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The physical mechanism of secondary electron emission under the impact of high-speed heavy particles
is analyzed. The treatment is based on the formation of secondaries according to the Bohr-Bethe theory of
ionization, the diffusion of the slow secondaries to the surface, and their subsequent escape in the vacuum.
The yield is found to be proportional to the rate of energy loss of the incident particles, and it is shown to be
essentially the same for all metals, independent of their work function, conductivity, and other bulk
properties. The observed energy distribution of the secondaries, the effect of adsorbed layers and the
dependence of the yield on temperature, particle charge, and velocity are found to be explained in terms of
this mechanism. The application to the general problem of the escape of electrons from metals and to the
study of electron capture and loss by ions passing through solids is discussed.

I INTRODUCTION

HEORETICAL descriptions of secondary electron
emission from metals under fast-ion bombard-

ment available so far have not been in good agreement
with experimental observations.! The most complete
theory published is that of Kapitza.? His approach is
based on the simplifying hypothesis that the secondary
electrons derive their energy from local heating pro-
duced by the incident ions. As Kapitza himself pointed
out, this implies the doubtful assumption that thermo-
dynamic equilibrium considerations may be employed
in treating the very rapid and highly localized energy
exchange of fast particles with matter. Since the
resulting theory leads to a dependence on the thermal
constants and thermionic work function of the material,
in diagreement with subsequent experimental measure-
ments, it seemed desirable to try an approach that is
not based on the assumption of statistical equilibrium.

II. OUTLINE OF PHYSICAL MECHANISM

The process of secondary electron emission will be
regarded as composed of two essentially independent
parts, namely the formation of secondaries and their
subsequent escape. Energy lost by the primary particles

1 See the review of the subject in H. S. W. Massey and E. H. S.
Burhop, Electronic and Ionic Impact Phenomena (Oxford Uni-

versity Press, New York, 1952), Chap. 9, Sec. 2.
2 P, Kapitza, Phil. Mag. 45, 989 (1923).
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as a result of excitation and ionization processes will be
assumed to result in the formation of internal secondary
electrons. The secondaries formed will be considered to
lose their energy in various types of collision processes
so that only a small fraction of all those formed are able
to reach the surface with sufficient energy to escape
from the solid. The number of such secondaries per
incident particle, or the yield A, is the experimentally
observed quantity whose magnitude is to be calculated
as a function of primary particle energy and target
characteristics.

In order to allow the use of simple expressions for the
rate of energy loss of the incident ions, free from the
complicating effects of electron capture and loss, the
present treatment will be primarily concerned with
high-velocity ions. The theory will therefore first be
developed for the case of protons in the Mev energy
range, for which experimental 'measurements have
recently become available. Once the principal features
of the theory for the case of high-energy protons have
been tested, it becomes possible to extend it to lower
energies and other types of ions.

By first developing the theory for the case of high-
velocity ions, another important simplification can be
made. This results from the fact that the secondary
electrons formed can only escape’from a¥depth small
compared to the penetration depth of these ions.
Whereas secondary electrons in metals are known to

Copyright © 1957 by the American Physical Society
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F16. 1. Formation of secondary electrons (SE)
and § rays by heavy ion.

come from a region between 10~7 to 10~% cm thick,? ions
with energies of the order of Mev penetrate to depths?
of the order of 10~% cm. As a result, to a very good
approximation, one may consider the secondary elec-
trons which escape to have originated in a region in
which the incident ions possess nearly their original
energy. The amount of energy lost per unit path length
which is available for secondary electron formation may
accordingly be taken as constant throughout this
region.

The energy lost by fast ions is given up in two types
of collision processes.® In the first process, frequently
referred to as distant collisions, the ion produces only a
small perturbation in the atoms of the stopping material
so that correspondingly small amounts of energy are
transferred in each collision. The second type of col-
lision involves a close approach between the incident
ion and an atomic electron in an essentially free col-
lision, resulting in large amounts of energy transferred
to individual atomic electrons. The former type accounts
for the slow secondaries formed in a direct primary
process, referred to hereafter simply as secondaries,
whereas the latter gives rise to the relatively rare ener-
getic knock-on electrons (8 rays), which, in turn,
produce secondaries in higher order collisions. (See the
schematic representation in Fig. 1.) Although the
number of § rays is very small, the total energy going
into their formation approximately equals that going
into the direct production of slow secondaries at high
ion wvelocities.® As a result, the contribution of the
energetic collisions must be considered in calculating

the yield. As shown in Fig. 1, § rays are emitted prefer- -

entially in forward directions and possess effective
ranges that exceed the distances secondaries can travel
in metals. As a result, the number of secondaries formed
per unit layer resulting from the formation of é rays is
less near the surface than in the interior of the solid
(see Fig. 1). Accordingly, when calculating the number
of secondaries formed per unit layer of the material near
the surface, all of the energy lost per unit path length in
distant collisions, but only a fraction of the energy going
into close collisions, must be considered.

3 H. Bruining, Physics and Applications of Secondary Electron
Enii&s)ian (McGraw-Hill Book Company, Inc., New York, 1954),
P 4H. A. Bethe and J. Ashkin in Experimental Nuclear Physics,
edited by E. Segré (John Wiley and Sons, Inc., New York, 1953),
Vol. 1, Sec. 1A.

5 N. Bohr, Kgl. Danske Videnskab. Selskab., Math.-fys. Medd.
18, No. 8 (1948), Chap. 3.
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For very high ion velocities, corresponding to those
of protons in the Mev energy region, the range of the
d rays is much larger than the depth from which second-
aries can escape in metals,® as indicated by the shading
in Fig. 1. Under these conditions, which are the ones
of principal interest here, the contribution of the fast
electrons to the secondary electron yield from the
entrance surface becomes very small. As a result, it is
not necessary to know the contribution of the close
collisions with great accuracy in order to calculate the
yield for high-velocity ions.

III. FORMATION OF SECONDARY ELECTRONS

According to the above considerations, the number of
low-energy secondary electrons originating in unit layer
dx at depth x may be calculated in two parts: that
produced by direct interaction #,.% and that produced
by the fast 6 rays, #,.». In terms of the mean energy
loss per secondary formed, Eo, and the mean energy
loss per unit distance going directly into slow secondary
production (dE;/dx)x®, one has

1 /dE;\ ©
nse(l) (‘Ui,x) =T<—‘> )
E 0 dx AV

where v; is the incident ion velocity.

In order to obtain #..®, it is necessary to sum over
the contributions made by the § rays formed all along
the track of the ion. As shown in the appendix, car-
rying out this summation in the case where the rate
of energy loss is essentially constant over the region
of interest leads to the expression

dEN @
dx >Av ’

Here, {(dE;/dx)»® is the energy loss per unit path
length going into the formation of § rays, and f(v;x) is
a factor that represents the fraction of (dEi/dx)n®
available for the formation of secondaries in higher
order processes at depth x.

The theories of Bohr® and Bethe” show that at high
ion velocities one-half of the total energy loss goes into
each of the two kinds of collision processes, i.e.,

(AE/dx)n V= (dE;/dx)n®=3{dE:/dx)n,

(1a)

(s =) (1b)
156® (2,0:) = f(v4s,% Z,

where (dE;/dx)s is the total energy loss per unit path
length. This is the case when v,> 22,0, where z; is the
effective charge of the incident particle and o is the
Bohr hydrogen orbital velocity. In the case of protons
(z:=1), this condition holds for all energies above about
100 kev, so that for the energy range of primary interest

6 For a 2-Mev proton, the fastest knock-on electron has an
energy of 4(1/1835)X2 Mev=4360 ev. This corresponds to a
range of about 0.25X10™ cm in Al [see R. O. Lane and D. J.
Zaffarano, Phys. Rev. 94, 960 (1954)7].

7H. A. Bethe, Ann. Physik 5, 325 (1930).
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at present, Eq. (1) becomes

50(0iy) = ( E%)K% Av[H—f (vi,%) . (2)

For the total energy loss per unit path length, the
theory in the approximation used by Bohr® gives

2N ez 2 eq
(), o

where Eq=3mow 2= (mo/M )E;. Here N is the number
of atoms per unit volume, ¢ is the electronic charge, z;,
the charge of the incident particle, and M, E; and v,,
its mass, energy, and velocity, respectively. The quan-
tity mo is the electronic mass, Z, ;, the number of
electrons in the #,/ shell, and I, ;, the binding energy
of these electrons. The summation is to be taken over
all shells for which the logarithm remains positive.
Equation (3) differs from the more exact form given by
Bethe” only in that I, ; is used to approximate the
excitation potential and Z,,;, the oscillator strength of
each shell.®

For sufficiently high primary velocities, the sum-
mation extends over all shells, in which case Eq. (3)
may be written as

() e ()

where I is the mean excitation potential for the atom
defined by the relation

ZInI=Y Z, ol (5)
n,l

This quantity may be evaluated experimentally from
stopping-power measurements in the absence of reliable
theoretical values.® For lower particle velocities, only
the outer shells participate, and it is necessary to sum
over these shells alone. For this case, Bohr? derived an
approximate expression based on the Thomas-Fermi
model of the atom
47}
] ©

dx IO%Eeq!

2
where I, is the Rydberg energy.

As to the mean energy expended per ion formed, Eo,
it may be expected to have essentially the same mag-
nitude as observed in gases. This is due to the fact that,
as Eq. (3) shows, the incident particles interact pre-
dominantly with the heavily populated bound shells of
an atom whose binding energies are affected relatively
little by changes in the state of aggregation. Detailed
theoretical estimates for Eo have so far been obtained

=2 N 6423[

8 Reference 4, Sec. 1A, Sec. 4.
9 Reference 5, p. 102.

for only a few elements”1 so that it is necessary to fall
back on experimental data. The qualitative considera-
tions of Fano indicate that B should not vary greatly
from element to element, despite large differences in
ionization potentials and excitation probabilities, in
agreement with the observed facts for many different
atomic and molecular gases.* Since for most of the
heavier gases, E, ranges between 20 and 30 ev, a value
of 25 ev will be adopted as a reasonable estimate for
solids. This is also the average value found empirically
in the analysis of secondary electron emission from
metals under electron bombardment.??

1IV. ESCAPE OF SECONDARY ELECTRONS

It will now be necessary to consider the process
whereby the internal secondary electrons lose their
energy and are prevented from escaping.

There are two types of energy-loss processes that can
occur, namely inelastic and elastic collisions. The
inelastic collisions are those processes in which other
electrons are raised to various excited levels resulting
in large energy transfers per collision. By contrast, the
elastic collisions do not lead to electronic excitation and
involve only small amounts of energy transfer to the
thermal vibrational modes of the lattice. Since, in
metals, any amount of energy can be transferred to a
valence electron in a single collision, it takes on the
average only a few collisions to reduce the energy of a
secondary below the minimum value necessary to
overcome the surface potential barrier. Thus, it is to be
expected that the dominant fraction of all collisions
determining the depth from which secondaries can
escape from metals are of the inelastic type. It is
important to note, furthermore, that the energy of
many secondaries is sufficient to excite not only the
outermost valence and conduction electrons, but also
some of the more firmly bound electrons in the filled
levels next to the valence shell.

The physical situation in the case of highly excited
secondary electrons moving through a solid therefore
appears to resemble much more closely the diffusion of
electrons in a gas than the motion of conduction elec-
trons through a periodic lattice. In the treatment that
follows, it will therefore be assumed that the solid may
be considered as a collection of atoms whose electron
scattering cross sections are essentially similar to those
of a gas.®

It remains to arrive at an expression for the prob-
ability P(x) that a secondary electron formed at a
depth x below the surface will be able to reach the
surface and escape.

10 {J, Fano, Phys. Rev. 70, 44 (1946).

1 Reference 4, Sec. 1B, Sec. 2.

12 E, J. Sternglass, Phys. Rev. 95, 609(A) (1954).

13 This assumption is supported by recent experimental evidence
on the similarity of the characteristic energy losses of electrons in
metal vapors and foils [L. B. Leder and L. Marton, Bull. Am.
Phys. Soc. Ser. II, 2, 68 (1957); L. B. Leder, Phys. Rev. 107,
1569 (1957)].
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For purposes of the present treatment, it will be
assumed that diffusion theory™ may be used to approxi-
mate the motion of the secondaries. This does not
appear unreasonable in view of the evidence for pre-
ferred energy losses of a few electron volts in various
metals,'® which suggests that a typical secondary of
2-15 ev can undergo anywhere between 2-5 collisions
before losing its ability to escape. Thus, the actual
absorption process probably lies somewhere between a
simple ‘“‘go—no-go” type of behavior and ordinary
diffusion accompanied by absorption. In both cases,
one is led essentially to an exponential form for P(x),
with a characteristic length L, of the order of the
distance between inelastic collisions, i.e.,

P(x)=7A4 exp(—=/Ls), @)

where 7 and 4 are constants to be discussed below.

That L, is of the order of the mean free path for
inelastic collisions A4, follows from the small number of
such collisions, 7,, required before the secondary loses
its ability to escape. For the case of isotropic scattering,
which is known to be a good approximation for the
scattering of slow electrons in gases,'¢ diffusion theory™

“ gives for L, the expression

L= (%)‘sa)\sc)%- (8)

Here, A, is the mean free path for absorption, which in
the present case may be set equal to 7\ According
to the above discussion, 7, may be expected to have a
value of the order 2-5, giving

L= (37.5) Asc, )
so that Lo~Ag,.

As to the value of A, on the basis of the present
assumptions it is determined by the total collision cross
sections of slow electrons moving through a collection
of gas atoms, since almost every collision can lead to an
energy loss when the allowed levels are broadened into
overlapping bands. These cross sections are known to
be of the order of the geometric areas of the atoms, both
from experimental measurements and theoretical con-
siderations.!” This will also be assumed to hold for
secondary electron scattering in a solid. More precisely,
the cross section for secondary electron scattering o,
will be taken as proportional to the geometric area o,
of the outermost filled shells as determined by the
covalent radii, or
(10)

Here, « is a constant, which, on the basis of the assumed
similarity to the case of gases, should vary only slowly
with the electron velocity.!® It follows that A;o= (Nos,)

Tse=00yg.

14 Marshak, Brooks, and Hurwitz, Nucleonics 5, No. 5, 10
(1949); 5, No. 6,43 (1949) ; 5, No. 7, 53 (1949) ; 5, No. 8, 59 (1949).

15 Marton, Leder, and Mendlowitz in Advances in Electronics
and Electron Physics (Academic Press, Inc., New York, 1955), Vol.
VII, p. 183.

16 Reference 1, Chap. II, Sec. 7.3.

17 Reference 1, Chap. II.

18 Reference 5, Sec. 1.5.
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= (aNoy)™L. In view of Eq. (9), this allows one to
write for L,

L= (o/Noy)™, (11)

where o= (3/7.)%a. If the assumption that the solid
may be treated as a collection of free atoms is valid, o’
should have closely the same value for all metals. Thus,
once it has been determined from electron absorption
measurements in one metal, it should fit all others,
independent of their crystal structure, Fermi energy
or number of free electrons per atom.

The constant 4 in Eq. (8) is determined by the dis-
tribution of the initial velocities of the secondaries and
by the ratio Asa/Ase="7%.. For a symmetrical distribution
of initial directions about a plane parallel to the surface
and 7, as estimated above, 4 has a value slightly larger
than %, or approximately 0.6.° The great majority of
slow electrons are emitted at nearly right angles to the
track of the ion as a result of momentum and energy
conservation considerations so that the assumption of a
symmetrical distribution of initial directions seems to
be adequate for the present calculation.?

The constant 7 in Eq. (7) is the surface transmission
coefficient, representing the probability that an electron
arriving at the surface from the interior will be able to
escape. Since the secondaries possess energies well above
the zero energy level represented by an electron at rest
in the vacuum, reflection of the electrons due to the
wave-mechanical change in refractive index is neg-
ligible compared to the purely electrostatic reflection of
electrons approaching the surface potential step at dif-
ferent angles.

The magnitude of 7" may be obtained by examining
the nature of the surface potential barrier appropriate
for a secondary electron. The secondaries are formed in
the interior of the metal where the mean electrostatic
potential has a magnitude differing from that in the
vacuum outside. This potential difference results from
a surface dipole layer which has its origin in the asym-
metric electron charge cloud of the surface atoms
projecting outward beyond the positive charges of the
ion core? As shown by Wigner and Bardeen,? this
surface dipole layer may be regarded as part of the
total work required to remove an electron from a
metal, the remainder consisting of the energy difference
between the highest filled level and the mean electro-
static potential in the interior. The latter part of the

9 From calculations by Coltman, Ebbinghausen, and Altar, J.
Appl. Phys. 18, 530 (1947), for the analogous case of photons
escaping from an absorbing and scattering medium, one obtains
values of 4 between 0.61 and 0.63 for the estimated range of 7,
values.

2 The angle ¢ made by the velocity vector of a secondary of
energy E, relative to the direction of an incident ion of mass
M>>my may be shown to be given by the relation cos’p=E,/4E.
(reference 7).

21 For a detailed discussion of the origin of the dipole layer and
the velocity dependence of the work function, see the review
article of C. Herring and M. H. Nichols, Revs. Modern Phys. 21,
185 (1949), Chap. II.

22 E, Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935).
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work of removal is a volume property of the metal
independent of surface condition. It may be regarded
as supplied by the incident ion in the course of the
formation process in the interior of the solid when
energy is transferred to one of the atomic electrons.
Since the secondary electron moves toward the surface
in a time short compared to the relaxation time of the
conduction electrons in the solid (10~38—10— sec), it
is reasonable to expect that polarization effects that
give rise to the usual exchange, correlation, and image
forces do not have time to come into full effect. In the
absence of a detailed theory applicable to such rapidly
moving electrons, it appears reasonable to assume that
the only work that remains to be done when the electron
arrives at the surface is that required to overcome the
surface dipole potential ®p as shown schematically in
Fig. 2. The magnitude of &, has been calculated ex-
plicitly for the case of sodium by Bardeen,”? who found
a value of 0.4 ev for this quantity. Estimates based on
observed work function variations between different
crystal faces of various metals as well as qualitative
theoretical considerations indicate that for most metals,
the surface potential barrier should be small compared
with the total work function.?

In the case of an isotropic distribution of electron
velocities approaching a uniform surface potential
barrier, it is readily shown that 7"is given by

T=1—[®p/(B:+®p) P, (12)

where E, is the energy of the secondary as measured
relative to the zero vacuum level outside the metal.
Substituting for E, typical average energies of second-
ary electrons (6-8 ev) and for ®p values estimated by
Bardeen for monovalent metals ($p=~0.1-0.5 ev) gives
values for 7 between 0.8 and 0.9, making 74~0.5. It
is therefore reasonable to expect that the escape prob-
ability P(x) will have the value

P(x)~0.5 exp(—x/Ls) (13)

for all smooth? metal surfaces, essentially independent
of differences in total work function, conductivity or
crystal structure.

F16. 2. Schematic diagram to illustrate the formation of a
fast SE in the interior of a metal and its escape across the surface
potential barrier.

23 J, Bardeen, Phys. Rev. 49, 653 (1936).

2¢ Abnormally rough surfaces may have values of 7 appreciably
less than 0.9, as indicated by the observed reduction of yield in
such cases (see Bruining, reference 3, p. 42).

V. FORMULATION OF YIELD EQUATION

A number of secondary electrons escaping from the
surface per incident ion, A, may now be obtained as
follows. The yield from a thin layer of width dx, located
at a depth , is given by

dA=15,(v4,%) P(x)dx. (14)

Usmg Eq. (7) for P(x) Eq. (2) for #s¢(v:y%), and sum-
ming over all layers gives

f°°1 1

2 F, 15)
As shown in the Appendix, f(v;x) for low atomic

numbers has the form

Sf(vix)=1—exp[—a/Ls(vs)], (16)

where L;(v;) is the effective penetration distance of the
8 rays. Substituting Eq. (16) in Eq. (15) and remem-
bering that (dE,/dx)n may be taken as constant over a
surface region of width large compared with L, the
integration leads to the expression

> [k ) 174 exp(s/ L

A—-——~< > TALL14+F(@)7], (17

in which
F(v)= (14+Ls/L)™ (18a)

For the heavier elements, using the more accurate
expression for f(v;x) derived in the Appendix, one
obtains

F(vi>=[(1+i—:)_l+%](1+j—:l)_l. (18b)

As shown in the Appendix [Eq. (XVIII)],
Ls(93)/ Lin~E.,/ 100, (19)

where E,, is expressed in electron volts. At proton
energies greater than 2 Mev, E,>1000 ev and F(v;)
<0.3 for all elements so that the dominant term is the
yield due to secondaries resulting from primary energy
loss in ““distant” collisions.

When F(v;) may be neglected, the complete expres-
sion for A becomes, using Eq. (3) for (dEi/dx)y and
Eq. (11) for L,,

A=

TAwe“zz 4Eeq
( (20)

E’oaag nl E.

In order to obtain a rough test of the theory and its
over-all prediction as to the variation of A with the
atomic number and other material constants, Bohr’s
approximation for (dE;/dx)s [Eq. (6)] is most useful.
In this case, Eq. (20) becomes

TA7re4z ( 47% )
ancr,, IE,} '

(21)
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F16. 3. Geometric areas of atoms g, as a function
of atomic number Z.

VI. COMPARISON OF YIELD EQUATION
WITH EXPERIMENT

The expression for the yield is most conveniently
tested by using a simple empirical relation for o, that
represents its over-all dependence on atomic number
in the same way that Eq. (6) provides an estimate for
the variation of the energy loss with Z. As shown in
Fig. 3, the geometric areas calculated from the covalent
radii for typical elements can be fitted quite closely by
the empirical equation ¢,=1.6Z¥X 1071 cm?. Inserting
this in Eq. (21) and substituting numerical values for
e and ]y leads to a first approximation for the yield:

TA
A=440 ( - )z,?Eeq“%,
E !

e

(22)

where Eo and E,, are expressed in electron volts, and
the explicit Z dependence has dropped out.

The most striking prediction of Eq. (22) is that the
yield for a given ion charge and velocity should be
essentially the same in all metals. This follows from the
discussion of Secs. III and IV, according to which 7,
A4, Eyand o cannot be expected to vary systematically
with Z, nor should these quantities depend on the
work function, Fermi energy, crystal structure, or
density of free electrons. This is precisely the surprising
result that has been obtained by Aarset? and many
earlier investigators working with heavier ions and at
lower energies.! The physical explanation lies in the
proportionality between the cross sections for secondary
formation and absorption. This, in turn, follows directly
from the assumption that both the formation and
escape processes can be treated essentially as if the
atoms were free.

Not only does Eq. (22) account qualitatively for the
absence of any strong material dependence of A, but it
also leads to the right order of magnitude for the yield
and its variation with ion velocity. Substituting z;=1,
T4=0.5, Ey=25 ev, and o/=0.23 obtained from
Goldschmidt and Dember’s experimental value for

25 Aarset, Cloud, and Trump, J. Appl. Phys. 25, 1365 (1954).
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L,=10.8X 1078 cm in the case of Pt,?® Eq. (22) reduces
to
A=38V . (23)

for the case of protons. This equation is plotted as
Curve 1 in Fig. 4, together with the data of Hill,
Buechner, Clark, and Fisk,” and of Aarset, Cloud, and
Trump.® Despite the cursory nature of the approxi-
mations involved in the derivation of Bohr’s expression
for the energy loss, and the uncertainty in the precise
values of E, and o/, the agreement with the data is
surprisingly good. It is seen that the approximate ex-
pression overestimates the yield somewhat, but that it
fits the trend of the data rather well at intermediate
energies, the observed yield decreasing somewhat more
rapidly than according to E—# at higher energies. The
deviation at high and low energies is not surprising,
since the inverse half-power law of Bohr’s expression
[Eq. (6)] is a good approximation to the actual loga-
rithmic form of Eq. (4) only over a limited range. To
fit a power law to the logarithmic expression at higher
energies, the exponent would have to be increased to
0.7, in agreement with the trend of the experimental
data above one Mev.

It is therefore to be expected that the use of the
logarithmic form of the expression for the energy loss
will give a better fit both at the low energies, where the
logarithmic term results in the occurrence of a maximum
in the yield, and at the high energies, where the yield
drops more rapidly than predicted by the half-power
approximation. This is confirmed by Curve 2 in Fig. 4,
using the values of (dE;/dx)u as calculated for alumi-
num according to Eq. (4).%

Examination of this plot reveals that the high-energy
data of Aarset ef al.! are very closely represented by
Curve 2 both as to absolute value and dependence on
energy. As expected, at low energies the theoretical
Sr- x Mg 12 Aarset
® Al 13 Aorset
aAL 13 Hill
0Fe 26 Aarset
6 Ni 28 Aorset
oCu 29 Hill
oMo 42 Hill
A Au 79 Aarset

vPb 82 Aarset
vPb 82 Hill

ES
ook

Curve |

! ! ! ]
] 2

R -
E- Proton Energy in Mev
F16. 4. Secondary electron yield A as a function of proton energy.
Curve 1, Eq. (21); curve 2, Eq. (17) [using Eq. (4)] with F(v;) =0;
curve 3, Eq. (17) [using Eq. (4)] with F(z;) given by Eq. (18a).

26 H. Goldschmidt and H, Dember, Z. tech. Phys. 7, 137 (1926).

27 Hill, Buechner, Clark, and Fisk, Phys. Rev. 55, 463 (1939).

28 For Al, [ has been determined accurately by stopping-power
measurements as equal to 150 ev (see reference 4, p. 203). All
other constants are the same as those used for Curve 1.



SECONDARY ELECTRON EMISSION BY HIGH-SPEED IONS 7

curve shows a maximum in the region where the data
points level off. However, since Curve 2 is calculated
for F(v;)=0, it drops increasingly below the experi-
mental points at low energies. When E; has been
reduced to 100 kev, the maximum energy of the
knock-on electrons (equal to 4E,;) becomes 218 ev so
that most of these electrons will have effective ranges
of the order of L, causing F (v;) to approach unity. The
experimental values in this energy range should there-
fore be just about twice what the high-energy theory
predicts, and this is, in fact, seen to be the case. By
using the approximate relation for F(v;) [Eq. (18a)],
the theoretical curve for Al (Curve 3) is seen to follow
the experimental values within the estimated accuracy
of the experimental data. The tendency for the data
points representing Pb to lie above those for the lighter
elements reflects the effect of backscattered & rays for
which the more accurate expression for F(v;) must be
used.

Although Curves 2 and 3 were calculated for the case
of aluminum, the data for the heavier elements also
appear to be surprisingly well reproduced, despite the
fact that one might expect differences in the mean
excitation potential I to shift the location of the
maximum in the yield curve in this region. The reason
for the absence of such a shift lies in the nature of the
expression for (dE;/dx)s. As pointed out in the dis-
cussion of Egs. (4) and (5) above, only those atomic
shells for which the logarithmic term remains positive
can make a contribution to the energy loss. It follows
that the mean excitation potential at low energies must
be determined by averaging only over the outer shells
of heavy atoms. Since the outer-shell binding energies
of all elements are of the same order of magnitude, the
effective mean excitation potentials of heavy elements at
low energies will be of the same order as for a light
element such as aluminum. As a result, the maximum
in (dE./dx)n occurs at roughly the same energy for all
substances.

In view of the close agreement between the theo-
retically predicted and experimentally observed values
of the yield, it becomes possible to test the internal
consistency of the physical model on which the present
theory is based. Thus, the value of 4~0.60 in Eq. (8)
hinges on the condition that 7, 5. This represents an
upper limit to 7., which, in turn, provides a rough
estimate for the maximum value of « for a given size
of ¢ by virtue of the relation a=da’(%./3)* Taking
71.=5 and &’=0.23 as obtained above gives a=0.3,
approximately the same for all elements. Physically,
this means that the collision cross section for secondaries
is comparable in size to the “core” of filled shells, con-
firming the assumption that the scattering of seconda-
ries in metals is primarily determined by atomic proper-
ties, in close similarity to the scattering of slow electrons
in a gas.

It is also possible to test the conclusion that the
surface transmission coefficient 7" must be of the

order of 0.8-0.9, independent of work function or
Fermi energy. Thus, if it had been assumed that 7 is
determined by the simple picture of reflection at a
uniform potential barrier having the full height of the
work function ¢ plus Fermi energy Er,” then 7° would
be given by

T=1—[(¢+Er)/E,], (24)

where E,/ is the energy of the secondary electron
measured relative to the bottom of the conduction
band. Using 6-8 ev for the energy of the slow electrons
outside the metal together with typical values of ¢
and Er, one obtains 0.15-0.20. In order to reach agree-
ment with the magnitude of the observed yield without
changing the shape of the yield curve, one only has the
quantities 4, E, and o’ available for adjustment. The
maximum value that 4 could possibly have is unity,
so that it could account at most for a factor of 1.6, but
not for the required factor of 5-6. The quantity o' is
limited by photoelectric?® and secondary emission®
experiments to magnitudes differing by no more than a
factor of two from the value used to that only E
remains. To obtain agreement, Ey, would have to be
reduced to a value of the order of 5 ev. This is clearly
much too small since it is even less than the observed
values of the average energy of secondary electrons, in
addition to which at least an amount of energy equal to
the work function has to be supplied by the primary
particle. The quantity K, must necessarily be larger
than the sum of these two quantities, not only because
many electrons come from levels below the top of the
valence band, but also because a large amount of
energy is required to provide for the unavoidable
““wastage” in excitation to bound states. On the other
hand, a value of E of the order of 20-30 ev as observed
for gases is consistent with the whole physical picture
underlying the present approach, in which the for-
mation process is taken to be essentially the same as in
a free atom.

The conclusion, therefore, seems to be inescapable
that 7 cannot be determined by the magnitude of the
total work function but only by the component due to
the surface dipole layer, whose magnitude is small
compared to the average energy of the secondaries.?

# See, for instance, D. E. Wooldridge, Phys. Rev. 56, 562 (1939) ;
P. A. Wolff, Phys. Rev. 95, 56 (1954) ; and E. M. Baroody, Phys.
Rev. 78, 780 (1950).

(1305% J. Sternglass and M. M. Wachtel, Phys. Rev. 99, 646(A)

955).

3 This conclusion finds added support in recent theoretical
calculations of Auger ejection of electrons by slow ions impinging
on tungsten [H. D. Hagstrum, Phys. Rev. 96, 336 (1954)7. It
is found that if 7 is calculated according to Eq. (23), using an
isotropic distribution of initial directions and a barrier of height
¢+ Ep, the calculated yields fall below the observed values by
factors of two to five. This discrepancy may be removed if, as
suggested in the present paper, 7 is calculated according to Eq.
(12) using ®p=1.5 ev, which is of the order of observed differences
in work functions between different crystal faces of tungsten. A
mlc:re detailed discussion of this problem will be presented else-
where.
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VII. ENERGY DISTRIBUTION OF SECONDARIES

It remains to examine briefly the theoretical pre-
dictions for other aspects of the phenomenon. As to the
energy distribution of the secondaries, because the
formation and absorption process is closely similar in
all metals, it should have essentially the same form in
all cases, independent of work function or density of
conduction electrons. Furthermore, since according to
the underlying physical picture discussed in Sec. IV,
0sc is not a very rapid function of secondary energy,
one is dealing with a process that tends to preserve
substantially the original energy distribution as deter-
mined by the formation process. The fact that the
value of L, that fits the yield data under proton
bombardment is of the same order of magnitude as for
the somewhat slower photoelectrons measured by
Goldschmidt and Dember?® (~0.3-1.3 ev) suggests
that the cross section for inelastic collisions is essentially
constant between ~0.3—-10 ev. Accordingly, it is to be
expected that the form of the energy distribution curves,
at least above 10 ev, is very closely equal to the theo-
retical shape predicted for free atoms.” This is confirmed
by comparison with data for gases,® where the energy
distribution is almost completely unaffected by the
escape process because of the small probability that a
secondary will collide with another atom before being
collected.

The similarity of the energy distribution for all
metals has, in fact, been noted by many investi-
gators.'?":3 Comparison with data obtained by Ishino®
on air and H; in the analogous case of emission under
electron bombardment shows the same shape and
absolute value of the spectral distribution for metals
and gases below about 10-15 ev.® Above this energy,
the number of secondary electrons emitted by metals
drops sharply below that in gases, indicating a pro-
nounced increase in the absorption cross section for
secondaries of higher energies as interactions with the
more heavily populated filled shells become important.

VIII. DEPENDENCE ON ANGLE OF INCIDENCE

Still another aspect of secondary emission under ion
bombardment that must be explained by the present
theory is the dependence of A on angle of incidence of
the ions. Since the heavy particles possess ranges much
greater than L,, it is evident that changing this angle
simply increases the length of the ion’s track within the
“escape zone.” Accordingly, A(6) must be given in terms
of the yield at normal incidence Aq by the relation

A(6)= Ao sech. (25)

This is in fact the form of A(6) that has been found to
hold empirically .+

32 M. Ishino, Phil. Mag. 32, 202 (1916).

31, H. Linford, Phys. Rev. 47, 279 (1935).

# . J. Sternglass, thesis, Cornell University, September 1953
(unpublished) ; Phys. Rev. 93, 929(A) (1954).

3 J. S. Allen, Phys. Rev. 55, 336 (1939).
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IX. TEMPERATURE DEPENDENCE

The present theory also sheds some light on another
puzzling feature of the secondary electron emission
phenomenon, namely its dependence on temperature.
Already early investigations with low-energy ions
(1-2 kev) by Oliphant?¢ and Moon* appeared to show
that the yield from Ni under He bombardment de-
creased with increasing temperature. A similar decrease
was reported by Linford® using 0.7-2.35-Mev Hg ions
on targets of Mo and W heated to an orange tempera-
ture, the yield dropping to 50-759, of its value for cold
targets and returning nearly to its full value upon
cooling. Allen,® using protons between 72 and 212 kev
on C, Cu, Ni, and Pt, also found a reversible decrease
of about 509, when measuring the yield at a “bright
red heat.” The following tentative explanation of
these effects suggests itself on the basis of the present
treatment.

The temperature cannot reasonably be expected to
influence the very energetic formation process, so that
the most likely effect on the yield appears to be through
a change in the escape probability. According to the
foregoing discussion, the yield should not be strongly
affected by changes in the surface dipole barrier. Since
N does not appear in the expression for the yield, a
change in density due to thermal expansion cannot by
itself account for a temperature effect, so that there
remains only a possible temperature dependence of L,.
Now an increase in temperature results in increased
vibrations of the atoms about their equilibrium posi-
tions which should reduce L, in analogy to the case of
electrical conductivity, thereby decreasing the yield
according to Eq. (15).

A rough quantitative test of this hypothesis may
therefore be made by assuming that L, varies with the
absolute temperature 7' in a similar manner to the
electrical conductivity, i.e.,

Ly(Ty) 146T: A(Ty)
L(Ty) 14+8T: A(T»)

Substituting room temperature for 7 and 1000° K
for T'» as the temperature corresponding to “bright red
heat,” and using the observed ratio of the yields
A(T3)/A(T1)=0.5, one obtains 8~2.5X 10~3, This is of
the same order of magnitude as the temperature coef-
ficient of resistivity for most metals, and small enough
to be consistent with the dominant importance of
inelastic collision processes.

The present theory therefore suggests that the
observed temperature effect in the case of secondary
emission under positive-ion bombardment is a real
effect, attributable to a decrease in secondary mean free
path, and that it is not a spurious effect due to changes
in surface conditions.?

3 M. L. Oliphant, Proc. Roy. Soc. (London) A127, 373 (1930).

37 P. B. Moon, Proc. Cambridge Phil. Soc. 27, 570 (1931).

_ 3 This conclusion is corroborated by recent observations of a
similar decrease in yield with increasing temperature in the case

(26)
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X. EFFECTS OF GAS ADSORPTION AND OXIDE
FORMATION ON THE YIELD

Two different cases must be distinguished in dis-
cussing surface effects in metals, namely the presence
of very thin and very thick layers of gas or oxide. In
the former case, the large majority of secondaries are
formed in the bulk of the metal, so that the principal
effect of the adsorbed gases will be to alter the surface
transmission coefficient 7. According to the discussion of
this quantity in Sec. IV, this could come about through
a change in the surface dipole moment potentials &p
of Eq. (12). In view of the relatively large energy of
the secondaries, Eq. (12) indicates that any such effects
will be small. Thus, increasing ®p from 0.5 ev to 1.0 ev,
or by 1009, causes the value of 7 to decrease by only
12 9,. This explains why such surprisingly good agree-
ment exists between the yields measured for high
proton velocities by different authors, despite the
presence of thin layers of adsorbed gases unavoidable
under the vacuum conditions employed.

In contrast, when heavy layers of gases or thick
oxides are present or when ion velocities are low, a
large number of secondaries will be formed in the
surface layer. The dominant effects will then be due to
the combined effect of a change in the number of
secondaries formed and their ability to diffuse to the
surface. The number formed per unit distance may be
larger or smaller than for the pure metal, depending on
the atomic stopping power of the adsorbed gas or oxide
relative to that of the metallic base. Thus, a particu-
larly strong effect is to be expected in the case of low-Z
metals, such as Be and Li, when these metals are
oxidized, the stopping power of oxygen exceeding that
of these elements. As to the diffusion length for second-
aries L,, it is known experimentally to be orders of
magnitude larger in insulators than in metals.30:®
The explanation is to be found in the inability of very
low-energy electrons in insulators to make inelastic
collisions with the bound electrons.®® According to Eq.
(17), the yield from insulators should therefore be much
larger than from metals of comparable stopping power.
Such an increase in yield has in fact been observed in
all cases where thick oxides were allowed to form3* or
where heavy layers of adsorbed gases were known to
exist prior to outgassing.!'?¢ For freshly formed alkali
metal® and beryllium®® layers, the yield was found to
increase with time towards a limiting value many times
the original yield. On the other hand, for the less
reactive metals where all but a few atomic layers can
be removed easily, it was found that the yield decreases

of electron emission under electron bombardment for C, Pt, and
Ta [E. J. Sternglass, Phys. Rev. 90, 380(A) (1953)7]; and for Ge
[J. B. Johnson and K. G. McKay, Phys. Rev. 93, 668 (1954)]; as
well as for the yield of photoelectrons ejected from metals by
ultraviolet quanta [Walker, Wainfan, and Weissler, Phys. Rev.
?8, 56§(A) (1955) and H. E. Hinteregger, Phys. Rev. 96, 538
1954)].
3 Knoll, Hachenberg, and Randmer, Z. Physik 122, 137 (1944).
© H. A. Bethe, Phys. Rev. 59, 940(A) (1941).
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Fi16. 5. Dependence of secondary electron yield on ion mass and
charge, illustrating the scaling property according to ion velocity.
Curves for heavier ions calculated from theoretical curve for
protons (curve 3, Fig. 4). Data for protons (V) and helium ions
5 8) taken from Hill ef al. (reference 27) and Aarset ef al. (reference

towards that of a clean metal surface with time of
bombardment or outgassing.127

XI. MASS AND CHARGE DEPENDENCE OF YIELD

As an inspection of Eq. (20) for the yield shows, the-
mass of the ion enters only by determining E,, or the
velocity of the ion for a given energy. The yield, just as
(dE/dx)n, is therefore only a function of the velocity
and the charge of the particle, allowing one to reduce
all yield curves to a single universal curve by a simple
scaling process.*

This particular consequence of the present theory
clarifies at once a troublesome discrepancy in the
observed effect of ion mass on yield. A number of
investigators had found that at low ion energies (<50
kev) the yield varies oppositely to the ionic mass,2-%
whereas at high energies, the reverse has been ob-
served.”” This is, however, exactly what the scaling
property implies for the two regions below and above
the peak in the yield curves. This may be seen from
Fig. 5, where the theoretical yield curves have been
drawn for protons, deuterons, and « particles incident
on aluminum, making use of the scaling property to
derive the curves for the heavier ions from the proton
curve (Curve 3, Fig. 4). The experimental points for
protons and a particles are those obtained by Hill*” and
Aarset.? The data for « particles were obtained using
singly charged helium ions. The fact that the maximum
yield for these ions attains almost the value expected
for a doubly charged o particle must be interpreted as
indicating that the ion is stripped of its remaining
electron within a distance from the surface comparable
with L. It also illustrates that measurements of the

“1 That a scaling process according to the ionic velocity and not
according to ion momentum or energy is required to bring the
yields for isotopic ions into coincidence has been shown experi-
mentally by W. Ploch [Z. Physik 130, 174 (1951)7].

“ M. Healea, Phys. Rev. 55, 984 (1939); M. Healea and C.
Houtermans, Phys. Rev. 58, 608 (1940).

(1;35 %igatsberger, Demorest, and Nier, J. Appl. Phys. 25, 883

“ Barnett, Evans, and Stier, Rev. Sci. Instr. 25, 1112 (1954).
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secondary electron yield on the entrance and exit sides
of thin foils may prove useful in studying the phe-
nomenon of electron capture and loss by moving ions in
solids.

XII. SUMMARY AND CONCLUSIONS

The principal features of the mechanism of secondary
electron emission under fast-ion bombardment arrived
at may be summarized as follows:

1. The yield is directly proportional to the number
of low-energy electrons formed by the incident particle
in a thin layer near the surface of a solid. The ionization
process is essentially the same as in a gas, and for a
given material it is determined only by the velocity and
effective charge of the ion.

2. The width of the zone from which slow secondaries
can escape is determined by the diffusion length of
these electrons in the material. For metals, this is
only of the order of a few atomic layers, due to the
possibility of large energy losses per collision in inelastic
processes. In insulators, where slow electrons can make
only elastic collisions, the diffusion length may be
orders of magnitude larger.

3. The cross section for scattering and absorption of
secondary electrons is approximately proportional to
the cross section for secondary formation by the
incident particle. It shows no dependence on the
number of conduction electrons or other bulk properties
of the metal.

4. The majority of all secondaries arriving at the
surface are able to escape. The work function appears
to play a role in the escape process only insofar as it
involves the part due to the dipole layer formed by the
asymmetric electron cloud of the surface atoms. The
potential step to which this asymmetry gives rise is
small compared to the energy of the secondaries so that
differences in work function have a negligible effect on
the yield. Owing to the proportionality between the
inelastic cross sections for the incident particles and
the secondaries, the yield is essentially the same for all
metals at a given ion velocity and charge.

It is of interest to consider briefly the most important
implications of these results. Point 1 indicates that the
yield of secondary electrons may be used directly to
study the ionization or stopping process of all types of
fast charged particles in matter. The only condition is
that they pass through the surface zone without appre-
ciable scattering or energy loss.®® The ‘“‘escape zone”
near the surface in effect acts as an extremely thin,
shallow ‘“ionization chamber’” from which a fixed
fraction of all ejected electrons is collected. Thus,
knowing the mass and velocity of a particle, its effective

45 This condition limits the present treatment to particles that
are heavy compared to the rest mass of the electron, or in the
case of fast electrons, to thin foils for which backscattering may be
neglected. The general case of electrons incident on solids, where
scattering cannot be neglected, has been treated in reference 54
and will form the subject of a separate communication.
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charge may be determined from the secondary yield.
Similarly, either its miass or velocity can be obtained
from the measured yield if the other two quantities
are known. This would appear to have direct application
to such problems as the study of electron capture and
loss processes for heavy ions in solids where the effective
instantaneous charge of the ion is desired.

Point 2 indicates that secondary emission under ion
bombardment may be used to study the motion of
slow electrons in different materials. Knowing the
stopping power of a material from the Bohr-Bethe
theory allows a determination of the diffusion length
for the secondaries directly from the yield. Thus,
secondary electron emission measurements for protons
in the Mev energy range provide a new tool for studying
the diffusion of slow electrons in metals and insulators.

Point 3 indicates that as far as the scattering of
electrons in highly excited states of solids is concerned,
the approximation of simple band or free-electron
theories are not applicable. Instead, the evidence indi-
cates that, as suggested by Slater,*® the interaction of
electrons capable of making inelastic collisions with the
atoms of a solid is determined primarily by the proper-
ties of the free atoms, modified by the proximity of
nearest neighbors.

Point 4 explains the absence of strong work-function
effects in the escape of energetic electrons from solids,
be it secondary electrons produced by fast ions,!*” slow
ions,*” electrons,*®* or hard ultraviolet radiation.® It
emphasizes the fact that the simplified model of a
uniform potential barrier at the surface of a solid equal
to the full work function cannot be used to calculate the
surface transmission coefficient in those cases where
energetic electrons are formed in the interior of a solid
and subsequently escape from the surface. These con-
siderations indicate that secondary electron emission
may become a useful tool not only in investigating the
stopping of fast particles, but also for gaining infor-
mation on the behavior of slow electrons in excited
states of solids.

APPENDIX

The contribution of the fast 6 rays to the yield of
secondaries may be arrived at as follows.

Referring to Fig. 6, the average number of slow
secondaries formed in a layer dx at depth x due to fast
6 rays originating at a depth x=z is given by

1 sdE; @
ang® =T<_> g(x—2z, v,)dz, )
E o Vdz /

where g(x—2, v;) represents the spatial distribution of

46 J. C. Slater, Trans. Faraday Soc. 34, 828 (1938).

47 H. Paetow and W. Walcher, Z. Physik 110, 69 (1938).

4 H. Bruining, reference 3, Sec. 5.3, p. 72.

49 E. J. Sternglass, Phys. Rev. 80, 925 (1950).

% H. E. Hinteregger, Phys. Rev. 96, 538 (1954); H. E. Hinte-
regger and K. Watanabe, J. Opt. Soc. Am. 43, 604 (1953).
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the energy carried away by the 6 rays originating in dz.

The total number of such “tertiary” electrons formed
at depth x is therefore given by the integral

6@ (2,0,) = fw 1< >(2)g(x—z,v)dz (I1)

For the present case, where the rate of energy loss
(dE/dz)s may be taken as constant over the region of
interest, Eq. (II) may be written in the form

@
) :
where the factor

floix)= f g(x—2, v,)dz

Tae (III)

Iv)

is the quantity introduced in the text [Eq. (1b)].

The exact form of the function g(x—3z, v;) cannot be
readily obtained. However, for present purposes, only
the principal features of g(x—32, v;) need to be known in
order to arrive at a good estimate for the magnitude of
f(vi,x) and ‘the form of its dependence on the ion
velocity v;. This can be done by considering the & rays
as diffusing from a plane source located at depth z,
following the general approach used by Bethe, Rose,
and Smith® and Fano.®

Considering first the limiting case of very low atomic
number materials where back diffusion is small, the
8 rays will spend nearly all their energy in the forward
direction from their point of origin. To a good approxi-

51 Bethe, Rose, and Smith, Proc. Am. Phil. Soc. 78, 573 (1938).
5 U. Fano, Phys. Rev. 58, 544 (1940).

mation, one will not be too far wrong by taking for
g(x—2)=g(u) the solution of the diffusion equation for
a plane source:

g(w)=C exp[—u/Ls(v;)] for u>0,
g(u)=0 for u<0,

V)

where C is normalizing constant. Here L;(v;) is the
so-called diffusion length, a function of the -ray velocity
and therefore of »;, which measures the depth of the
region over which the § rays diffuse while losing their
energy. Substitution of Eq. (V) in the expression for
f(v,%) leads to the simple expression

fwiyx)=1—exp(—x/Ls),

applicable to materials of low atomic number Z.

For materials of higher Z, where an appreciable
amount of the energy carried away by the § rays is
carried backwards as a result of back-diffusion, g(u)
may be taken as

g()=C" exp[—u/Ls(v)] for u>0, (VII)
g(u)=C" exp[u/Ls (v5)] (VIII)

Here, diffusion in the backward direction is taken into
account by using the solution of the diffusion equation
with a different diffusion length Z;’ [see Fig. 6(b)].
Since the & rays that find their way back to the plane
from where they originated have lost most of their
initial energy, their velocity will be small, making
Ly’<Ls. To a first approximation, an estimate of an
upper limit to the ratio of L,’ to L; may be obtained
from experimental data on the backscattering of elec-
trons from solids. The ratio of the areas under the
backward and forward portions of g(«) is roughly equal
to that of the energy carried away by the backscattered
electrons to that remaining in the material for electrons
falling on the surface of a solid. Experimental values for
this ratio in the kilovolt region may be calculated from
measured values® of the fraction of backscattered
electrons  and their mean fractional energy % by means
of the expression

Ly'/Ls=Ikn/ (1—kn). (IX)

Experimental values for this ratio range typically
from 0.05 for Al to 0.25 for Au, indicating that the
simple form for f(vi,x) [Eq. (IV)] is adequate for
elements with Z £ 30. For Z larger than this, use of the
more accurate form of g(#) in Eq. (IV) leads to

(VD)

for #<0.

Ly
flou)= 1+ L/ D —esp(—a/ LT+, 0
8
which reduces to Eq. (VI) for (Ls/Ls;)—0. Curves of
f(x,v2) for a few values of Ly’/Ls are shown in Fig. 6(c).
It remains to find an expression for the diffusion
length L;. This may be done by regarding the motion

8 E. J. Sternglass, Phys. Rev. 95, 345 (1954).
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of the & rays as a diffusion process®™ in the material,
following the treatment suggested by Bethe, Rose, and
Smith, and Fano. The diffusion length of the 6 rays is
defined by the relation

Ls= ($Nsahae) . (X1

Here, As: is the transport mean free path given in terms
of the collision mean free path \;, and the mean cosine
of the angle of scattering per collision (cosfs)a,

Nse=Nsc[ 1— (cosbs)a 1. (X11)

The absorption mean free path As, is equal to the actual
range R; of the § rays measured along their track length
s according to the relation

E5=0 dEs
)\5a=R5=f —_—
Es=Es0 (dEa/dS)

In Eq. (XIII), E; is the energy of the §-rays at any
point of their track and Ejo, their initial energy upon
ejection by the ion. The quantities As, and {cosb;) are
also functions of E;, but since they vary slowly with E,
to a first approximation they may be calculated for
E5= Esa.

For the rate of energy loss of the & rays, use may be
made of Bohr’s expression [Eq. (6)]. Because of the
close similarity in the stopping process for light and
heavy particles, this relation requires only a small modi-
fication of the constant multiplying Z* when used for
electrons instead of heavy ions, corresponding to a
factor 2 instead of 4 in the logarithmic term of Eq. (4).
Inserting Eq. (6) in Eq. (XIII) and carrying out the
indicated operation gives

It 2
(Y,
2rN X 4C1Z3\3

The quantity C1=1/V2 has been introduced to modify
Eq. (5) for electrons. Similarly, Eq. (6) for the rate of
energy loss may be used to obtain an estimate for
Nsc(Eso). The relation between \;, and dE;/ds is

__ Y
* (dEs/ds)n

% This calculation is based on the author’s thesis, Cornell Uni-
versity, February 1951 (unpublished).

(XTIT)

(XIV)

s (XV)
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where @ is defined as the mean energy loss per collision
process in the energy range of interest. Inserting Eq.
(XIV) and (XV) in Eq. (XI), making use of Eq.
(XII) and Eq. (11), one obtains for Ls/L,

Ls Io%/X1.6X1071 /7 2 Q 3
*=..___.__(__) (_) Ea. (XVI)
L, 8met 3C1/ \1—{cosb)n

The quantity @ has been shown by Bethe? to be of
the same order of magnitude for all except the lighest
elements and only slowly varying with electron energy.
For nitrogen, the theoretical estimate in the case of
kev electrons is 81 ev. Since @ enters only as the square
root in Eq. (XVI), this value will be adopted as suf-
ficiently representative for all elements. For the mean
angle of scattering in an inelastic collision, experimental
data®® available for gases in the energy region of 100-500
ev indicate that  is of the order of 40°-60° for energy
losses near 80 ev, leading to an estimate for
{Q[1—{cosf)n]'}* between 12 and 18. Adopting a
value of 15 for this quantity, using Ci=1/v2 and
a’'=0.23 as determined in Sec. VI, Eq. (XVI) reduces to

Ls/L~Eso/380, (XVII)

where Es is expressed in electron volts.

The maximum value of L;/L, is that corresponding
to the highest energy that can be transferred to an
electron by a heavy ion, ie., E;p=4E, where
E,= (3mw?). Adopting this value for Ej tends to
make L; somewhat too large to represent the average
0 ray’s penetration, but this is compensated by the fact
that the penetration depth of electrons ejected prefer-
entially in the forward direction is actually somewhat
greater than L, since complete diffusion is reached only
after a distance As; has been traversed. Inserting Ejo
=4E,, into Eq. (XVII), the final estimate for L;/L,
becomes, in round numbers,

Ls ('l)i) / Ls’iEeq/ 100. (XVIII)
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