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The effect of the electrostatic crystalline field has been considered for a magnetic crystal in which the ions
are strongly coupled by ferromagnetic exchange. On the basis of the one-ion approximation that the exchange
can be represented by a Weiss molecular field, it is possible to derive expressions for the anisotropy constants,
K;(T), in terms of the parameters occurring in the spin Hamiltonian of the isolated ions, and the magneti-
zation of the lattice at the temperature, T. The treatment assumes that the magnetic electrons can be con-
sidered as localized on the individual ions, and thus applies primarily to nonmetallic substances such as
ferrites. The presence of more than one aligned sublattice is easily taken into account if the magnetization
of each sublattice can be calculated from the Neel equations.

INTRODUCTION

LTHOUGH the importance of crystalline electric
fields has long been recognized in connection with

the anisotropy of antiferromagnetic crystals, ' only very
recently" has this mechanism been invoked to explain
the observed anisotropy energies of nonmetallic ferro-
(or ferri-) magnetic materials such as territes. The
reason for this lies partly in the fact that up to a few
years ago theories of ferromagnetism were concerned
mainly with metals, for which the concept of localized
magnetic electrons subjected to an electrostatic field
from the surrounding lattice is of dubious validity.
However, for ferrites and similar crystals this type of .

model seems to be much more justified, since, even if
the binding with the neighbors is not entirely ionic but
to some extent covalent, it is still meaningful to talk
of the properties of isolated magnetic ions located in a
crystal lattice.

The purpose of this note is to show in a very simple
way how the anisotropy energy of such a system may
be determined in terms of the parameters which repre-
sent the eGect of the crystalline electric field in the spin
Hamiltonian of the individual paramagnetic ions. The
expressions also involve the strength of the exchange
interaction with neighboring magnetic ions and we shall
assume that this can be represented by a Weiss mo-
lecu1ar field. This effective molecular field is closely
related to the spontaneous magnetization of the sub-
lattice to which a particular ion belongs, and if this
can be deduced from magnetic moment and suscepti-
bility measurements, by using Neel's treatment, the
temperature variation of the ferromagnetic anisotropy
can be found. The present discussion is restricted to the
consideration of the contributions to the anisotropy
from ions whose orbital angular momentum is zero or
quenched. These, however, include Fe'+, Mn'+, Gd'+
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(as well as Ni'+ and Cr'+ in certain compounds) so that
the result is of fairly wide applicability.

The mechanism considered here, which is the same
in some respects as one of those considered recently by
Yosida and Tachiki, ' is fundamentally diferent from
those previously invoked for ferromagnetic metals, 4

in that it assumes that the anisotropy is a "one-ion"
property, whereas it had previously been assumed that
the anisotropy resulted from an anisotropic coupling
between the magnetic ions. Such anisotropic coupling
no d.oubt also takes place, but for many ferrites it will
be very small since it is roughly proportionais to (g—2)'
and g is often extremely close to 2.

THE ONE ION SPIN HAMILTONIAN

The form of the spin Hamiltonian of an ion depends
on the symmetry of its surroundings as well as on the
magnitude of its spin. For many compounds the
environment of the ions is primarily cubic, consisting
of either 4 or 6 almost equidistant anions, but there are
nearly always some departures from this symmetry.
To a first approximation, the departure from cubic
symmetry is usually axial in nature, although there are
often also small terms of lower symmetry. These non-
axial terms we shall neglect here, although with a little
more algebra they could, readily be carried through.
With this approximation and dropping constant terms,
the most general spin Hamiltonian for a spin 5&~ is'

3.'=PH. g S+—',a(5.4+5„4+5,4)+DS '+fS 4, (1)

where n denotes the direction of the axial distortion.
For paramagnetic salts D is often considerably larger
than a, while f is negligibly small. We shall therefore
neglect this term also in the present calculation,
although it must be borne in mind that f might some-
times be large if the departure from cubic symmetry is
very large. Again the inclusion of this term affects the
amount of algebra, but not the general form of the final

4 J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).' J. H. Van Vleck, Boston Magnetism Conference 6, 1956
(unpublished) .

See, e.g. , B. Bleaney and K. W. H. Stevens, in Reports on
Progress in Physics (The Physical Society, London, 1953), Vol.
16, p. 108.

152



EFFECT OF CRYSTALL I N E ELECTR I C F I EL D S

answer. It should be noted that, within the various
approximations mentioned above, (1) is the most
general form for 3C and that terms in S ', etc., and
higher order reduce identically to terms of lower order
if 5 & aa. (For the case of Gd'+, S=x2 and a somewhat
more complicated form must be used for K.' The re-
sulting contribution to the anisotropy energy will,
however, be very similar to that for S= a~.) If S(2, the
term in u also vanishes identically and we are left with
only the axial term, but as will be shown below', this
must not be taken to imply that the crystal as a whole
cannot have any cubic anisotropy, although the anisot-
ropy wi11 then usually be small.

The 6rst term in BC, which in the paramagnetic case
represents the effect of an applied magnetic field, in our
case represents the effect of the exchange interaction of
the ion with its magnetic neighbors. The magnitude of
the effective molecular field acting on an ion of the ith
sublattice can be treated as an experimentally meas-
urable parameter since

M,/M, 0=8 (gPH ff/kT), (2)

where M, is the spontaneous magnetization at the given
temperature, 3E,O its value at T=O, and 8, is the Bril-
louin function. The direction which H, ~~ makes with the
cubic axes will be denoted by (t,m, rf) and its angle with
the distortion direction 0. by 8. It is assumed here that
the magnitude of H, ~q does not depend on its direction
relative to the crystal, as is implicit in the assumption
that we have only isotropic exchange interaction of the
form P JS,"S, , acting on'spins with quenched orbits.

CALCULATION OF THE FREE ENERGY

We now proceed to calculate the free energy of the
ith sublattice, Ii;, as a function of )me and 0. The
anisotropy energy of the whole crystal is then found by
summing Ii, over all the sublattices. To illustrate the
method, let us specifically calculate the contribution
from a simple sublattice of Fe'+ ions which have S= ~5.

For one such ion, the energy levels are given by (1)"
as

W+, = +-',gpH. ff+-', a(1—5&)+(5/3)D(3 cos'8 —1)

D2

L5+70 cos'8 —75 cos487,
4gPH, ff

W~. = ~-',gPH. ff—-', u(1 —5&)—-', D(3 cos'8 —1)

$fn=x
Z= Q exp( —W /kT)

m= ——ff
2

N

(3)

and from this we can calculate the free energy F;
kT lnZ—. If we expand those terms in exp (—W /k T)

which contain the crystal field parameters (whose
magnitudes are small compared to kT at all but the
very lowest temperatures), and retain only leading
terms, we get

D2
P;=X Fo(y)+D cos'8p(y)+ = cos48q(y)

gpHeff

D2
+a(Pm'+m'I'+r4'P)r(y) ——', —cos'8s(y)

kT

where

D2
+-' c»'8Lp(y)7', (4)

kT

p(y) = (1/Zo) (5 y 4y' 4—y' —y'+5—y'), —
ft (y) = (1/4Za) (75—57y —36y'+36y'+57y' —75y'),

r (y) = (5/2Za) (—1+3y—2y' —2y'+3y' —y'),

s(y) = (1/Zo) (25+y+ 16y'+ 16y'+y4+25y'),
Zo = 1+y+y'+y'+y'+y',
y= exp( —gPH, ff/kT).

This can be condensed to

F;=1V{PO(y)+D c s'oP8(y)+a( Pm+ 'mr+f' ff)Pr(y)

+ (D'/kT) cos48t(y)), (5)
where

t(y) = —v(y)/»y —l~(y)+ALP(y)72. (6)

Fo denotes the large part of the free energy which is
independent of the direction of the exchange field and
therefore of no interest in connection with anisotropy.
The value of y at any particular temperature is most
simply obtained from M, by writing the Brillouin
function in Eq. (2) in the form

where ft =Pm'+m'n'+f4'P, provided a&D«gpH, ff as
they are in our case. Constant terms which are common
to all six levels and therefore do not a6ect the anisotropy
have been omitted.

Using these expressions, we can write down explicitly
the partition function of a sublattice of S such ions as

D2

[9—66 cos'8+57 cos487,
4gPH, ff

M, —8 (=P my-
~
SP y-"

(

M;p ~ ( s ) (2a)

Wyx &agPHeff+a(1 —Sg) —x4D(3 cos'8 —1)

L4—40 cos'8+36 cos487,
4gPH, ff

f R. de L. Kronig and C. J. Bouwkamp, Physica 6, 290 (1939).'B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. (London)
A205, 336 (1951}.

and solving graphically. The functions p(y), r(y) and
t(y) plotted against M;/M, o are shown in Fig. 1.
Analogous functions for the cases of $=1, S= ~, and
S=—,

' are shown in Figs. 2, 3, and 4.' As T tends to zero
'The full expressions for these functions, together with tabu-

lated values, are given in an Air Force Cambridge Research Center
Scientific Report, AFCRC-TN-57-594 (unpublished).
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Fio. 1. Variation of p(y), r(y), and t(y) as a function of relative
sublattice magnetization for a spin S=-,',

the last term in Eq. (5) tends to 0/0; the correct limit
for this term is found in the usual way to be 75D' cos'8/
4gl9H ff as is obvious also by inspection of the energy
levels in Eq. (3).

If the crystal as a whole has cubic symmetry it
follows that there must be several ions in unit cell, all
similar except for the direction of the axial distortion
relative to the crystal axes, and we must therefore
average the terms in cos 8 over this set of directions.
The mean value of cos'8 for any set of distortion axes
with cubic symmetry is —, so that the term linear in D
does not contribute to the total measured anisotropy.
The term in cos'0 averages to a constant plus y(Pfn'
+fn'n'+n'P) where y=4/9 if the distortions lie along
the four L111]directions, and p= —

s if they lie along
the three L100] directions. If there are more than four '

inequivalent ions in the unit cell, smaller values of y
result. %e shall assume that the cubic axes of each ion
coincide with those of the crystal as a whole, though
this is by no means always true. If they did not, we
would then have to average over the differently oriented
sets of cubic axes and this would decrease the total
anisotropy arising from the term in a.

From Eq. (5) it follows that Ki, the first order cubic
anisotropy coeKcient as usually dered, is given by

Ki fJr (y)+y (D'/kT) f (y)——.

Similar expressions for the higher order anisotropy
coeKcients can be obtained from Eq. (4) by retaining
further terms in the series expansion. However, an
order of magnitude calculation shows that values of
E2, etc., obtained in this way will be considerably
smaller than Ej, in disagreement with some of the
reported experimental values. This difhculty has also
been encountered previously by Van Vleck in his
calculation of the anisotropy'arising from pseudo-
dipolar and quadrupolar interaction. It appears, there-
fore, that there is some other mechanism contributing
at least to higher order anisotropy, arising, maybe,

from disorder in the crystal. This supposition 6nds
some support in the fact that yttrium iron garnet, a
ferrimagnetic substance with well-de6ned and perfectly
regular crystal structure, '0 is reported to have no de-
tectable second order anisotropy between 20'K and
540'K, though the magnitude of its E~ is quite normal. "

For ions which are in an 5 state, the magnitudes of
the coeKcients a and D cannot be estimated from theory
since even the physical mechanism giving rise to the
crystal-6eld splittings is at present in doubt. "However,
since they are properties of the individual magnetic
ions depending only on the crystal structure of the
compound, they can in principle be determined experi-
mentally if there exists a diamagnetic compound which
has the same structure as the magnetic one, since one
can then carry out the usual paramagnetic resonance
experiments to Qt X for each type of ion present. From
such experiments one could determine a and D (and
also f and lower symmetry terms) for the different
lattice sites, as well as n, the principal distortion
direction.

In the absence of such data we can guess at the
constants, assuming them to be of the same order of
magnitude as usually found in paramagnetic salts, say,
a 0.02 cm ', D 0.2 cm '. It then turns out that the
term in a gives a contribution to E~ close to the experi-
mental values found in ferrites (Ki/cV 100 oersteds),
as previously noted by Yosida and Tachiki, ' while the
terms in D' are considerably smaller. However, it must
be stressed that ferrites are far less regular compounds
than most paramagnetic salts as regards the microscopic
symmetry of the individual ion sites, so that we should
expect relatively much bigger e8ects from distortions,
with values of D maybe an order of magnitude larger.
In crystals whose over-all symmetry is not cubic, the
anisotropy from the term linear in D cos'0 does not
average to zero and an axial anisotropy of order D/atom
results. The fact that uniaxial crystals, even those
containing only magnetic ions in 5 states, (e.g. ,
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FIG. 2. Variation of p(y) and f(y) as a function of relative
sublattice magnetization for a spin S=1.

"F.Bertaut and F. Forrat, Compt. rend. 242, 382 (1956)."J.F. Dillon, Jr., Phys. Rev. 105, 759 (1957).
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BaFersOIs), have anisotropies one and often two orders
of magnitude greater than cubic crystals supports the
guess that in some ferrites D may be considerably larger
than a, and larger than the D in hydrated paramagnetic
salts.

IMPORTANCE OF NONCUBIC TERMS
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FIG. 3. Variation of p(y) and t(y) as a function of relative
sublattice magnetization fox a spin S=-,'.

"R.Pauthenet, Compt. rend. 242, 1859 (1956).

In any case, the terms in D will be of prime im-
portance for ions with S&2, since for these the cubic
term in u in the spin Hamiltonian vanishes identically.
It has always been assumed up to now' 4 that crystal-
line field effects would not then contribute to the
macroscopic anisotropy of a crystal with over-all cubic
symmetry, but this we can see now is only true to hrst
order. Since anisotropy only enters in these cases
through terms in D'/kT and D'/gpH, II, the contribution
will usually be small, but in compounds with large local
distortions from cubic symmetry their efI'ect can become
quite large.

The terms in D' will also be important at low tem-
peratures in crystals in which H,« is relatively weak,
i.e., in crystals in which a particular sublattice begins
to contribute to 3E only at low temperatures. This is
because H, fg occurs in the denominator of the second
order terms in the expressions for the energy levels,
and also because the expansion of Z (and also F) con-
verges more slowly at low temperatures for a given
value of y. One substance in which this effect should be
important is gadolinium iron garnet, for which it is
known that the Gd'+ lattice is only weakly coupled to
the strongly aligned Fe'+ lattices. "It might be pointed
out that the converse of this e6ect is true quite gen-
erally, namely that a sublattice which is subjected to
a weak exchange field will at moderately high tem-
peratures contribute only very little to the anisotropy.
This can readily be seen in Figs. 1, 2, 3, and 4 which
show that the functions which multiply a and D'/kT
become very small for only moderately small values of
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FIG. 4. Variation of p(y), r(y), and t(y) as a function of relative
sublattice magnetization for a spin S=-,'.

"R. %hite (private communication} and B. A. Calhoun
(private communication)."C. Kittel, Revs. Modern Phys. 21, 541 (1949).

re J. H. Van Vleck, Phys. Rev. 41, 208 (1932).

M,/3f, s. Unless u and D were exceptionally big, we
would expect therefore that the Gd'+ ions in the com-
pound cited above would contribute very little to the
anisotropy at high temperatures and that Ej should be
very nearly the same as that of the analogous yttrium
compound in which the anisotropy arises solely from
the Fe'+ ions. Preliminary experiments have shown
that this indeed seems to be the case. '4

In addition to affecting the absolute magnitude of
E&, a term in D' can also radically aGect its dependence
on temperature, since the function by which it is
multiplied, t(y), varies very differently from r(y), which
multiplies a. (See Fig. 1.) This is a fact which must be
borne in mind when considering the eAect of internal
strains on the anisotropy and in particular its tempera-
ture dependence. Since anisotropy measurements are
invariably made under conditions of constant stress,
rather than constant strain, this remark applies par-
ticularly to the contribution to the anisotropy arising
from magnetostriction, " and results should therefore
be corrected for this eGect before any attempt is made
to 6t them to the above equations. In this respect Ni'+
might be expected to show the biggest e6ect, since D
depends on the proximity of excited orbital states which
will be much closer in Ni'+ than in, say, Mn'+ or Fe'+.

In passing, it may be noted that there is yet another
reason why nickel ferrites might show an anomalous
anistropy. A Ni'+ ion in an octahedral surrounding has
a ground state which is an orbital singlet and so
behaves very much like a free spin. The crystalline
6eld effects cited above are then the results of small
perturbations. In a tetrahedral surrounding, however,
(which still has cubic symmetry) the ground state
would be an orbital triplet very similar to that of a
Co'+ ion in an octahedral site. '6 This is known to give
rise to extremely large anisotropy, of the order of 100
times that of an ion with a quenched ground state. It is
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and this will lead to a decrease in line broadening. The
effect will obviously be large in crystals in which the
local distortions are large, but it will probably be even
more important in crystals in which there are ions with
only a partially quenched orbital angular momentum,
for which the individual g values can be highly aniso-
tropic. The rare earth iron garnets may well present a
set of compounds for which this is the case, but at
present too little is known about the behavior of the
individual rare earth ions to make any definite pre-
dlc tlons.

0.2 -0.5 EFFECT OF MORE THAN ONE SUBLATTICE

In any particular crystal the combined effect of
several sublattices can be calculated only if the re-
spective parameters of the one-ion spin Hamiltonians
are known, as well as the respective sublattice mag-
netizations. However, we can already get some idea of
the great variety of E~ ~ersls T curves possible if we
examine a simple fictitious example involving only two
sublattices having cubic field parameters a~ and a~ and
negligible D's. We shall assume that the sublattice
magnetization curves are as shown in Fig. 5 and we
shall examine the variation of the Ej ~s T curve as a
function of the ratio e =iia2/)1ai, where X and p represent
the fractions of the total number of magnetic ions,
respectively on the 1 and 2 sublattices. We shall show
that in certain cases, the total anisotropy can be ex-
tremely sensitive to the value of this ratio, emphasizing
again the very likely possibility of considerable dis-
crepancies between crystals having slightly different
stoichiometries.

From Eqs. (4) and (7) the total first order cubic
anisotropy for the two sublattice n1odel is given by

0
I0.25 0.5 0.75

G

clear therefore that, if in the ferrite only a few Ni'+ ions
occupy tetrahedral instead of their usual octahedral
sites, an important contribution to the total anisotropy
will result. It may be that this mechanism is responsible
for the considerable differences between various nickel
ferrite crystals which have been reported in the
literature "

As well as affecting the anisotropy, noncubic terms
with distortion directions which differ for various sets
of ions throughout the crystal may also provide a
mechanism for line width broadening. If it were not for
the effect of exchange, ions at diferent lattice sites
would resonate at frequencies varying over a range of
order D cm ', the exact spread depending on the relative
orientations of the applied field and the distortion axes.
Under the influence of exchange, this spread is reduced

by a factor of order D/AH, n, is but even so we might
still expect a contribution to the line width of order
D'/AH. ff. Even if one takes a conservative value for
D 0.2 cm ' and gPH, ri 100 cm ', this gives DH 4
oersteds which is not negligible when one is trying to
explain the experimentally observed values in yttrium
iron garnet which are of the order of 10 oersteds.
Moreover, we have neglected numerical factors of the
order of 2S which in an exact calculation would push

up the value almost another order of magnitude. An
interesting fact which should be noted regarding this
mechanism is that the effect will be anisotropic, since
it depends on the relative angles between II and the
distortion axes. Along certain directions of high macro-
scopic symmetry, (e.g. , the L100) axis in a cubic
crystal), several sets of ions may become equivalent

'7 D. W. Healy, Jr. , Phys. Rev, S6, 1009 (1952); Yager, Gait,
and Merritt, Phys. Rev. 99, 1203 (1955).

"See, e.g. , P. W. Anderson and P. R. Weiss, Revs. Modern
Phys. 25, 269 {1953).

1~ 1 +L)1121&(yl)+ii+2r (y2) ) /)1111Lr (yl)+ er (y2))

where the variations of r(yi) and r(y2) based on the
assumed variation of 3I~ and 3f2 are shown in Fig. 5.
The curves of E~, expressed in units of ED=PA.a~, as a
function of T for various values of e is shown in Fig. 6.
It will be seen that for a range of values of e near —1
the shape of the curves is very sensitive to the actual
value of e, and that for some values the anisotropy even
changes sign as a function of temperature.

Although we have attempted here to give only the
crudest outline of what can happen, it might be pointed
out that one would expect e to have a negative value of
the order of unity in many cases. This is because the
main difference between the 2 and 8 sites in a ferrite
lies in the fact that the 3 sites have 4 nearest 0'
neighbors while the 8 sites have 6, and from a simple

point charge model it can be shown that the coe%cients
of the cubic electric potential produced by these two

types of arrangements will be of the same order of
magnitude with, however, opposite signs. This fact
has been noted by Yosida and Tachiki, and it has also

FIG. 5. Hypothetical two sublat tice example, showing th
difference between the two curves of r(y) versus T/T, corre-
sponding to two assumed variations of 3f~/31;o 3f=XMi p.Mo, —
IC=N LXair (yi) +11@or(yo) g =EoLr (yi) +or (yo) g.
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recently been observed experimentally by Folen and
Rado" in their measurements on Mg ferrite.

CONCLUSION

We have shown how crystalline held effects of the
kind known to act on the ions of paramagnetic salts
can lead to a macroscopic anisotropy in ferro- (and
ferri-), magnetic crystals in which the ions are coupled
by isotropic exchange. We have neglected the possi-
bility of anisotropic coupling on the grounds of a crude
order of magnitude estimate, which indicates that it
will be small if the orbital contribution to the magnetic
moment (g value) is highly quenched by the crystalline
6eld. This will certainly not be true for ions in which
the main part of the crystal field does not remove all the
orbital degeneracy, but for ions which are in 5 states,
the approximation should be good. The importance of
the local symmetry of the magnetic ion sites has been
emphasized, since even in macroscopically cubic
crystals relatively small, local distortions can affect
the overall anisotropy appreciably in some cases. The
physical reason for this lies in the fact that the leading
term in the expansion of an axial crystalline potential
is one of second order, which in the calculation of the
crystalline field splitting is multiplied by (r'), the mean
square orbit, while the lowest order cubic potential acts
only through (r4). Thus in a crystal in which the ionic
environment is mainly cubic and only slightly distorted,
the effect of an axial term may nevertheless be quite
large, and this may well be the case in ferrites. The
experimental approach to the solution of this problem
which suggests itself is the systematic investigation of
paramagnetic resonance of magnetically isolated ions
dispersed in diamagnetic crystals which are isomorphous
with the ferrimagnetic ones. This could be done pre-
sumably quite easily, but it must be born in mind that
the results might not be quite unambiguous, since it is
known that in paramagnetic salts the crystalline field
splittings sometimes depend quite strongly on the
particular diamagnetic diluent used. Further, it would
be impossible to simulate the effect of magnetostriction
which occurs in the ferromagnetic state and which
cerntainly affects the measured anisotropy" if experi-
ments are carried out, as always, under conditions of
constant stress. However, the paramagnetic experi-
ments would be useful in indicating a trend in the
relative importance of the cubic and axial eRects, as
well as giving an order of magnitude for the two.

In ferrimagnetic crystals the effects from the various
sublattices are additive and it has been shown by means
of a simple example that a very wide variety of ani-
sotropy versus temperature curves can then be obtained.
The form of the curves can in some cases depend quite
critically on the relative number of ions on the diRerent
sites and this fact may in part explain the large differ-
ences which have been reported for crystals of nominally

' G. T. Rado and V. J. Folen, Bull. Am. Phys. Soc. Ser. II, 2,
263 (&957}.
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FIG. 6. Variation of first order anisotropy with temperature
corresponding to difierent values of the parameter e =gas/Xai and
the two curves of r b) versus T/T, shown in Fig. 5.

the same material but with slightly diRerent stoichi-
ometries. It is also shown that it is quite possible for
the anisotropy to change sign at a temperature at which
the contributions from the various sublattices just
cancels. The reversal in the trend of the E~ versus T
curve" of Fe304 is probably due to this effect since it
occurs well above the temperature at which the ob-
served change of phase sets in. This type of behavior is
exactly analogous to different M versus T curves pre-
dicted by Neel's original theory of ferrimagnetism.
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