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New relations expressing the imaginary part of the scattering amplitude as a coupling constant term
and an integral over the physical spectrum of the real part of the amplitude are developed. These relations
are applied to compute the meson-nucleon coupling constant from the experimental phase shifts, yielding the
value f'=0.084, and are used to compute the s-wave scattering lengths from the p-wave data.

INTRODUCTION

w K shall develop a new, more convergent form for
the dispersion relations for meson-nucleon scat-

tering. These relationships will express the imaginary
part of the amplitude in terms of a coupling constant
term and an integral of the real part of the amplitude
in the physical region. These new relations diGer from
the conjugate Hilbert transforms that connect the
imaginary part of an amplitude to an integral of the
real part in that the integrals are restricted to the
experimentally accessible region above the threshold.
These expressions have an additional convergence
factor, the reciprocal of the laboratory momentum, and
so provide relationships between the phase shifts less
dependent upon the high-energy behavior of the theory
or upon additional constant terms than the usual dis-
persion relations. We shall make two applications of
these new relations: a coupling constant determination
and a computation of the s-wave scattering lengths. In
this paper we shall restrict ourselves to the dispersion
relations for scattering into the forward direction,
although the argument could be applied to the more
general relations o8 the forward direction.

DISPERSION RELATIONS

Many authors have given the dispersion relations
applicable to meson-nucleon scattering. ' ' %e shall

collect in this section the relations and the formulas that
we shall need. ' The invariant T matrix for the pion-
nucleon scattering process, considered as a two-by-two
matrix in the nucleon isotopic spin space, we divide

into two parts, even and odd, in the meson isotopic
indexes,

T=b pT'+2[x, rp]T'.

These even and odd amplitudes are related to the
isotopic spin decomposition of the T matrix by

T'= —'(T'+ 2T')

T'= '(T' T-')— (2)

2 ~ ds
Re f0(z) =z PI-m f'(s),

7r ~y S —8
(4)

bG'/«p, 2 t
" sds

Re g'(z) = + P~ Im—g'(s),

Re f'(z) —Re f'(s')

2 I" sds Im f'(s)=—(s' —s")P~, (6)
(s' —s2) (s' —s")

zG'/«)«2 (
" ds

Re g'(z) = — +—zP ~~ Im g'(s). (7)

where the superscripts "1"and "3"refer to the 7=-,'
and T=—,'states, respectively. We shall separate out
the nucleon spin dependence of the T matrix as

T(P,P', ~) = N(P) N(P') f(PP', Pv)

+N(P)~a~(P') g(PP' Pc) (~)

on the energy shell. The two invariant amplitudes, f
and g, separately obey dispersion relations. The

g amplitude is, to the order of p,'/«', the spin-fhp
amplitude, and since the m meson is pseudoscalar, the
bound-state terms involving the coupling constant occur
only in the dispersion relations for the g amplitude. We
need only the relations in the forward direction, which
we take to be, using s for Pq/zi«, the laboratory energy
of the meson divided by the meson's mass:

*National Science Foundation Predoctoral Fellow.' M. L. Goldberger, Phys. Rev. 99, 979 (1955).
2 Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 986 (1955).
'A. Salam, Nuovo cimento 3, 424 (1956), and A. Salam and

W. Gilbert, Nuovo cimento 3, 607 (1956).
4 R. Oehme, Phys. Rev. 100, 1503 (1955) and 102, 1174 (1956).
~ R. H. Capps and G. Takeda, Phys. Rev. 103, 1877 {1956).' We take A= c= 1 and use a timelike metric. pp' is the invariant

product of two four-vectors. We are considering the scattering
a nucleon of mass ~, four-momentum p', by a meson of mass
four-momentum q', and isotopic spin P. The final state is chara
terized by p, g, and e. The nucleons are described by Dirac spino
u (p) obeying the equation (yp —«)I (p) =0, uu =2«. In calculatio
we take &=6.7p.

Here b=i«/2«, the position of the bound state singu-

larity, and 6 is the renormalized, unrationalized pseudo-
scalar coupling constant. We shall also use the ration-
alized pseudovector coupling constant

f'= b'g'= b'G'/47r.

of Ke need to know the relation between this invariant
decomposition of the scattering amplitude and the

ns usual phase-shift expansion. We shall introduce direct
and spin-Rip amplitudes as, in the center-of-mass
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system,
(~2~'2E )T=D+ie 8 sine( ~S,)

where 8 is the angle of scattering in the center-of-mass
system, 8 is a unit vector perpendicular to the plane of
scattering, q is the center-of-mass momentum divided
by the meson's mass, and E is the total center-of-mass
energy. We shall also use the symbol P =pp+K, the sum
of the nucleon energy and mass in the center-of-mass
system, and a=E+». Then we have the algebraic
relations

E= (»'+p, '+2»pz)',

PE=K (cE+pz) q

(z' —1)—:»=gE.
(10)

If the spinors in (3) are specialized to the center-of-mass
system, the invariant functions f(z) and g(z) can be
related to the direct and spin-flip amplitudes:

f(z) = D(z) —pzS(z),
2PE

g(z) = [D(z)/2PEj+~(z) (12)

The phase-shift expansions for the direct and spin-flip
amplitudes may be determined from the unitary con-
dition on the invariant T matrix. In the forward direc-
tion the expansions are, with our normalization,

Sm-8 ~
D(z) = Q /la( +(f+1)ai+j,

pg l=0

8z» ~ l(l+ 1)
~(z) = 2 («-—a~)

kg 3 2

(13)

Im D= 2p, 'QEO)

or for the even and odd isotopic index amplitudes:

Im O'=IJqE(a++a ),
Im D'= @ATE(o —&r+),

(16)

(17)

0+ and o. being the total cross sections for the scattering
of positive and negative pions oG protons. The rela-
tions (4) and (5), (6) and (7) may be combined using

Here a&~ is e" sinb for the state j= l&-,'if the scattering
is elastic. We shall normally cut oG these expansions
after the p-wave terms and assume that the scattering
is elastic at all energies of interest. We use the usual
notation for the s and p waves, ai and a3 referring to
e" sinb for the 7=—,

' and —,
' s waves, a2z, 2~ for the

p waves. We shall use a superscript "0" to denote the
scattering lengths, taking the low-energy behavior of
the phases to be 8 6'g for the s-waves and 5 8'q' for
the p waves.

The optical theorem is, with this normalization,

(10), (11),and (12) to yield Goldberger's' ' relations for
the direct amplitude:

r
"dz Im D'(z)2zbG' 2

Re D'(z) = + zI'—
s2 —P

(18)

The dispersion relations that we have written are con-
sistent with the assumption that the cross sections cr+

and 0 become constant and equal at high energies and,
further, that the spin-flip amplitude vanishes at high
energies. That the cross sections become constant and
the spin-flip amplitude vanish would follow from the
existence of a inite range for the interaction and the
interaction becoming completely inelastic at high
energies.

NEW' RELATIONS

Now we shall develop a more convergent form of the
dispersion relations for each of the amplitudes intro-
duced in the previous section, basing our arguments
on the form of the usual dispersion relations for these
amplitudes. We shall only discuss the forward direction,
but a similar development could be made for the
general case. Consider, as an example, the function
g'(z). We have previously written relation (7) for this
function which corresponds to the following properties:

(1) g'(z) is analytic in the upper half of the complex
s plane,

(2) g'(z) is less than z at infinity in the upper half of
the complex plane,

(3) the real part of g'(z) is an odd function on the
real axis, the imaginary part of q'(z) is an even function
on the real axis, and

(4) Im g'(z) is zero on the real axis for —1(z&1
with the exception of a delta-function contribution

-', z. (G'/»p) [6(z—b)+5(z+b) ).
We consider the function g'(z)/(z' —1)&. By (z' —1)& we
mean that branch of the function that is analytic in
the upper half plane, positive for s real, s& 1, negative
for s real, s& —1, and positive imaginary for s real,
—1 &s&1. The imaginary part of this function is posi-
tive in the upper half-plane, and the function has no
zeros above the real axis. 7 This function is just the
dimensionless laboratory momentum of the incoming

' We limit our discussion of the behavior of these functions to
the upper half-plane as a matter of convenience; all of these
functions are analytic in the entire plane with cut lines along the
real axis from ~1 to ~~. The behavior of these functions on the
real axis is always understood to be the behavior as a limit from
the upper half-plane.

2b'G'
Re D'(z) —Re D'(1) = (z' —1)

(z' —b') (1—b')

2 p" zdz Im D'(z)
I' — . (19)

(z2 z2) (z2 1)
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meson. Now the quotient function, g'(s)/(s' —1)&, will
have these properties:

(1) it is analytic in the upper half-plane,
(2) it goes to zero at infinity,
(3) the limit of the function onto the real axis from

above has an even real part and an odd imaginary part,
and

(4) the real part of this function is zero between
s= —1 and s=1 on the real axis with the exception of
two delta-function singularities, the real part of this
function being Im [g'(s)]/(1 —s)'*in this region.

f'(z)
Im

2 t" sds Ref'(s)———P
S'—Z2

(23)

where we do not have to perform a subtraction in order
to obtain convergence provided that the f'(s) amplitude
is less singular than s at infinity. The f'(s) amplitude
obeys relation (21) without the bound-state term. For
the direct amplitudes we have:

D'(z)
Im

g'(z)
Im

(z2—1)&

2 l." ds g'(s)
zI' I Re, (20)

"2 s' —z~ (s' —1)&

From the boundedness and symmetry properties we
can write, using Cauchy's theorem,

Im
D'(z)

IIn
D'(s')

2 t-" ds Re D'(s)= ——ZP
7l a g S Z

2bG' (24)
8—b'

in which Im [ j and Re [ j mean the imaginary and
the real parts of the limit on the real axis from above
of the analytic function inside the brackets. No trouble
arises when the contour of integration is brought to the
real axis. The integration is to be thought of, at first,
as including semicircles above the points z=&1. The
contribution of these semicircles vanishes as the radius
shrinks to zero, since the singularity in

Re [g'(s)/(s' —1) '1

at s=&1 is integrable. Using the relation between the
real part of g'(s)/(s' —1)'* and the imaginary part of
g'(s) in the nonphysical region, we have:

g'(z)
Im

(z2 —1)&

2 r
" ds Re g'(s)= ——zp i

s' —z2 (s' —1)'*

+ . (21)
z2 —p K~(1—p)k

The left-hand side of this relation is

and

Im [g'(z)]/(s' —1) ' for z) 1,

—Re [g'(z))/(1 —z2)'* for 0&8&1.

There is an infinite discontinuity in this relation as the
threshold is approached from below, since Img'(s)
goes to zero as g at threshold while Re g'(s) is a constant
in the neighborhood of the threshold.

Similar relations can be written for the other ampli-
tudes. We introduce the symbol P= (s' —1)'* and drop
the factor (1—b2)& that occurs in the bound state
terms. Then some of the other possible relations are

2/2@2—(z2 s~2)

(z2 b2) (s~2 b2)

2 p Gds——p
(s' —z2) (s' —s")

Re D'(s)
(25)

or, in terms of cross sections, using (16) and (17), z) 1,

bG' 2 z p" ds ReDo
o.+—o. = +— I' ~l—

Kills % KP i S Z

(26)

(o++o );—(o++o—), =
(z2 s&2) 2$2G2

Z28'2

2 f st Re D
p (27)

2r "2 S'—Z' $ S'—S"

The integrals over the real parts of the amplitudes
would be dificult to handle near threshold, since the
integrand is so singular there. The integrands can be
modified, however, to remove either the principal-part
singularity or the singularity at the threshold. Since $
has the analytic properties mentioned earlier, the fol-
lowing integral is an immediate consequence of Cauchy's
theorem:

0 for z&12 t s(Ss 1
P

s' —8 $ 1 1—z2 '* for z&1.
(28)

COUPLING CONSTANT DETERMINATION

/( )

%e shall use this and similar integrals to isolate the
dominant contributions to these singular integrals when
we apply these new relations.

' g'(z)
Im

2 t
" sds Re g'(s) bG2/Kp

p (22) The new relations are more rapidly convergent than
J s2 —z2 P z2 —$2 the usual ones and therefore are better adapted for the
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2 f lS 1
llm —I ~

—= —1)
(s' —z') s(

(29)

analysis of the experimental data since the high-energy
effects can be neglected. Of all the relations, the new
relation (21) for the even-isotopic-index spin-flip am-
plitude is best suited for the determination of the
coupling constant. The relation is rapidly convergent.
The coupling constant is weighted with a large factor
with respect to the phase shifts, being given essentially
additively rather than as a difference of experimental
quantities. We shall use relation (21) at threshold. In
this limit, the dominant contribution from the integral

, arises from the neighborhood of the singularity. We use
the fact that

State

33
31
13
11

0.248—0.042
0.0048—0.0175

0.0404—0.0060
0.0029—0.0033

See reference 9.

and the correction from the integral is —0.050, resulting
in a value for the coupling constant,

f'= 0.084.

TABLE I. The scat tering lengths, 50, and the integrals,
de6ned by (321 based upon the p-wave phases given by An-
derson. '

G'—+Re g'(1) =lim
KP z~l

In this determination, the 33 state contributes 83%%uo

and the 31 state, 14/o. An alternative, but less con-
vergent, way to calculate the coupling is to use the

Im g'(z) usual dispersion relation for g'(s), (7), which we write
analogously to (30)

2 f dS' 1
+— —Re g'(s) ——Re g'(1) . (30)

Q2 2 f' dS—+Re g'(1) =— —Im g'(s).
KP p

No difficulty arises from the limit of the principal-part
function since the integral, after the subtraction, has an
integrable singularity at threshold. The term arising
from the imaginary part of the amplitude is related to
the square of the s-wave scattering lengths. It is

lim
Im g'(s)

which is about 0.1%%uq of the coupling constant term, if
one uses Orear's values for the s-wave lengths. ' Since
the contribution to g'(s) from the direct amplitude is
about one percent, we shall ignore it, although it could
be taken into account using (12).The integral is rapidly
convergent; dropping all higher waves in g'(s), we
rewrite (30) as

3f'= &ss' —&sP+s (~ass —4F)
—

Loess
—Xw+-,'(Xts —Xgt)7, (31)

Only the 33-state contribution to the integral is im-
portant. This yields

3f'=0.301—0.052 or f' =0 083.
Both of these values for the coupling constant are in
good agreement with the value found by Hab�e-
rSchaim f'=0.082. Our result is less than the value
f'=0.10 found by Davidon and Goldberger" using the
same phases and a combination of relations (5) and.

(7). The relation we have used, however, is more con-
vergent than theirs by a factor of s2 and gives the
coupling constant essentially additively in terms of the
experimental data.

Another way to compute the coupling constant
would be to modify Eq. (21) so that it could be used to
represent the experimental data as a straight line whose
intercept would be the coupling. This wouM also
provide a check on the consistency of the data. Equation
(21) can easily be brought to the form:

in which G' 2 1"ds—+z~ Re g'(1) —— —x(s)
(32) KP

1 t" ds (sin25 25'q

s)
z 2 p" ds 1 z

=—Im g'(z)+ —zsP —x(s) ——x(z), (33)
s' —z' $' s

1
x(s) =Re g'(s) ——Re g'(1).

8

We shall evaluate the coupling constant using the
Anderson fitted phase shifts. ' See Table I. The con-
tribution from the scattering lengths is

3f' 0.301,

J. Drear, Phys. Rev. 101, 288 (1956).' H. L. Anderson, Sixth Annual Rochester Conference on IIigh-
Energy I'hysics, 1956 (Interscience Publishers, Inc. , New York,
1956).

I U. Haber-Schaim, Phys. Rev. 104, 1113 (1956).
"W. C. Davidon and M. L. Goldberger, Phys. Rev. 104, 1119

(1956).
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If the right-hand side of (33) were plotted against z',
the data should fit a straight line. Alternatively, we
could use the fact that the threshold value of z/( Im g'(z)
is insignificant compared to the coupling constant term
and plot

Im g'(z) ——zs —x(z) —-x(z), (34)
sp Z' —Z' P Z

which should be a constant.

S-WAVE SCATTERING LENGTHS

We shall now use these new relations to calculate the
s-wave scattering lengths from the p-wave phase shifts.
More exactly, given that the s waves are small, we
shall show that they can be approximately calculated
from the p waves alone, but that if the experimental
data about the second maximum in the pion-nucleon
scattering cross section, the T= ~ maximum, is used, the
scattering lengths can be calculated quite accurately.
We shall not have to make any very extreme assump-
tions about the high-energy behavior of the theory; we
need only the assertion that the cross sections for the
scattering of positive and negative mesons by protons
approach the same value at high energies. We use the
two relations for the odd-isotopic-index direct scattering
amplitude specialized to threshold. Relation (18) yields

important contributions to the difference, we have

4 ~ " dk E sin'633
$0 $0—6 f2.+, «+, ~, z-1 ~

3 pg

fdic

+ —(~ —o+), (37)
47r' a+@ "

where the integral is to be extended over the second
maximum in the pion-nucleon cross section. The first
term in the Born approximation, in pseudoscalar
theory, for the difference of the scattering lengths. For
a coupling constant f'=0.084, it is 0.44. The P-wave
integral is the dominant correction to the Born approxi-
mation. If this is integrated using Anderson's' values
for the 33-phase shift along with the experimental
values of Mukhin and Pontecorvo" above the resonance,
the result is 6~' —83'=0.20 The contribution from the
T=-,' maximum brings this value up into agreement
with the experimental value' 8&'—83' ——0.27. Turning
to the second relation, we see that a large part of the
integral comes from the neighborhood of the singularity.
We modify the integrand to eliminate this singular
behavior. Since

f ds' 1
llm P I

—= —1)
s ty &t Z' —Zsg

2 ~+p
(3t')' —(3s')'= —6f'+- (3t' —~s')

and the new relation (24) yields

3 P, "dz we can subtract the threshold value of Re D' from the
its —3 &&=6 fs+

~

—Im Do (35) integrand:
K+@ 41I K++ ], p

3 p f" ds Re D'
(8t')' —(8s')'= 6f' — l—im I'—

47I' K z-+1+ t z z
(36)

Expression (35) can be used to compute the difference
of the s-wave scattering lengths, and this difference
along with the experimental p-wave phase shifts, can
be inserted into (36) to compute the sum of the scat-
tering lengths.

Equation (35) was used by Goldberger, Miyazawa,
and Oehme' to calculate this difference of scattering
lengths from the experimental cross sections. Since the
s waves are small, they and the small p waves may be
neglected under the integral in (35). Exhibiting the

TABLE II. The s-wave scattering lengths computed from values
of the coupling constant, an integral, b, , over the p-wave phases,
and the difference of scattering lengths using Eq. (39).

3 p, I ds—LRe D'(z) —Re D'(1)j. (38)
4''~ ~t P

where

2 a+@ 6—6f'
&ts+3s'= — +

8g' —83'
(39)

f ds
(2 sin23ss+sin23st

pt)' —2 sin23ts —sin2bttj. (40)

To the extent that the s waves are small and linear in
the momentum, this subtraction takes into account,
within 10%, the s-wave contribution to the integral.
The rest of the integral may be approximated by the
p-wave terms. The sum of the s-wave scattering lengths
is then

(1)
(2)
(3)
(4)

0.084
0.082
0.084
0.084

0.315
0.315
0.315
0.350

$10—t) 30

0.27
0.27
0.20
0.20

$10

0.15
0.17—0.01
0.10

600

—0.12—0.10—0.21—0.10

Using the Anderson phases, ' 6 may be evaluated
numerically, yielding 6=0.315. Various values for the
scattering lengths are collected in Table II. The first

'2 A. I. Mukhin and B.M. Pontecorvo, I. Exptl. Theoret. Phys.
(U.S.S.R.) 31, 550 (1956) Ltranslation: Soviet Phys. (JETP) 4,
373 (1957).
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and second lines are in good agreement with Orear's
values, ' but the scattering lengths are sensitive to the
coupling constant. The third line of Table II uses the
p-wave approximation for the diBerence of the lengths,
producing rough agreement. The small p waves do not
inQuence the qualitative picture. In line four, only the
33-phase shift is assumed to be different from zero,
6=0.350, and the scattering lengths are in qualitative
agreement with experiment.

We should point out that for the first relation to
hold, 0.+—0. must vanish at high energies. For the new
relation (35) to hold, all that is required is that the
cross sections become constant at high energies or,
more weakly, that neither the real nor the imaginary
part of D'(s) increases as fast as s'. The significance of
this calculation is that a large part of the s-wave scat-
tering may be treated as a relativistic effect induced by
the p-wave interaction.
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Meson-Meson Interaction in the Bethe-Salpeter Approximation

A. N. MITRA AND R. P. SAXENA

Departmeut of Physics, Muslim Ursiversity, Aligarh, U. P., Irtdia

(Received February 25, 1957)

The m.-m interaction is studied in the Bethe-Salpeter approximation by erst obtaining the "effective"
interaction Hamiltonian with the help of the lowest order S matrix for ~-x scattering. This Hamiltonian is
then used to set up a Goldberger-type integral equation for x-7t scattering which is solved for the cases of
total isotopic spins I=0, 2, assuming the mesons to be in s states with respect to each other. It is found
that the interaction in the state I=0 is too strongly attractive to give a resonance. On the other hand, a
resonance is obtained for the case I=2, at a momentum (in the center-of-mass system) k~93 Mev/c for
each meson& taking G'/4n. =15.5.

1. INTRODUCTION

HE concept of meson-meson interaction (which
can be pictured as taking place through virtual

nucleon pairs) is almost as old as that of the more
fundamental meson-nucleon interaction. However, un-
like the latter which can be realized directly by means of
a meson-nucleon scattering experiment, the former
finds only indirect verification by the effect it produces
on a system consisting of two or more mesons, since it
is not possible to conduct any direct experiment for
scattering a meson beam by another. One of the most
important processes in which x-x interaction plays an
indirect role is one involving scattering of mesons by
nucleons, if it is remembered that a nucleon is always
"dressed" with its own meson field which the incident
meson beam has to encounter. Strong resonant inter-
actions of the meson beam with the meson-cloud of the
nucleon were in fact suggested phenomenologically by
Dyson' and Takeda' as possible interpretations for the
second maximum in sr -p scattering near 1 Bev. Earlier,
Mitra and Dyson' had suggested an attractive x-x inter-
action as a possible explanation for the anomalously
small (in magnitude) and negative s-phase shift in the
T=-s, state of the sr-p system. Strong sr-sr interactions
have also been suggested by a number of investigators
in various other connections.

Though the importance of the x-x interaction in

' F. J. Dyson, Phys. Rev. 99, 1037 (1955).' G. Takeda, Phys. Rev. 100, 440 (1955).
'A. N. Mitra and F. 7. Dyson, Phys. Rev. 90, 372 (1953).

inQuencing various physical phenomena has been
generally recognized, a field-theoretical treatment of
this interaction has hardly received any attention so far.
It is at least clear that a perturbation treatment is
hopelessly inadequate for the purpose. Among non-
perturbation methods, the moderate amount of success
of the Tamm-Dancoff approximation in its application
to meson-nucleon scattering ( at least in the "low"
energy region, 0—200 Mev) has partially encouraged
the belief that this approximation is perhaps fairly
reasonable in the low-energy region. It is therefore of
interest that the x-~ interaction be also investigated in
this approximation, at least for small relative momenta
of the pions. However, a Tamm-Dancoff treatment for
this problem has the disadvantage that a large number
of intermediate states are involved in the equation con-
necting the various Tamm-Dancoff amplitudes, vis. ,
one must consider all the states which can be reached
from the (0,2) state by two steps of the interaction
Hamiltonian, unlike the situation in the pion-nucleon
scattering' where only otte step of the interaction
Hamiltonian was necessary. A second disadvantage of
the Tamm-Dancoff treatment for m-m interaction is
that its noncovariant nature prevents a clear-cut
separation of the well known primitive divergence
associated with the "contact" meson-meson interaction
(the so called meson-meson divergence in the pseudo-
scalar theory). To avoid these difficulties it has been

4 F. J. Dyson et al. , Phys. Rev. 95, 1644 (1954); to be referred
to as A,


