo-
mentarily perturbed. In Appendix 1 it is proved that,
provided the collisions giving rise to the relaxation
mechanism are elastic, the isotropy of the scattering is
a necessary and sufhcient condition for a relaxation
time to exist for an arbitrary energy surface. The elastic
scattering is said to be isotropic if the transition proba-
bility w(k, k') from the state characterized by the wave
vector k' to that characterized by k is a function of the
energy alone. It is also shown that, under these condi-
tions (elastic isotropic scattering), the relaxation time
r(k) is furthermore a function of the energy alone.
Thus, if we assume that a relaxation time exists, there
is no loss of generality if it is taken to be constant over
the Fermi surface whatever its shape. However,
strictly speaking a relaxation time does not exist. We
have not been able to calculate the effect of this on the
magnitude of the magnetoresistance, but we believe
the e6ect to be small. For the samples used in our
experiments, we presume that the resistivity arising
from point defects is more important than that due to
dislocations. Point defects give rise to deviations from
the periodic potential that can be represented by a
potential well in the case of impurities from the same
column in the periodic table of elements or by a screened
Coulomb potential for atoms from another column or
for other point defects like vacancies, etc. We could not
treat the scattering of electrons by such a perturbing
potential in a realistic fashion, but we believe that the
transition probability w(k, k) is fairly isotropic. The
total scattering, as measured for example by the time
between collisions LJ'w (k,k') dk'g ', is much more
isotropic than zv(k, k') due to the averaging over the
energy surfaces. In particular the time between col-
lisions is not proportional to the density of states at k
but rather to the integrated density of states at k'.
Thus, although this is not in general the relaxation time

r(k), we believe that it indicates that the scattering
mechanism (whatever its form) is considerably more

isotropic than the density of states and contributes
proportionally less to the magnetoresistance. Further-
more, in the limit of low fields the curvature of the
electron paths will be negligible and, consequently, the
relaxation time will not be appreciably altered by the
magnetic field. Therefore we shall base our arguments

on the transport theory with the assumption that an

isotropic relaxation time exists.
In this paper we shall describe measurements of low-

field magnetoresistance in single crystals of copper,
silver, and gold for diferent crystal orientations and at
liquid helium and liquid hydrogen temperatures. A few
high-magnetic-field measurements were also done on
silver. In this case the change in resistance showns no
sign of saturation and is markedly anisotropic.

The low-Geld experimental results are analyzed ac-
cording to the Boltzmann transport theory with the
assumption that a relaxation time exists and that the
Fermi surface is a single closed surface, within the first
Brillouin zone and not touching the zone surface. It
was found that for copper this model could not be made
to account for the experimental results, particularly as
regards the ratio of transverse to longitudinal magneto-
resistance. This leads us to conclude that the Fermi
surface probably touches the boundary of the Brillouin
zone.

II. EXPERIMENTS

The crystals of copper and silver used in these
experiments were made from 99.999%-pure rods ob-
tained from Johnson, Mathey, and Company. Cleaned
bars, 0.008 in. )&0.008 in. )&1 in. , were prepared, melted
in a spectrographically pure graphite mold and allowed
to crystallize from one end in a temperature gradient.
The gold used was 99.9% pure wire prepared in the
same way.

Two three-mil copper or silver wire potential leads
were spot welded approximately fifty mils from each
end on the same side of the crystal. The crystals thus
prepared were then cemented in a slot along one edge
of a micarta block and current leads soldered to the
ends. The orientation of the crystallographic axes with
respect to the edges of the micarta block was deter-
mined by x-ray techniques.

The resistivity of the crystals was not determined
directly from their resistance as their dimensions could
not be measured accurately. Instead it was determined
by measuring the resistance of the wire at 4.2'K and
at room temperature (293 K), and using the known
values of the ideal lattice resistivity at the latter tem-
perature. For copper and silver the resistivity at 4 K
of most samples ranged from 2.4X10 to 8.4)&10 '
ohm-cm. For the gold samples it ranged from 8.0&(10 '
to 18X10 ' ohm cm. The errors in the resistivity
measurements were less than 3%. The resistivity of
copper at liquid hydrogen temperature was about 5%
larger than that at liquid helium temperature. For silver
and gold this difference was about 15%. From these
results we conclude that, at 4 K, the lattice resistivity
contributes less than one part in ten thousand to the
total resistivity.

The results of our magnetoresistance measurements
are most conveniently expressed in terms of certain
coeKcients that we shall now define. For a cubic crystal
in a suKciently weak magnetic field and for electric
fields within the range of validity of Qhm's law, the
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PIG. 1. Fractional change in resistance as a function of II~ for a
copper sample whose resistivity at 4'I is 4.00)&10 ohm-cm. The
current direction makes angles of 78', 62', and 34' with the [100),
[010$, and [001), axes. The magnetic field forms angles of 80',
28', and 61 with the same axes.

E=—Qo'J+a'(JXH)+b'H HJ
Po

+c'(J H)H+d'T J], (3)

TABLE I. Ualues of coeflicients (4) in units of
10~' (ohm-cm//gauss)'.

b/

c
dl

7.0&0.3—8.0&0.6
10.6~1.2

Ag

22&3—22&5
44&6

40~15—33~20
60~40

~ F. Seitz, Phys. Rev. 79, 372 (1950).I G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951); C,
Goldberg and R. E. Davis, Phys. Rev. 94, 1121 (1954).» H. Y. Fan, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1955), Vol. 1, p. 338.

12 We have used dashes on u', b', c', d' to distinguish them from
the coeflicients o=o'/po', b=b'/poo, c=o'/po', d=d'/po' that are
frequently found in the literature (see reference 11).

current density J is given by'

J=ooE+nEXH+PH HE+q(H E)H+3T E, (2)

where o o is the zero magnetic field conductivity, u, P, y,
and 3 are constants, E the total electric field, H the
magnetic field and T a second rank tensor which, when
referred to the crystal axes is diagonal and has com-
ponents BJ', B2', B3'. Here and in what follows the
crystal axes are denoted by suSxes 1, 2, 3; the com-
ponents of a vector A on the crystal axes being Ai, Ao,
A, . We notice that the only anisotropic term in (2) is
3T E. Equation (2) is just a consequence of the sym-
metry and is, therefore, perfectly general. Since ex-
perimentally we measure the resistivity tensor rather
than the conductivity tensor, it is convenient to invert
(2) and express the electric Geld E in terms of the current
density J. For a sufficiently small magnetic Geld the
result is'~"

where cos(A, B) is the cosine of the angle between the
vectors A and B. Within experimental error b', c', d'

were independent of the sample and of the temperature
in the range O'K and 20'K. This constitutes a veriGca-
tion of Kohler's rule, "i.e., it shows that the scattering
probabilities to(k,k') in the different samples differ only
by constant factors. This is to be expected since they
were all in the residual resistance range. The values of
b', c', and d' are given in Table I.

Qp/po was found to be proportional to EP within 3%%uo

up to ~x=0.02O for copper and cur=0.08 for silver.
Gold crystals presented a special problem since even
for very low fields no B' law was observed. The values
for gold given in Table I are extrapolations to zero
magnetic Geld.

In Figs. 1 and 2 we give the fractional change in
resistance of typical samples of copper and gold plotted
against II2.

A silver sample with resistivities 0.33)(10 ' ohm cm
and 0.83)&10 ' ohm cm at O'K and 20'K, respectively,
was prepared. For this sample co7-=1 at 3 kilogauss.
The resistivity of this sample is shown as a function of
the magnetic Geld at O'K in Fig. 3. The current was
directed in approximately the L111jdirection.

III. CALCULATIONS

The phenomenological constants o.o, n, P, y, 3 in (2)
can be expressed as averages over the Fermi surface.
The functions that are to be averaged are complicated
expressions containing the relaxation time ~, the
gradient in k space of the energy e(k) of the electron
characterized by wave vector k, and the operator

Q = (gradoe) Xgrad&. (6)

These formulas are given by Seitz. '
It is convenient to express these integrals in terms of

a diGerent set of variables. It turns out that these
integrals become simpler if we choose the energy e and
the polar angles 0, @ of the reduced wave vector k with
the 3 axis as the polar axis as independent variables.
By an elementary transformation the operator (6)
becomes

( r)lo i i (r}k r}
a=] P—»ne I

tie ) (r}$ r}e

elk cl )
ao ay)

where k= ~k~. This expression can be rewritten using
'o M. Kohler, Ann. Physik 32, 211 (1938).

where po ——1/os is the zero-Geld resistivity and

ir'= —~po', b'= (—P+w ')po',

d = bp—o ~ c =—('Y por—r )po

The increase in resistance hp due to the magnetic field
is given by

Po~P 3
=b'+c' cos'(J,H)+d' P cos'(i, J) cos'(i, H), (5)

H2
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where

and
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y
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the usual quantum mechanical angular momentum
operators I.~, 1.2, 1-3. We obtain

2.5

CL I.O

0.5

0
0 2 3 4 6 7

H — Kilogouss

Here L+=L&&iLs and y& (8,p) are the spherical
harmonics as defmed by Jeffreys and Jeffreys. " The
operators A; (j=1,2,3) are Hermitian and A~ are
Hermitian conjugates of one another. We now use the
cubic symmetry, the identity Qr(rBe/Bkt)+Qs(rBe/Bks)
+Qs(rBe/Bks) =0, and the fact that for temperatures
much lower than the Fermi degeneracy temperature,
the function Bfs/Be—behaves as B(e—ep) where 8 is
the Dirac B function. We obtain for the quantities in (2)

FIG. 2. Fractional change in resistance as a function of B2 for a
gold sample whose resistivity at O'K is 7.16)&10 8 ohm-cm. The
current direction makes angles of 75', 61', and 55' with the L100j,
I 010j, and I 001],axes. The magnetic field forms angles of 19'50',
72', and 81' with the same axes.

be described by"

fr'ks' (k~' ~k~'
m* (ks] (ksj

e'
ding g

Bk
k2—

86
(12)

(13)
2.0—
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Bk

k2-
Bc

(15)

I,O—

0.8—

0.6—
Dp

Po
0.4

e4

3P+3y+8= dZs, e (A+X~—~ )'. (16)
56' A4c'& Bk

k2

86

in these formulas X;= (r/A) Be/Bk, (j=1,2,3), X~
=Xi&s)is, and dZs, q ——sin8d8d4; also the integration is
performed over the whole solid angle. In all expressions
where the energy e appears, it is understood that all
differential coefficients should be evaluated at the
Fermi level.

It will now be assumed that the energy surfaces can

' H. JeGreys and B.S.Jeffreys, Methods ofMathematica/ Physics
{The University Press, Cambridge, 1956},third edition, pp. 626-
666.
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FIG. 3.Logarithmic plot of magnetoresistance of a single crystal
of silver at O'K. The current makes angles of 60', 50', 5O' with
the directions L010$, L001j, L100j. Errors in EI and Ap/ps+1 are
0.5% and 2.5%, respectively. At H =3 kilogauss, cur =1.

IS In this approximation it is easy to find an expression for the
Fermi energy by means of the requirement,

= 2 2 'i" ',BeX=
(2 ), fs(k)dk=

( ), de dZs, ek'—.
e'(Bk/Be} has cubic symmetry and therefore can be expanded in
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231
Es(8,$) =

2

1
I (1)

where g=sin8 cosP, r)=sin8 sing, g=cos8 (see Appendix
2). We have omitted terms in k4 and k' in (17) because
they give rise to no anisotropy of the energy surfaces
and, consequently, do not contribute significantly to
the magnetoresistance.

The integrals (12) to (16) have been performed
under the following assumptions:

(i) the energy surfaces are given by (17);
(ii) the relaxation time is constant over the Fermi

surface as discussed in the introduction and Appendix
1

(iii) the Fermi surface is a single closed surface inside
the first Brillouin zone and not touching its boundary;

(iv) we have r&(1, so that r4 and higher powers can
be neglected. Then we find:

o s= (¹'r/m*)$1—r'(0.190+1.85t') j, (20)

n= —¹c(er/m*c)'$1—r'(5.14+81.2t') $, (21)

P = —¹c(er/m*c) s[1+r'(26.3+224t') ), (22)

y =¹c(er/m*c) '(1+r'(67.3—43.6t+716t') ), (23)

8= —¹c(er/m*c)'3r'L13.7—7.83t+368t'j. (24)

From these the coefficients (4) can be obtained:

81 X10»
r'L36.4+414P],(¹c)'

81X1P»
r'L77.4—43.6t+877P),(¹c)'

X1P»
d'= r'L41.0—23.5t+1103t'j(¹c)'

where the units are (ohrn cm/gauss)s.

IV. INTERPRETATION

(25)

(26)

(27)

From the magnetoresistance coeKcients given in
Table I, information concerning the shape of the Fermi

terms of cubic harmonics. The average of a cubic harmonic of
order greater than zero over the unit sphere vanishes. This leads
to the relation

ep = (h~/2m~) (3gr'3l) i
'6F. C. von der Lage and H. A. Bethe, Phys. Rev. 71, 612

(1947).

where ke ——(12m')1/c, is the radius of the Fermi surface
if it were a sphere containing one electron per atom.
Here a is the lattice constant for the face-centered cubic
crystal, m* an electron effective mass, and r and t two
dimensionless parameters. The functions E4(8,&) and
Es(8,$) are the cubic harmonics of degree 4 and 6,
respectively. They are given by"

E4(8,4) = s (8+v'+1' s),— (18)
and

surface can be found. The experimental results will now
be interpreted in the light of some possible models.

For a state with wave vector near the boundary of
the erst Srillouin zone it is reasonable to expect the
energy to be depressed with respect to its value corre-
sponding to a spherical Fermi surface, as found for
instance in aluminum. "If we suppose that the Fermi
surface is nearly spherical, it may, in this model, bulge
outwards in the direction in which the erst Brillouin
zone has the smallest dimension. For the simple cubic
structure the erst Srillouin zone has its smallest di-
mension in the $100j direction. Then the radius vectors
kg of the Fermi surface in k space is expected on this
argument to be such that

kpL100j& kp5110j&kpL111j

This condition is satisfied by the cubic harmonic E4
but not by E6 since

.E4[1007= 1, E4L110$= —~r, E4L111j= ——,',
and

EsD j= 1 Es(110j= 13/8 EsL111$= 16/9.

The coefIicients r and t represent the amount of ani-
sotropy and the qualitative shape of the Fermi surface
respectively. Thus, for a simple cubic crystal it may be
sufhcient to take E4(8,$) alone in the expression for e,
i.e., to assume 5=0 in (17), (25), (26), and (27). For
the face centered cubic structure we expect by similar
reasoning that

k p f111]& k p)100$&k p $110$;

to satisfy this relation we need to take t& —0.48. It
turns out from (25), (26), (27), and Table I that the
experimental values b', c', d' cannot be Gtted within the
experimental error by any choice of r and t. For copper
the best fit is found with 1=—0.5 and r=0.08 (within
5%). For these values the radius k vector at the Fermi
surface in the L111j direction is 1.124ks(1&0.004).
However, the dimension kzzL111j of the erst Brillouin
zone in this direction is only 1.108 ko, and thus in the
(111j direction the radial k vector on the Fermi surface
would be larger than the dimension of the Brillouin
zone. As r measures the deviation of the Fermi surface
from a sphere, this means that the observed magneto-
resistance is larger than it could be if the Fermi surface
did not touch the zone surface. We conclude, therefore,
that for copper the Fermi surface probably touches the
first Brillouin zone in the L111jdirection.

Sand structure calculations for copper, performed by
Howarth"" indicate a completely diGerent model. If
we use Howarth's results's to fit (17), the corresponding
calculated magnetoresistance coeKcients are 3 times
larger than the experimental values. Howarth's calcu-
lation by the augmented-plane-wave method" indicates

"V.Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
's D J. Howarth, P. roc. Roy. Soc. (London) A220, 513 (1953)."D. J. Howarth, Phys. Rev. 99, 469 (1955).
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V. FURTHER REMARKS

If it is considered that magnetoresistance is due to
the anisotropy of the relaxation time and that the
Fermi surface is spherical, then it is concluded, ac-
cording to Seitz, ' that c' is positive. This result holds if
we consider v- expanded in cubic harmonics and retain
those terms up to and including the fourth-order
harmonic. Under the assumptions made in the present
work c' turns out to be negative which is in agreement
with our experiments (see Table I).

It is now convenient to give an expression for the
magnetoresistance coefhcients in terms of r and t for a
polycrystalline sample. In this case there is no ani-
sotropic term and the change in resistance of the sample
in a magnetic field is given by the equation,

hp/poH'=B, sin'(J, H)+B~ cos'(J,H), (28)

where B~ and B~ are the transverse and longitudinal
magnetoresistance coefhcients respectively. By means
of an averaging process over all possible directions of the
crystal and keeping the angle (J,H) between J and H
constant, it is found that

and
pa'B g b'+ (5/18)d'——

po'B( ——f '+c'+ (7/9) d'.
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cjf(k) 1
dk'fw(k, k') f(k')t1 —f(k))

collisions

—w(k', k) f(k) $1—f(k'))), (A1.1)
where

2'
w(k, k') =w(k', k) =—

) (k (X'
)
k') )'&Pc(k) —e(k')) (A1.2)

is the transition probability for elastic scattering from
state k' to state k and K' is the deviation from the
periodic potential of the lattice. Let

f(k) = fo(e(k))+y(k), (A1.3)

where P(k) is the deviation of the distribution function
from the equilibrium distribution fo(e) with the same
total energy. Conservation of energy and of the number
of particles implies that on each constant energy surface
the number of electrons will remain constant, i.e.,

dk'g(k')5Le(k) —e(k')) =0. (A1.4)

Since no mechanism for the release of the energy has
been provided, the equilibrium distribution carries no
current but is not necessarily equal to the Fermi
function. In an actual metal there will, of course, be

APPENDIX 1

We shall prove here that if the relaxation mechanism
is due to elastic collisions, a necessary and sufhcient
condition for a relaxation time to exist for an arbitrary
Fermi surface is that the scattering be isotropic.
Furthermore it will be shown that in this case the
relaxation time is a function of the energy alone.

A relaxation time of a system we understand to be a
characteristic time which describes the return of the
system to the condition of thermal equilibrium after a
deviation from this condition has been established, for
example, by an electric field. In order for the relaxation
time to be meaningful, it should be independent of the
particular form of the deviation from the equilibrium
state. In other words, the rate of change of the distri-
bution function at a point in k space must be inde-
pendent of the distribution function at other points.
The distribution function f(k) is defined as the proba-
bility that the state characterized by k be occupied.
We assume furthermore that the temperature of the
substance at hand is uniform so that f is independent
of the position.

The rate of change of the distribution due to scat-
tering is given by
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inelastic processes by means of which the thermal
equilibrium Fermi function will be attained. But these
collisions will have, in our case, a small transition
probability and therefore, will give rise to a large
relaxation time whose contribution to the resistivity is
negligible.

From (A1.1), using (A1.2) and (A1.3), we find

af(k)'

83 colIisions
y(k) j dk'w(k, k')

Sm'

1
i
"dk'w(k, k')y(k'). (A1.5)8."

A relaxation time exists if, and only if,

a)'(k)

.collisions

f(k)-fs(e(k)}

r(k)
(A1.6)

From (A1.5) this condition reduces to the one, that
there exists a function F(k) which is independent of the
choice of p(k) consistent with the subsidiary condition
(A1.4), and satisfies

(A1.7)

r(e) = 1/Lrs(e)C(e) j, (A1.9)

where N(e) is the total density of states at energy e.
This completes the proof of the assumptions made in
Sec. 1.

APPENDIX 2

Cubic harmonics are linear combinations of spherical
harmonics which transform, under the operations of the
cubic group OI„according to an irreducible represen-

We see that this is not possible for arbitrary w(k, k').
In fact, if we make an arbitrary variation 8& of p
consistent with (A1.4), we find, by use of Lagrange's
method of undetermined multipliers and the funda-
mental theorem of the calculus of variations, that Ii
will remain unchanged if, and only if,

w(k, k') =F(k)8(k—k')+c(e)a(e —e'), (A1.8)

where C(e) depends only on the energy. The first term
in (A1.8) represents no scattering at all and therefore
gives no contribution to the rate of change of the
distribution function. The second term represents an
isotropic scattering and gives rise to a constant re-
laxation time

tation of this group. They are characterized by three
symbols; one corresponds to the degree of the function
and the other two to the irreducible representation and
to the row in the representation to which the function
belongs. Methods to obtain cubic harmonics have been
given by von der Lage and Bethe" and by Bell.' Here
we give a more convenient procedure.

Let Fi(x,y,s) be a homogeneous polynomial of degree
/ in x, y, s and which belongs to a certain irreducible
representation I' of 0&. This polynomial would be a
spherical harmonic if it satisfied Laplace's equation.
But even if this is not the case, we can construct from
it the cubic harmonic

(a a a) (1)
%(r; 8,y) =r'+'K( —,—,—

I (
—

I (A2 1)
Eaxayas) Er)

This transforms under rotations in the same way as
Fi(x,y, s) and furthermore it satisfies the associated
Legendre equation. The polynomials Fi(x,y,s) can be
found by inspection. The expression (A2.1) can then
be written as a linear combination of spherical har-
monics by using the equation

(a . a l "(8'!'™!r1)
&ax ay) &as& E r)

( 1)il!r i iy m—
(8

—
P) (A2 2)

(see reference 14, p. 633).
As examples we give a few of the cubic harmonics

which have been used in the present calculation. We
designate the irreducible representations of O~ by the
symbols used by Bouckaert, Smoluchowski, and
Wigner" where in addition we have explicitly indicated
whether the particular representation is even or odd
with respect to inversion by superscripts &.

Ep(ri+; 8,y) =1,
~ (r";8,~) =~ (8,~)+(1/14). (8,~)

+(1/14)3' '(8A)

& (r; 8,~)=~ '(8,~) ly'(8, ~) !~ -'(8,~), --
& (r ' 8A) =y '(8A)+(14/99)y" (8A)

+ (14/99)ys '(8,4)+ (1/198)ys (8 P)
+(1/»8)y.-'(8,&),

Z,«&(r„;8,y) =4y, s(8-,y),
&.'"(r . ;8,~) = 33"(8,~—) y. '(8,-~), --

s(—) (r„—.8 y) 3ys
—i(8 y)+yes(8 ~)

"D. G, Be11, Revs. Modern Phys. 26, 311 (1954).
2'Bouckaert, Smoluchowski, and signer, Phys. Rev. SQ, 58

(1936).


