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current it is reasonable to assume either that several
different types of particles are formed or that the same
type of particle is adsorbed with a binding energy
depending upon the type of adsorption site. On the
basis of either assumption, we may picture the adsorbed
particles as residing in adsorption traps of different
energy depth. As the surface temperature is increased,
those particles in the traps of least depth acquire
sufFicient energy to escape. 4 At higher temperatures the
deeper traps are emptied. Because the desorbed particles
have been shown to be positive ions, the desorbed
particles must exist on the surface as ions or be readily
ionized. If, as seems likely, the adsorbed particles are
ions, the persistent surface potentials observed directly
by Shaw' and I.aznovsky' and indirectly by many
others are readily explained. It is conceivable that ion
desorption may have inQuenced the interpretation of
so-called "Gash filament" measurements which have
been used by many investigators to evaluate vacuum
conditions and to study adsorption of a gas.

4The process assumed here is analogous to the trapping of
electrons in phosphors. The glow curves obtained by warming
certain phosphors after excitation are very similar in appearance
to the ion desorption current curves we have obtained. See, for
example, F. Urbach, Solid Luminescent Materials, edited by G. R.
Fonda and F. Seirz (John Wiley and Sons, Inc. , New York, 1948),
p. 123.' A. E. Shaw, Phys. Rev. 44, 1006 (1933).' W. I aznovsky, Ph.D. thesis, University of Vienna, 1951
(unpublished). A copy of this thesis was kindly loaned to the
writer by Dr. Richard Herzog.

FIG. 1.Ion desorp-
tion current curves
for various positive ",

nitrogen ionbombard-
ing energies. Curves
were obtained by in-
creasing the tung-
sten filament tem-
perature at approxi-
mately 6 centigrade
degrees per second
after bombardment
had ceased. Tem-
peratures shown are
approximate.
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Preparations are now being made to try to detect ion
desorption in other gases and from other surfaces, and
to study the effects described above in more detail.

The writer is indebted to Mr. Donald Horne for
taking most of the data described here.
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Results of a self-consistent field calculation using Slater's average exchange potential are given for atomic
iron. The usual restriction of doubly filled orbitals in closed shells is dropped and orbitals, with the same n
and l quantum numbers but different m, are varied separately. This results in a separate set of radial wave
functions for the two one-electron spin directions. The differences in these functions arise from an exchange
polarization effect produced by the net spin of the Fe atom. Wave functions, one-electron energy parameters,
net spin charge density, and electrostatic potential functions for each spin are given. A comparison is made
between these results and those obtained by the Hartree method. The magnetic form factor found with
these new Fe orbitals is shown to be in good agreement with experiment. The fine-structure splittings are
also evaluated and found not to be in as good agreement as those calculated by the Hartree method. The
hyperfine splitting of the Mn~ ion is estimated using the new orbitals and found to be in much better agree-
ment than estimates based on a limited configuration interaction.

INTRODUCTION

'HE usual formulation of a self-consistent Geld
treatment of an atomic system consists of setting

up a single determinant of one-electron functions each
*The research reported in this document was supported jointly

by the Army, Navy, and Air Force.under contract with the Massa-
chusetts Institute of Technology.

labeled by the quantum numbers e, l, m&, and m, . The
expression for the average energy is varied with re-
spect to these functions, but only orbitals with distinct
e and l designations are varied independently. This is
known as the restricted Hartree-Pock method. '

' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
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The method is restricted in the sense that orbitals
with the same n and / values but with diGerent mi or
m, are forced to have the same radial dependence. It
has been shown' for an atom with net spin that if
orbitals with the same e, l, and no~ values but with
different m, assignments are varied independently, that
the resulting variational equations for orbitals of dif-
ferent m, have a diGerent form. This difference arises
because of the net spin of the atom, there being a
diferent exchange interaction for electrons with m, of
the same sign as the total M, than for electrons with m,
of opposite sign to that of the total 3f,. This eGect is
conveniently described as an exchange polarization, and
the separate variation with regard to the diferent m,
values is known as the unrestricted Hartree-Fock
method.

The unrestricted method as applied here is based on
the use of a single determinant for the total state which
is taken to be in the 3d'4s' configuration. Five of the
six d-electrons are assigned 0. spin and each assumed to
have the same radial dependence. The remaining d-

electron is given P spin, an mi value of 2 appropriate to
the 'D4 ground state of Fe, and its radial dependence is
independent of the d-electrons with 0. spin. Since the
radial functions now have a parametric spin dependence,
the single determinant is no longer an eigenfunction of
S'. If the orbitals of the same e, 1, and nsi but di6'erent

m, are nearly the same, the determinant will be a good
approximation to such an eigenfunction. It is further
to be noted that the exchange-polarization effect per-
sists even when one carries through the full spin-
degeneracy problem such that each spatial function has
no particular spin association. For a more detailed
explanation of this point the reader is referred to
reference 2.

The primary purpose of the calculation reported here
is to investigate an atom in which a large exchange
polarization is expected and then to determine the
physical consequences of this effect. To this end, the
fine-structure splitting and the magnetic form factor of
Fe have been evaluated. Since Fe has no nuclear mag-
netic moment, no comparison with hyperfine splittings
is possible. However, using the one-electron functions
found here, it is possible to approximate the charge
density for each spin about an Mn~ ion and to esti-
mate the hyperfine splitting. This is of particular
interest as the Mn++ ion should show no hyperfine
splitting if it were in the 3d' configuration as described
by the restricted Hartree-Pock method. Actually a large
splitting is observed, and attempts to describe this
sphtting by limited configuration interaction calcula-
tions have been distinctly unsuccessful. ' It has been
pointed out in reference 2 that the eGect of exchange
polarization would lead to a nonvanishing spin density
at the nucleus due to the s-electron orbitals with oppo-

2 G. %. Pratt, Jr., Phys. Rev. 102, 1303 (1956).
&Abragam, Horowitz, and Pryce, Proc. Roy. Soc. (I.ondon)

A230, 169 (1955).

site spin association. The value obtained for this split-
ting by using the wave functions of the present calcula-
tion is in relatively good agreement with experiment.

METHOD OF SOLUTION

The total charge density of the chosen configuration
is not spherically symmetric due to the presence of the
single d-electron of P spin. Reduction to a central-6eld
problem was accomplished by neglecting the angular
dependence of this d-electron wave function. By the
use of Slater's averaged exchange potential' the un-
restricted Hartree-Fock equations are further reduced
to a set of difterential equations each containing but a
single one-electron wave function explicitly and in
which there is one potential in which all electrons of o.

spin are assumed to move and another potential for
electrons of P spin.

Fock's equations are of the form'

I
~~*(r2)N~(rs)

H&u;(o, rr)+ g e')
. k=1 r12

3 N(~, r,) ~ s

3e' —— P us*(rr)np(rr)
4s. N(r&)

I;(o,r,) =E,~;(o,rr)

The equation for I'„,&, ,(r) in atomic units is

d'P„), (r)
i

2Z„(r) s(o,r) l(l+1)
+ 'i Enln+ +

dr' ( r r

The quantity 2Z„(r) is r times the ordinary electro-
static potential set up by the nucleus of charge Z and
all of the electrons. It is given by

2Z~(r) =2Z

I'
g '(r')dr'+r ' dr' . (4)

electrons

The quantity s(o,r) of (3) is r times the averaged ex-
change potential for spin |7 and is expressed in atomic

J. C. Slater, Phys. Rev. 81, 385 (1951).
~ G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952}.

The term H& is the kinetic energy and the electrostatic
energy arising from the electron-nucleus interaction of
an electron at rr. The factor N(o, rr)/N(r, ) is the frac-
tion of electrons of spin 0 at r~.

Equation (1) is reduced to a radial differential equa-
tion in the standard way for a central-field problem by
setting

P„,i, .(r)I(o,r) = I'i" (e,y).
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units in terms of the radial functions as

3 $(o,r) e

s(o,r) =6 rP„(.2(r)
!16x' X(r) as

electrons

TABLE I.The is radial wave functions as determined by the Slater
approximation and by the Hartree method (labeled MG).

r P1e& P1eP Pi MG

0.000 0.000 0.000 0.000
0.002 0.549 0.549 0.495
0.004 1.047 1.048 0.939
0.006 1.495 1.495 1.337
0.008 1.895 1.895 1.693
0.010 2.251 2.252 2.009
0.012 2.568 2.568 2.289
0.014 2.848 2.848 2.536
0.016 3.094 3.094 2.752
0.018 3.310 3.310 2.940
0.020 3.486 3.486 3.102

0.025 3.731 3.731 3.409
0.030 3.853 3.853 3.596
0.035 3.880 3.880 3.689
0.040 3.836 3.836 3.708

0.050 3.605 3.605 3.588
0.060 3.266 3.265 3336
0.070 2.885 2.884 3.016
0.080 2.502 2.501 2.672
0.090 2.139 2.139 2.332
0.100 1.810 1.810 2.012

r P1e& PieP P1eMG

0.120 1.264 1.263 1.457
0.140 0.861 0.861 1.026
0.160 0.577 0.577 0.709
0.180 0.381 0.381 0.485
0.200 0.250 0.249 0.326
0.220 0.162 0.162 0.219
0.240 0.105 0.104 0.145
0.260 0.067 0.067 0.095
0.280 0.043 0.042 0.062
0.300 0.027 0.027 0.040

0.350 0.008 0.007 0.015
0.400 0.002 0.000 0.005

6 M. F. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938).

The quantities 2Z~(r) and s(o,r) are conveniently com-
bined to define the function W(o,r) as

W(o,r) =2Z„(r)+s(o,r). (6)

Self-consistency is determined with respect to the
W(o, r) function.

The problem is solved by first estimating the initial
Wo(o, r) function and using this in (3) to determine the
corresponding set of one-electron functions P„~,(r).
Using this set, the final Wi(o, r) function is constructed
for each spin by (6) and compared with the initial

We(o, r). This is .repeated until satisfactory agreement
is found between the initial and final W(o,r) functions.
Equation (3) was integrated on the International
Business Machine 604 Calculating Punch using the
Noumerov method described in reference 5.

The We(o, r) function was estimated in the following

way. The 2Z„(r) part was taken to be that determined

by a previous self-consistent field investigation of Fe
using the Hartree method by Manning and Goldberg. '
In order to obtain the remaining s(o,r) contribution to
Wo(o, r), the quantity X(o,r)/X(r) and the local elec-
tron density are required. The local density was calcu-
lated from reference 6, and for the first cycle E(o,r)/X (r)
was taken as 15/26 for o =n and 11/26 for o=P.

The self-consistent procedure is apt not to converge
if the Wi(o, r) function is used directly in (1) to deter-
mine a new set of P„,~, ,(r) functions. Therefore, a

TABLE II. The 2s radial wave functions as determined by the
Siater approximation and by the Hartree method (labeied MG).

r

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0.120
0.140
0.160
0.180
0.200

P2e& P2eP P2eMG

0.000
0.348
0.608
0.792
0.911
0.975
0.995
0.978
0.930

0.764
0.535
0.270-0.008-0.287—0.556

—1.036-1.421—1.705-1.893-2.000

0.000
:0.349
0.609
0.792
0.912
0.976
0.996
0.978
0.931

0.764
0.535
0.270-0.009—0.288—0.556

—1.037—1.422—1.706—1.895—2.000

0.000
0.340
0.594
0.774
0.893
0.959
0.982
0.968
0.925

0.769
0.551
0.298
0.029—0.242—0.504

—0.978-1.362—1.649—1.846—2.962

r P2ea PteP P,PrG

0.220
0.240
0.260
0.280
0.300
0.350
0.400
0.450
0.500
0.550
.0.600

0.700
0.800
0.900
1.000
1.100
2.200
2.300
1.400

1.600

—2.038—2.022—1.966—1.880—1.775—1.470—1.163—0.892—0.668—0.491—0.357

—0.182—0.089—0.041—0.014—0.000

—2.039—2.024—1.967—1.881—1.775—1.469—1.161—0.889—0.666-0.489—0.355

—0.181—0.088—0.040—0.024—0.000

—2.021—2.008-1.963-1.888-1.791—1.502-1.201—0.931—0.701-0.521-0.379

—0.195-0.174-0.048-0.023—0.011—0.005-0.003—0.002

0.000

TABLE III. The 2p radial wave functions as determined by the
Slater approximation and by the Hartree method (labeied MG).

r P2J,~ P2pp P2pMG

0.000 0.000 0.000 0.000
0.005 0.013 0.013 0.012
0.010 0.044 0.047 0.045
0.015 0.099 0.099 0.095
0.020 0.165 0.165 0.158
0.025 0.242 0.242 0.232
0.030 0.327 0.328 0.314
0.035 0.418 0.419 0.402
0.040 0.513 0.514 0.494

0.050 0.709 0.710 0.683
0.060 0.903 0.904 0.872
0.070 1.088 1.089 1.053
0.080 1.260 1.261 1.222
0.090 1.416 1.417 1.376
0.100 1.553 1.554 1.512

0.120 1.770 1.771 1.729
0.140 1.914 1.915 1.876
0.160 1.992 1.993 1.958
0;180 2.014 2.015 1.987
0.200 1.992 1.993 1.972

r P2y Ps~P P2pMG

0.220 1.935 1.936 1.924
0.240 1.854 1.854 1.849
0.260 1.754 1.755 1.758
0.280 1.644 1.644 1.654
0.300 1.528 1.527 1.542
0.350 1.236 1.234 1.259
0.400 0.968 0.966 0.995
0.450 0.741 0.739 0.767
0.500 0.558 0.556 0.581
0.550 0.414 0.412 0.433
0,600 0.304 0.302 0.319

0.700 0.160 0.159 0.168
0.800 0.082 0.080 0.151
0.900 0.041 0.038 0.042
1.000 0.020 0.014 0.019
1.100 0.008 0.000 0.009
1.200 0,000 0.000 0.004
1.300 0.001
1.400 0.000

potential W2(o,r) intermediate between We(o, r) and.
Wi(o, r) was employed in the second cycle. There being
no criterion for selecting W2(o,r), an arbitrary choice of

Wr(o, r) =-', {Wo(o,r)+Wi(o, r))

was made. The result of the second cycle is a new set of
radial functions from which the potential W~(o, r) is
found.

After completing the second cycle, one has sufhcient
information, i.e., W, (o.,r) with i =0, 1, 2, 3, to apply the
interpolation method described in reference 5 to 6nd
the starting potential W4(o, r) for the third cycle. This
interpolation procedure was very successful in the case
of Cu+ and proved to be so in the present case. The
potential Ws(o,r) found from the third cycle was
satisfactorily consistent with W4(o,r). The radial wave
functions for each spin found in the third cycle were
taken as final.



998 J. H. WOOD AND G. W. PRATT, JR.
TABLE IV. The 3s radial wave functions as determined by the

Slater approximation and by the Hartree method (labeled MG).
a sphere about an electron which is at r which contains
one electronic charge. Thus

P3,a P3sP P3,MG P3sa P3sP P3sMG

Q.OOO
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300

0.000
0.133
0.232
0.302
0.347
0.371
0.377
0.369
0.348

0.279
0.186
0.080—0.031—0.141—0.245

—0.424-0.554—0.634—0.664—0.652—0.603-0.525—0.425—0.310—0.186

0.000
0.132
0.230
0.299
0.343
0.366
0.372
0.364
0.344

0.276
0.184
0.079-0.031—0.140—0.242

—0.419-0.548—0.626-0.656—0.644—0.595-0.518—0.420—0.306—0.183

Q.OOO

0.130
0.227
0.295
0.340
0.364
0.371
0.365
0.346

0.282
0.195
0.093-0.014—0.120—0.221

—0.399—0.532—0.617-0.657—0.655—0.618—0.553—0,466—0.362—0.247

0.350
0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600

0.142
0.453
0.719
0.928
1.080
1.179

1.247
1.198
1.084
0.943
0.798
0.662
0.542
0.438

0.279
0.173
0.106
0.063
0.036
0.018
0.000
0.000

0.141
0.448
0.711
0.919
1.070
1.169

1.240
1.194
1.085
0.948
0.806
0.672
0.553
0.450

0,290
0.183
0.112
0.067
0,036
0.0i 5
0.008
0.000

—0.063
0,367
0.634
0.850
1.013
1.125

1,221
1,287
1.103
0.977
0.841
0.710
0.578
0.487

0.321
0.207
0,131
0.082
0,052
0.032
0.019
0.012
0.007
0.005
0.003

TABLE V. The 3p radial wave functions as determined by the
Slater approximation and by the Hartree method (labeled MG).

where p(o,r) is the charge density of electrons of spin
o. at r. The radius of the exchange hole is given in
Fig. 1 as a function of r and for each spin. In Fig. 2 the
net spin density p(u, r) p(p,—r) is plotted as a function
of r.

The degree of self-consistency is shown in Table I.
It is seen to be quite high, although better for the O.-spin
case than for the p-spin case. Just as was found in the
Cu+ calculation, the one-electron energies, given in
Table VIII, lie rather close to those given by the Hartree
calculation except for the innermost and outermost
electrons. In every case the E„~value associated with n
spin is lower than that associated with P spin. This is
of course due to the difference in exchange interactions.
The wave functions as found by the present method are
all pulled in toward the nucleus relative to the Manning
and Goldberg Hartree solution. The eGect of exchange
polarization is appreciable only in the 3d and 4s
functions.

P3pa P3pP P3pMG P3pa pg„p p3„MG
MAGNETIC FORM FACTOR

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300
0.350

0.000
0.005
0.018
0.037
0.062
0.091
0.123
0.157
0.192

0.264
0.334
0.399
0.457
0.507
0.548

0.602
0.620
0.604
0.560
0.493
0.408
0.310
0.202
0.089—0.025-0.305

0.000
0.005
0.017
0.037
0.061
0.090
0.121
0.154
0.189

0.259
0.328
0.392
0.450
0.499
0.539

0.593
0.610
0.594
0.551
0.485
0.401
0.304
0.198
0.088—0.025—0.301

0.000
0.004
0.016
0.035
0.058
0.085
0.115
0.146
0.180

0.248
0.315
0.378
0.435
0.484
0.526

0.584
0.608
0.601
0.568
0.512
0.439
0.352
0.256
0.154
0.048-0.217

0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000
4.500

—0.556—0.765—0.928—1.046—1.124

—1.181—1.146-1.058—0.945—0.825—0.707—0.599—0.502

—0.345-0.232—0.152-0.096-0.056—0.026—0.015—0.008-0.002—0.000

—0.548—0.754—0.915—1.032—1.110

-1.170—1.139-1.057—0.949—0,833-0,719-0.613-0.518

—0.361—0.246—0.164—0.105—0.062-0.028—0.016-0.007-0.000

—0.462-0.671—0.840—0.967—1.056

—1.137—1.200—1.061—0.966—0,859—0.751—0.641—0.563

—0.398—0.280—0.194—0.133—0.091—0.061—0.041—0.028—0.019—0.012—0.008—0.005-0.004—0.001

NUMERICAL RESULTS

The direct results of the calculation are given in
Tables I through IX. In Tables I through VII the
normalized radial wave functions for each spin associa-
tion are given, as well as the results of Manning and
Goldberg. ' Table VIII lists the one-electron energies
for both spins as well as those found by the Hartree
method. In Table IX the values of W4(o, r) and Ws(o, r)
for each spin are given. The degree of self-consistency
can be seen by comparing these initial and final
potentials.

The applicability of the free-electron model for the
exchange charge density requires that the potential
vary but little over the radius of the exchange hole.
As shown by Slater, ' this radius rs(o,r) is the radius of.

TABLE VI. The 3d radial wave functions as determined by the
Slater approximation and by the Hartree method (labeled MG).

r P3da PgdP P3dMG

0.000 0.000 0.000 0.000
0.005 0.000 0.000 0.000
0.010 0.000 0.000 0.000
0.015 0.000 0.000 0.000
0.020 0.001 0.001 0.001
0,025 0.002 0.002 0.002
0.030 0.004 0.003 0.003
0.035 0.006 0.005 0.004
0.040 0.008 0.007 0.005

0.050 0.014 0.013 0.010
0.060 0.023 0.021 0.018
0.070 0.033 0.031 0.025
0.080 0.046 0.043 0.035
0.090 0.061 0.057 0.047
0.100 0.078 0.073 0.059

0.120 0.116 0.109 0.089
0.140 0.160 0.150 0.124
0.160 0.209 0.196 0.162
0.180 0.260 0.244 0.203
0.200 0.313 0.293 0.246
0.220 0.367 0.344 0.290
0.240 0.420 0.394 0.334
0.260 0.473 0.443 0.378
0,280 0.523 0.490 0.421
0.300 0.572 0.536 0.464
0.350 0.683 0.640 0.562
0.400 0.775 0.727 0.647
0.450 0.849 0.797 0.717
0.500 0.905 0.851 0.773
0.550 0.944 0.889 0.814
0.600 0.969 0.914 0.843

r Pea PgaP PdMG

0.700 0.982 0.933 0.871
0.800 0.961 0.919 0.918
0.900 0.918 0.886 0.851
1.000 0.862 0.841 0.821
1.100 0.801 0.791 0.784
1.200 0.738 0.738 0.745
1.300 0.676 0.685 0.688
1.400 0.617 0.635 0.663

1.600 0.509 0.541 0.584
1.800 0.417 0.460 0.512
2.000 0,340 0.390 0.445
2.200 0.277 0.331 0.387
2.400 0.225 0.281 0.335
2.600 0.183 0.239 0.289
2.800 0.148 0.203 0.249
3.000 0.120 0.173 0.215
3.200 0.097 0.147 0.185
3.400 0.079 0.124 0.159
3.600 0.064 0.105 0.136
3.800 0.051 0.089 0.117
4.000 0.041 0.076 0.101

4.500 0.024 0.049 0,069
5.000 0.014 0.031 0.047
5.500 0.008 0.019 0.032
6.000 0.004 0.010 0.022

7.000
8.000
9.000

10.000
11.000

0.010
0.009
0.004
0.002
0.001

' J. Steinberger and G. C. Wick, Phys. Rev. 76, 994 (1949l.

Steinberger and Wick' have shown that the magnetic
form factor of Fe is rather sensitive to the shape of the
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P4sa P4sMG P4sa P4sP P4sMG

0.000
O.OOS
0.010
0.015
0.020
0.02S
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300
0.350
0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200

0.000
0.038
0.067
0.087
0.100
0.106
0.108
0.105
0.099

0.080
0.053
0.022—0.010—0.042—0.071

—0.122—0.159—0.181—0.188-0.182—0.166-0.142—0.111—0.076—0.038
0.060
0.149
0.220
0.271
0.300
0.309

0.278
0.202
0.100-0.011—0,122—0.226

0.000
0.034
0.060
0.078
0.089
0.095
0.096
0.094
0.089

0.071
0.047
0.020-0.009-0.037—0.064

—0.109-0.142-0.162-0.168-0.163—0.149-0.127-0.100-0.068—0.034
0.053
0,132
0.197
0.242
0.270
0.279

0.255
0.190
0.103
0.006-0.092-0.184

0.000
0.028
0.049
0.064
0.074
0.079
0.081
0.079
0.075

0.061
0.042
0.020-0.004—0.027—0.049

—0.087—0.116—0.134-0.142—0.141—0.132-0.116-0.096-0.073—0.046-0.023
0.090
0.147
0.190
0.219
0.235

0.232
0.237
0.136
0.067—0.006—0.080

1.300
1.400

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000

4.500
5.000
5.500
6.000

7.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000

—0.319—0.401

-0.528—0.610—0.655-0.672—0.666—0.645—0.614—0.576—0.535—0.491-0,448-0.406—0.365

—0.275-0.202-0.146-0.103

—0.046-0.012

-0.269—0.345

—0.466-0.551-0,603-0.630—0.637-0.628-0.612—0.587-0.556—0.522-0.486-0.449—0.412

—0.325-0.249—0.187-0.137

—0.065-0.017

—0.147—0.216

—0.330-0.420—0.487-0.534—0.563-0.577-0.580—0.575-0.562—0.543-0.521—0.497—0.470

—0.401—0.33S—0.274—0.221

—0.140-0.131—0.083—0.052—0.032-0.019—0.012—0.007-0.004—0.003-0.002

TABLE VIII. The one-electron energy parameters as deter-
mined by the Slater approximation and by the Hartree method.
Values are in rydbergs.

Function

1$

3$

Hartree
(MG)

—523.0

—60.79

—53.02

6.973

Present
calculation

—584.5 a—584.2 P

—6108 o,—60.40 p

—53.16 n—52.65 P

7.463 n
6.930 P

Slater .

—524.3

—63.0

—52.8

7.3

3p 4.600 5.061 cÃ

4.540 p

TABLE VII. The 4$ radial wave functions as determined by the
Siater approximation and by the Hartree method (labeled MG).

TABLE IX. The initial and final potential functions for the last
cycle of the self-consistent-6eld procedure. These include the
averaged exchange potential functions.

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
o'.aoo

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300

W4 (a,r)

52.000
50.189
48 .A LA.

46.782
45.217
43.747
42.362
41.057
39.827
38.678
37.595

35.605
33.804
32.151
30.630
29.225
27.922
26.708
25.577
24.516
23.518

We (a,r)

52.000
50.121
48.439
46.826
45.268
43.749
42.284
40.960
39.749
38.603
37.520

35.539
33.743
32.093
30.574
29.163
27.865
26.652
25.521
24.460
23.466

52.000
50.190
48.443
46.775
45.202
43.725
42.334
41.024
39.792
38.634
37.546

35.546
33.732
32.074
30.545
29.133
27.822
26.600
25.458
24.382
23.368

We (P,r)

52.000
50.121
48.439
46.826
45.268
43.749
42.284
40.959
39.749
38.602
37.518

35,536
33.737
32.085
30.561
29.143
27.838
26.613
25.468
24.394
23.379

0.350
0.400
0.450
0.500
0.550
0.600
0.700
0.800
0.900
1.000
1:aoo
1.200
1.300
1.400

21.272
19.345
17.688
16.243
14.958
13.800
11.804
10.176
8.856
7.783
6.907
6.183
5.581
5.071

21.225
19.308
17.659
16.213
14.922
13.753
11.741
10.103
8.785
7.709
6.832
6.111
5.513
5.004

21.064
19.068
17.353
15.870
14.563
13.391
11.378
9.742
8.418
7.346
6.469
5.746
5.148
4.648

21.049
19.037
17.309
15.815
14.496
13.313
11.282
9.629
8.299
7.212
6.323
5.592
4.988
4.480

The very good agreement with experiment reveals a
fault in the free-atom functions reported here. The
d-electron charge density of interest for calculating the
magnetic form factor should be more compact in the solid
than in the isolated atom. The unpaired d-electrons are
near the top of the band and the corresponding cellular
wave function vanishes at the cell boundary. Forcing
the wave function to zero there and mai. ntaining nor-
malization to unity within the cell leads to a more con-
tracted charge density than for the atomic function

0.7578

0.4836

1.1223a
0.6636P

0.53a5o,
0.4275P

0.64

0.53

J. C. Slater, Phys. Rev. 98, 1039 (1955).

d-functions. Since exchange interactions strongly a6ect
the d-electron charge density, it is of interest to com-
pare the magnetic form factor as calculated from the
3d atomic orbitals found in the present work with ex-
periment. This has been done by gneiss' using the
O.-spin 3d orbital and his results are shown in Fig. 3.

' R. J. Weiss (private communication).

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000

4.500
5.000
5.500
6.000

4.270
3.689
3.256
2.92
2.66
2.44
2.25
2.09
1.94
1.81
1.69
1.58
1.47

1.24
1.04
0.864
0.713

4.211
3.636
3.199
2.86
2.59
2.37
2.18
2.02
1.87
1.74
1.61
1.50
1.39

1.1/
0.961
0.785
0.649

3.882
3.352
2.979
2.70
2.49
2.30
2.16
2.02
1.90
1.78
1.67
1.57
1.48

1.26
1.07
0.908
0.758

3./19
3.197
2.838
2.58
2.39
2.23
2.10
1.98
1.8'7

1.77
1.68
1.59
1.50

1.29
1.12
0.934
0.776
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where U is the appropriate central-field potential. The
experimental value of f (&SI) for Fe is given by Moore"
as —104 cm ' for the 'D4, 'D3 separation and it is
found to decrease slowly as the J value decreases.

Evaluation of (7) using the results of Manning and
Goldberg's Hartree calculation leads to a value of
—96.6 cm '. In the single-determinant approximation
used in this work, f (ySI.) is given by

Qz
cf.x

O
s

2
ED

g(~SL) =—I',.'(r) ~(r) dr,
4~o

where the central-field potential employed for $(r) was
Ws(P, r). The result is g(ySI.) equals —132 cm ' which
does not compare favorably with the Hartree value.
This indicates that the self-consistent treatment re-
ported here tends to contract excessively the electronic
charge density about the nucleus as it was concluded
from the magnetic form-factor results.

2
OISTANCE FROM NUCLEUS (a.u.)~

Fxo. 1.Radii of the exchange holes (in atomic units) as computed
from the respective charge densities.

which has a tail extending beyond the cell. This is
shown in Fig. 1 of Steinberger and Wick's paper. The
good agreement in form factors obtained here implies
that the free-atom d-functions are more compact than
is the actual case. This conclusion is in accord with the
observation by Callaway' that the free-electron treat-
ment overestimates the exchange interaction by perhaps
20% which would tend to contract unduly the atomic
d orbitals. "

FINE STRUCTURE SPLITTING

The fine-structure splitting is another property of
the atom which is very sensitive to the nature of the
one-electron functions and can serve, therefore, as a
good test of the orbitals, reported here. In Russell-
Saunders coupling the energy interval between diferent
J levels of a given LS term, for example, between the
'D4 and 'D3 states of Fe, is proportional to the higher J
value. Condon and Shortley" express this energy
diGerence as

AE= Ji (ySI.), (7)

where f (pe) is the diagonal matrix component of the
spin-orbit interaction operator. Expressed in Gaussian
units, that operator has the form

e4 (1 BUy2 5(r~)I' s', k(r') =
I

—
I (g)

2hsesEr ar)
' J. Callarvay, Phys. Rev. 99, 500 (1955).
'0 See also Herman, Callavvay, and Acton, Phys. Rev. 95, 371

(1954}."E. U. Condon and G. H. Shortley, The Theory og Atomic
Spectra (Cambridge University Press, Cambridge, 1953), p. 194.

FIG. 2. Net radial "spin density" as computed from p (n,r) —p(P,r),
plotted as a function of r (atomic units).

HYPERFINE STRUCTURE

Abragam and Pryce" have suggested that the hyper-
fine structure in transition elements is essentially a
property of the free ion and is not due primarily to
perturbation by the crystalline field, which leads to a
much too small e8ect. In their treatment, the hyperfine
splitting arises from a term 8'~ of the Hamiltonian
representing the interaction of the electrons with the
nuclear spin. 5'~ consists of a magnetic interaction of
the electrons with the magnetic moment of the nucleus
and an electrostatic interaction with the electric quad-
rupole moment of the nucleus.

The so-called "contact term" 8"g of the Hamiltonian
is that portion of 5'~ describing the delta-function
interaction at the nucleus:

Wc ——(16/3)spy~ Qs5(rs) Ss I.
'~ Charlotte E. Moore, Atomic Energy Levels, Nationa] Bureau

of Standards, Washington, D. C., 1952 (unpublished).
"A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)

A205, 135 (1951).
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2s, and 3s; the contributions from is and 2s are quite
comparable in magnitude (and opposite in sign) to
that arising from 3s. The result is g = —2.4 atomic units.

Abragam, Horowitz, and Pryce' in their calculation
of x for such a system use the equivalence restriction
in the single ground state determinant but construct
a more elaborate total wave function consisting of the
ground state determinant plus a function in which one
of the 3s electrons is promoted to a higher lying, varia-
tionally determined, s-state. They obtain z= —0.3
atomic units.

CONCLUSIONS

Fzo. 3. Magnetic form factors furnished by R. J.Weiss. "Stein-
berger" refers to the calculations of reference 7. The form factor
calculated by gneiss from the function of this calculation is that
labeled "0.3d." The Gaussian 6t to the experimental data is
exp( —0.05ks).

The effect of this term on the hyperfine structure can
be determined from the experimental data. In par-
ticular, Abragam, Horowitz, and Pryce' dehne for an
ion of spin S a quantity y, where

4n-

X=—(gab(r, )Sag)s, =8,
S

characteristic of the unbalanced "spin density" at the
nucleus. The quantity x is nearly the same for the ions
V~, Mn~, Co~, and Cu~ with a value of —3 atomic
units.

Iron itself shows no hyperfine structure since the
predominant isotope has no nuclear spin. However, we
might expect that the wave functions for Mn~, which
does exhibit a hyperfine structure, would not be too
unlike those for iron.

Mn++ has the ground state configuration 3ss 3Ps 3d'
(sS). We now construct a determinantal wave function
for this state from the one-electron functions of this
calculation and evaluate x over this determinant.
Again, because of the parametric spin dependence of
these one-electron functions, this determinant is not a
precise eigenfunction of S'. However, it is just this
parametric dependence which gives a nonzero x for
this simple model. In evaluating the operator y over
this function, we obtain the sum of the differences of
the squares of the respective s functions at the origin
(nucleus). We obtain nonzero contributions from 1s,

The results of this calculation show that exchange
polarization is a large effect for Fe. It is of particular
importance in determining the wave functions and
energies of the 3d and 4s electrons. The calculation of
the hyperfine splitting for Mn++ indicates, however,
that significant differences can arise between inner
orbitals associated with different spins. Furthermore,
the finding that the inner s-electrons are perturbed by
their unequal exchange interaction with the outer
electrons of the atom and hence make a net contribu-
tion to the magnetic held at the nucleus provides a
better physical picture of the s-electron effect. The
results of both the fine-structure and magnetic form-
factor calculations indicate that Slater's averaged
exchange potential somewhat overestimates the in-
Quence of exchange.

Exchange splitting of the 3d and 4s atomic levels will
of course carry over to the solid, giving rise to a splitting
of the d-band and of the conduction band. A conse-
quence of having two conduction bands, one for each
spin, with diferent energy dependences, is that there
will in general be a different occupation of the two
bands. This will result in a net magnetization of the
conduction electrons which has been estimated by
various methods to be from 0.07 po per atom to 0.20 p, o

per atom. '' In order to calculate the total magnetic
moment per atom, the exchange splitting of the d-band
as well as that of the conduction band must be taken
into account.
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