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Theory of Ferromagnetic Anisotropy
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By means of a virial theorem and perturbation theory, the anisotropy energy of a ferromagnetic crystal
is expressed in terms of the Coulomb energy alone. This latter energy is approximated by a multipole
expansion and the anisotropy constants are given in terms of electric multipole moments and crystalline-
potential constants. The multipole moments, which arise from the orbital angular momentum induced by
spin-orbit coupling, have been estimated from the known values of angular momentum. The method avoids
explicitly carrying out high-order perturbations, and furnishes a physical interpretation of the anisotropy
mechanism without the use of phenomenological couplings. In most cases, the principal mechanism leading
to anisotropy is found to be different from those considered by Van Vleck.

HE free energy of a spherically shaped ferro-
magnetic crystal may be described by

P P +g (n 2rr 2+~ 2n 2+~s2rrs2)

+Esnrsnssnss+ (1)
for a cubic lattice and

8=Fs+Er(1—nss)+As(1 —rrss)'+

for the hexagonal case. The constants E~ and E2 are
the. first and second anisotropy constants; 0.&, n&, and
o.~ are the direction cosines of the saturation mag-
netization with respect to the crystal axes. For the
hexagonal lattice, o.3 is the cosine with respect to the
c axis.

For most materials, in which the anisotropy has been
measured, E2 is smaller than E~, and the above series
converge rapidly.

The theoretical problem of describing anisotropy may
be broken into two parts: (a) the problem of the
intrinsic anisotropy at the absolute zero of temperature
and (b) the temperature dependence, which, at least
in part, is an eBect that does not involve a change in
the intrinsic values of E.' In the present calculation,
only the 6rst problem, (a), is considered.

It generally is agreed that the principal source of
ferromagnetic anisotropy in most materials, particu-
larly metals, comes from the electronic spin-orbit
coupling, a suggestion which seems first to have been
advanced by Powell, ' and later in a more concrete form

by Bloch and Gentile. ' The inadequacy of exchange
coupling and purely magnetic interactions is discussed

by Van Vleck. 4

Two noteworthy schemes have been used in attempt-
ing to calculate the effect of spin-orbit interaction in a
ferromagnetic solid; one by Van Vleck4 'using an atomic
approach, the other by Brooks' using an energy-band
approximation.

The method of Van Vleck leads to a simple physical

' C. Zener, Phys. Rev. 96, 1335 (1954}.' F. C. Powell, Proc. Roy. Soc. (London) A130, 167 (1930).
3 F. Bloch and G. Gentile, Z. Physik 70, 395 (1931).' J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).' Also W. F. Van Peype, Physica 5, 465 (1938}.' H. Brooks, Phys. Rev. 58, 909 (1940).

explanation of the cause of anisotropy, but has the
weakness of being, to a large extent, phenomenological.
Brooks' calculation avoids the latter objection but has
the disadvantage of a straightforward perturbation
approach, in that high orders' of perturbation are
required, which tend to conceal the physical aspects of
the problem. It also is evident that high-order per-
turbations can be carried out only on rather simple
models. The recent calculation by Fletcher, ' using an
improved energy-band model, gives a result for nickel
two orders of magnitude too large.

In the following calculation, some of the complications
of perturbation theory are bypassed by the use of per-
turbation theory in conjunction with a virial theorem
to express the result in terms of the Coulomb energy of
the crystal. No explicit consideration of spin-orbit
coupling is made. A multipole expansion has been used
to calculate the Coulomb energy, and the principal
approximations involved are those of estimating the
crystalline potential and the effect of magnetization on
the charge density about a lattice point. A' rough
approximation of the latter may be obtained from the
known gyromagnetic ratio.

One of the principal mechanisms for anisotropy is
found to be different from those considered by Van
Vleck, and arises from the interaction between the
orbital moment about a lattice site and the crystalline
potential of the lattice.

FORMULATION OF THE PROBLEM

The Hamiltonian to be considered is

H=T+V+U,
where T, V, and U are, respectively, the kinetic energy,
Coulomb energy, and spin-orbit interaction operators
for all the electrons and nuclei of the solid. It was shown
in a previous paper' that for each bound eigenstate of
H a "virial" relationship exists among the mean values

7 For the correct Hamiltonian, fourth-order and sixth-order
perturbation theory is necessary to obtain the E& and E2 of cubic
materials.' G. C. Fletcher, Proc. Phys. Soc. (London) A67, 505 (1954).

W. J. Carr, Jr., Phys. Rev. 106, 414 (1957).
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of these three quantities, given by

2T+V+3U=O. (4)

and similarly
E2—Esl—V2/g (16)

E=Q E„,
0

Eo being the unperturbed energy and E„the nth-order
perturbation correction due to U, then

U=Q nE„. (7)

Thus, with (5), (6), and (7)

P(n+2)E„=V.
0

To extract the anisotropy constants, let the E„and
V be expanded in powers of the direction cosines of
magnetization. For cubic crystals,

Ein En0+Enl(421 &2 +421 &2 +&2 &6 )
+Ense P~2'ass'+, (9)

V = V0+ Vl(otlsnss+alsotss+elssesss)

+Vso'&224262+ (1O)

It is apparent, however, that E„» must be zero for
m&4 since the spin-orbit interaction is linear in spin
and, therefore, terms to the fourth order in o. will

appear 6rst in fourth-order perturbation. Likewise E 2

is zero for m(6. Thus, at absolute zero, where the free
energy F.becomes the energy E,

El gE„„——
n=4

and from (8)

Es= Q E„s,
a=6

Q (n+2)E„1——V,,
n=4

p (n+2)E„2——V2.
n=6

(14)

Assuming that the perturbation expansion converges
fast enough so that terms beyond the 6rst nonvanishing
term may be dropped, '0 one obtains from (11) and (13)

El—E41—Vl/6 (15)
'0 If the next order terms are small, but not negligible, one must

write, for example,

E'I=%4]+%61/ UI= 6E'4g+8Elg] = 6E'] (1+E61/3EI)
and only a small error is incurred by using (15) even in this case.

Equations (4) and (3) immediately allow the kinetic
energy to be eliminated from the energy, E, leaving

E= (V—U)/2. (5)

Further, it can be shown' that if U is treated as a per-
turbation, leading to the energy

It is apparent from Eqs. (15) and (16) that the spin-
orbit perturbation has a much greater eGect on the
potential energy than it has upon the total energy.

By means of the last two equations, the problem of
calculating the anisotropy constants is converted from
a calculation of the energy 8 to that of calculating the
potential energy V. The advantage lies in the fact that
the physical principles of the effect of spin-orbit
coupling on V are more clear, and some rather simple
methods can be used to approximate it, as discussed in
the following section. Although a straightforward
method exists for directly calculating the spin-orbit
effect on the energy Z (perturbation theory), in practice
the method is exceedingly tedious in high orders, since
the problem of obtaining and summing over the unper-
turbed eigenfunctions exists.

It may be noted that in place of (15) and (16) one
equally well could have related the anisotropy constants
to terms in the kinetic energy or to the mean value of
the spin-orbit interaction. These last two, however, are
sensitive to details of the wave function, whereas the
Coulomb energy comes only from the square of the
absolute magnitude of the wave function, or the charge
density distribution.

Finally, it is necessary to consider the formulas
analogous to (15) and (16) for the case of hexagonal
symmetry. Since second- and fourth-order perturbations
would be required here,

El Vl/4, (17)

E'2 V2/6, (18)

where V» and V2 are now the terms in V multiplying
the functions of hexagonal symmetry as in (2).

e' t. 8(r—R„)d2.
EZ-', (2O)

lr —R.
l

'

as may be verified by substituting for o from (19).The
function p(r, r') is the probability of finding electrons
at r and r'. For charge neutrality the integral of o (r)

CALCULATION OF THE COULOMB ENERGY

Consider a charge density

o (r) =p(r) —Q„Z„5(r—R„), (19)
where p(r) is the electronic charge density, R„ the
position of the eth nucleus, eZ„ the nuclear charge, and
6 the Dirac delta function. The Coulomb energy is
given then by

e' ~ t o(r)o(r')drds.'.
V=—

2" ~ lr —r'l

e' t. t. [p(r, r') p(r) p(r')fd—rd7'
+
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over a unit polyhedron is zero, and thus the potential
at r,

f a(r')dT'
P(r) = —e)l

f
r—r'f

(2&)

Ne' f f [p(r, r') —p(r)p(r') jdT'
+ dT

(22)

where the subscript 0 refers to the polyhedron sur-
rounding the nucleus at the origin. If the polyhedra are
not all equivalent, then a suitable average can be
taken.

The last term on the right in (22) is a constant of no
interest, which simply serves to subtract out a corre-
sponding "self-energy" term in the first expression.

It will be assumed also, that the second term on the
right in (22) may be ignored. Although this term, which
contains the "exchange" energy, is not a negligible con-
tribution to the Coulomb energy, it, nevertheless, is
expected to contribute only a fractional amount to the
anisotropy and will not aGect the result in a decisive
way.

To calculate the remaining term in (22), imagine
the charge density divided into two parts, one, O.p,

independent of magnetization and a smaller part, o-,
which depends on the direction of magnetization. The
latter obviously comes from the orbital moment which
is fastened to the spin through spin-orbit coupling. The
nuclear charge is assigned to o-p and 0- so that both
integrate to zero over the unit polyhedron. Thus,

Ne
f f O (f)O (r )dTdT

Ne f I' 0 ( ) 0r(ro)odTdT

2 &0&
f
r r'f-

f o(r)oo(r')dTd. T'
+Ne' '

)~p r—r

Ne
t f

o (r)o (r')dTdT'

~o~

=const —1Ve "o.(r)P, (r)dT
0

Ne'
f t o. (r)o (r')dTdT'

2 "0" fr —r'f
(23)

has lattice periodicity. The same is true of the second
term on the right-hand side of (20) since at large sepa-
rations p(r, r')~p(r) p(r'). Thus, for a lattice containing
X equivalent polyhedra,

Po(r) =Co(T)+C~(T)"+Co(T)«'+ (25)

for the hexagonal.
The charge density 0. must exhibit certain symmetries

in x, y, s, and o.&, n2, o,3, depending upon the crystal
lattice. For the present, the simplest type of function of
interest, namely, one having cylindrical symmetry about
the direction of magnetization, will be assumed. Then
in polar coordinates with the polar axis rotated into the
direction of magnetization, o. in each polyhedron is
described by o (T,8), where 8 is the polar angle. One

may think of this function, which is independent of
crystal symmetry and independent of n&, n2, n3 when
expressed in the above coordinate system, as a first
approximation in an expansion about these axes.

Physically, the assumption here is similar to that
discussed by Kittel and Gait, " except the Coulomb
rather than the exchange energy is of interest. Integrals
of the type Joo(r,8)P0(. r)dT have been worked out by
Zener. ' Upon replacing the unit polyhedron by an
equivalent sphere and transforming I'p to the new
coordinate system, one obtains with (24) and (25)

o. (r,8)P0(r)dT

=const+ (nPn, '+nPn, '+n, 'n, ')) o.(r,8)
p

Bo(r)r'
X B4(r)r'+ 6'4 (cos8)

Bo(r)ro
6'o(COS8)+ dT+nPno'noo t o, (r,8)

11 Jo

X{B,(r)Too'o(cos8)+ )dT (26)

for cubic symmetry, or

=COnSt+no'~ o(r,8) f [C~(T)r'+ (6/7. )Co(r)T'j
p

X6'3 (cos8) —(6/7) Co(r) r'(P4(cos8)+ )dT

+n3 fo (r,8) j Co (r)r'6'4 (cos8)+ )dT (27)
0

for the hexagonal case. The 5'„'s are Legendre poly-
nomials.

In Appendix I, the last integral on the right in (23)
'C. Kittel and J. K. Gait, in Solid State Physics (Academic

Press, inc. , ¹mYork, 1956), Vol. 3, p. 466.

where I'p is the crystalline potential of an unmagnetized
crystal, which, expanded about the nucleus at the
origin, has the form

Po(r) =Bo(r)+B&(r)(x'y'+x'z'+y'so)
+Bo(r)x'y's'+ (24)

for cubic symmetry, and
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is performed by means of a multipole-type expansion.
The result of this calculation is E2— p (r,8)Bp(r)r'(Pp(cos8)dr+

8v ~o
t. t 0 (r)0„(r')drdr'

fr —r'f

=const 3—0(nionop+nionop+nope&oo)

2

X S4p o(r,.8)r'(Po(cos8)dr
40

21
+—Spp o (r,8)r'(Po(cos8)dr

2 4o

3465e'
+ Spp p (r,8)r'CPp(cos8)dr

16v "o

X p (r,8)r46'4(cos8)dr+ ~ ~ ~ (31)
40

and from (17), (18), (27), and (29) the hexagonal
constants are

e r

Ei ——p—(r,8) f $C, (r)r'+ (6/7)Cp(r)r'j(Po(cos8)
4v ~p

+3465'&.i'no no'Soo 0 (r,8)r'(Po(cos8) dr
Jo

+ (g/7)Co(r)r4(P4(cos8)+ }dr
—10e' -2

S4p p (r,8)rp(Pp(cos8)dr + ~ ~, (32)
alp

and

o(r,8)r4(P4.(cos8)dr+
&

(28)
Eo ——

p (——r,8)Cp(r)r 6'4(cos8)dr+
6v 4p

9 &r»(r)0~(r )drdr 35
=const —6S4p

f
10ap —~p

fr —r'f ]
35e' r

-2

+ S4p p (r,8)r'(Po(cos8)dr + . (33)
6v -~o

Insofar as the second-order constants are correct+' ' '& ( ) with the terms given, the first-order constants may be
written

15e2

6v
S4o t p (r,8)roe'p(cos8)dr

0

-2

21
+—Spo p (r,8)r'(Pp(cos8)dr

2

X p (r,8)r45'4(cos8)dr+ . , (30)

'2 L. W. McKeehan, Phys. Rev. 52, 18 (1937); 52, 527 (1937);
43, 1025 (1933).

for the cubic and hexagonal cases, respectively. The
constants S4p and S6p are lattice sums that have been
evaluated by McKeehan»2 and are given in the Ap-
pendix I.

In all the last four equations, the charge density 0.

now may be replaced with the electronic density p
since the constant part of 0- integrates to zero in all
cases.

ANISOTROPY CONSTANTS

If 1& is the atomic volume, then from (15), (16), (26),
and (28) the cubic anisotropy constants per unit volume
are —e

I Bo(r)ro
Ei= p (r,8) Bi(r)r'+ (P4(cos8)

6v ~p 11

8,(r)rp
(Pp(cos8)+ dr

t11

()
(P4(cos8)dr

11

e 82 r r'
p-(r, 8) ~ (r)"+

6v &0

Se' -2 4——S4o i pu(r, 8)r'CPp(cos8)dr Eo+
&

(34)——
25 p 33

and
e

Ei
i p (r 8) f

Ci(r)r'+ (6/7)Cp(r)r')
4v Jp

XG'p(cos8)dr —(12/7)Eo+ ~ ~ ~, (35)

for the cubic and hexagonal cases, respectively. The
cubic case serves to illustrate that the series rapidly
converges, since E2 is small compared with E». The E2
term in (35), however, is not entirely negligible for
hexagonal cobalt.

The parameters 8», B2, C», and C2 which describe the
crystalline potential within a polyhedron are estimated
in Appendix II. This potential may be thought of as
arising 6rstly from an internal contribution due to
crystal symmetry, if any, in the charge distribution
about the enclosed lattice point; and secondly from
external contributions due to the arrangement of
neighbors around the given polyhedron. The latter is
calculated by using an ion-core approximation with the
conduction electrons assumed to be uniformly spread
out. Tentatively, only this second part of the potential
will be considered.
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TABLE I. Anistropy constants at absolute zero of
temperature in erge/cc.

Fe
Ni
Co

5.7X 10' '
—7.5X10"

8 4X10' e

9X104b

4X10' b

2 4X10 c

a Taken from curves in R. M. Bozorth, Ferromagnetism (D. Van Nostrand
Company, Inc. , New York, 1951), pp. 568, 569.

b H. Sato and B. S. Chandrasekhar, J. Phys, Chem. Solids 1, 228, 1957).
e Average of values given by W. Sucksmith and J. E. Thompson, Proc.

Roy. Soc. (London) A225, 362 (1954).

5 e'S40Ei= (Z„.D—3A'),
6

(36)

3465 e'S60
E2- AD, (3&)

and for hexagonal cobalt

e'S22 12
E1~—Z,A ——Eg,

4v 7
(38)

5 e'S40E2=—(3A' —Z,D),
18

(39)

When one uses the results of Appendix II, the anisot-

ropy constants for cubic nickel and iron are

arise from d functions. The parameter X measures the
spin-orbit coupling and the power of X is the order to
which perturbation theory must be carried to obtain a
particular term in (40). Since the term cos'8 transforms
to the crystal axes as a quadratic in the direction
cosines of magnetization, the principal part of this
term would therefore come from second order in the
spin-orbit coupling. Likewise cosa transforms as a
fourth-order function in the direction cosines and thus
comes from fourth-order perturbation.

To obtain a measure of A, , one may consider the
orbital angular momentum, which quenched in the
zeroth approximation, initially appears in first-order
perturbation theory (for a specific calculation see
Fletcherr). Therefore, in units of fi, (M)~X where (M)
is the expectation value of the orbital momentum along
the spin direction.

Thus, from (40), A (r')(M)' and D (r4)(M)'. Using
Hartree functions, one finds that (r') in a unit poly-
hedron has the approximate value 4&(10 " cm', and
from spectroscopic splitting factors and gyromagnetic
ratio measurements (M)' 10 ' for the materials under
consideration. Thus, A~4X 10 " and since (r')~4
X10 ", D~4X10 ", which, except in one case, is of
the general order of magnitude needed to give the
measured anisotropy constants. However, in an analysis
of this type, nothing can be said about the sign of A
and D.

where Z, is the effective charge on an ion core, and A
and D are multipole moments defined by A = Jtip (r,8)r'
X(P2(cos8)dr and D= J'ep (r,8)r4$'4(cos8)dr. The (Pe(cos8)
term in the expression (31) for E2 is neglected because,
in the first transition group of elements, p comes
largely from 3d wave functions, which lead to no g6
component.

In Table I the measured values of these anisotropy
constants are tabulated. Using these measurements, one
finds that A in equations (36) through (39) must have
the respective values 3.4, 24, and —2.4, all times 10 ",
for Fe, Co, and Ni. Likewise the constant D must take
the respective values 2, 200, and 10 times 10—'. In
solving for A and D a value of Z, = ~ was assumed, as
this is approximately the number of conduction elec-
trons of Ni and Co. This value of Z, for Fe is ques-
tionable, but the constants are quite insensitive to Z,
in this case.

It now can be shown by a direct calculation that the
numbers obtained above are reasonable values for the
integrals A and D. The charge density p (r,8) may be
expected to have a radial dependence, R'(r), mainly
appropriate to 3d wave functions. Since any dependence
of p on azimuthal angle has been neglected,

p R'(r) (V cos'8+ X4 cos48+ ), (40)

where it is recognized from central symmetry that p
is an even function of cos0. Powers of cosg higher than
the fourth are probably quite small since they cannot

PHYSICAL INTERPRETATION OF ANISOTROPY

One now may examine the principal mechanisms of
anisotropy as given by (36) through (39). Those terms
containing a Z, arise from the interaction between the
part of the charge cloud that is coupled to the spin, and
the crystalline potential of a "normal" unmagnetized
crystal. The remaining terms arise from interactions
between charge clouds on difrerent atoms.

The charge distribution is influenced by the spin
through spin-orbit coupling, which induces an orbital
momentum in the spin direction and, consequently,
distorts the electronic distribution. For pictorial
purposes, the electron density about a particular
nucleus may be imagined as having a spheroidal shape
with a principal axis in the direction of magnetization.
If the spin direction is rotated, this charge distribution
rotates with it. Thus, in a sufficiently inhomogeneous
potential, which may arise from either of the two ways
discussed above, anisotropy results.

The picture described above is, of course, not the
only point of view that can be taken, since, in addition
to the Coulomb energy, the kinetic energy and the
spin-orbit energy itself are functions of the direction of
magnetization. However, these energies all are related

by the virial theorem and perturbation theory; thus, it
is necessary to consider the mechanics of but one of
them.

From the values of A and D, derived from the
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o~ r dr

o

(41)

measured E» and K~, it is concluded that the dominant
part of E» in Ni and Co comes from the interaction of
the charge distribution with the crystalline field. This
is an interaction which is not considered by Van Vleck, 4

since his Hamiltonian just contains eGective interac-
tions between two spins on neighboring atoms; and the
crystalline-field interaction is not susceptible to such
phenomenological treatment.

One Raw in the calculation, here, is that the crystalline
potential due to crystal symmetry in the charge has not
been estimated. The present result is obtained on the
approximation that po, the charge density of an "un-
magnetized" material, has spherical symmetry about a
lattice point, and that the potential comes from lattice
sums over neighboring atoms. A check on the validity
of this postulate seems possible in the case of cobalt
since the hexagonal lattice sums are highly strain-
dependent. "

Finally, the author would like to acknowledge some
helpful discussions with Y.Yafet during the preparation
of this paper.

APPENDIX I

By breaking the integral over the crystal into
integrals over unit polyhedra, one may write

f

a (r')dr' f. o, (r')dr' t o (r'+R„)dr'

r —r' n "„r—r' n ~p 1 1'

again assuming symmetrical charge distribution in the
plane perpendicular to the magnetization, one obtains

Xe' t ~ o (r)o (r')drdr'

2 "o"
Ee' ~ ~ (1+3')!

=const+ P P (—1)' R+t,
~

a (r)r'
i=o tr-o l tl'~

)&(P~(cos8)dr o (r)r'6'~ (cos8)dr, (43)

where the polar angle is measured relative to the direc-
tion of magnetization and S~+~ is a lattice sum evalu-
ated by McKeehan. "In particular, for cubic materials

S4=54pf 1—5(n& a& +a&~ap +ao ap )3
and

Sp ——SooL1 (21/2) ((xi o'2 +city exp +exp cKP)

+ (231/2) n Pnoono']

in hexagonal crystals So——Soo+Soonp' and

S4=S4pL1 —10upo+ (35/3) no'].

For face-centered cubic crystals S4p
———7.53/a', Sop=

—26.63/a', for body-centered cubic S4o= —3.11/a',
Sop= 5.45/a'; and for ideal hexagonal close-packed crys-
t»s S22 0.0051/a', S4o=0.34/a', where a is the cube
edge of the unit cell in cubic materials and the edge
length of the base of the unit cell in the close-packed hex-
agonal. For cobalt with a c/a of 1.624, Sop ——0.035/a'.

when the polyhedra are all alike. Then APPENDIX II

f- t a.(r)o.(r')drdr'

4o~ r—r

t a.(r)o„(r')drdr'

fr —r'f

If the S-band electrons are uniformly smeared out,
they contribute nothing to the cubic or hexagonal
potential. If eZ, is the charge of each ion core, then

t t o (r)o..(r')drdr'

I
r —"—R-I

and the denominator of the last term on the right m
now be expanded in powers of r and r'.

Strictly speaking, this expansion does not converge
in the outer extremities of the unit polyhedron. How-
ever, it is recognized that the radial distribution of cr

is determined largely by the unfilled-inner-core elec-
trons and, therefore, is very sma11 in these outer ex-
tremities, which electively removes the divergence
difficulty.

The Coulomb interaction between two charge dis-
tributions about diferent centers has been considered
by Carlson and Rushbrooke. »3 Using their results, and

where (P& is a Legendre polynomial. The lattice sums
are again those evaluated by McKeehan. »2 Up to
terms including 6'6, one obtains

Pp F(r) eZ~PSS4o—+(21—/—2)Spor')

X (x'y'+x's'+y'z')+eZ, (231/2) Sppx'y'z' (45)

for cubic symmetry, and

Po = G(r)+eZ, (So& 10S4pro) so+ eZ, (35/3)—S4ps4 (46)

for hexagonal, where the S~o are given in Appendix I.
"B.C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.

Soc. 46, 626 (1950).

P.=~(.)+.Z. P42 j.

fr —R„f
rl

ay =1V(r)+eZ, P g 6~( cso(r, R )), (44)
n&0 l g l+


