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TaBLE I. Comparison of values of 8*/E, derived from these
experiments and that deduced from diamagnetic susceptibility
measurements.

p*/Eo (gauss™)

Thermal magnetoresistance 5.7X107
Electrical magnetoresistance 6.1X1077
Magnetic susceptibility 5.9X10™7

The parameter 8*/E, is a measure of the frequency
of the de Haas-van Alphen oscillations and wvaries
widely from metal to metal. The electron effective mass,
m*, is contained in 8*, an effective Bohr magneton, and
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E, is the energy of overlap between the Fermi surface
and the Brillouin zone boundary. As can be seen in
Table I, the values of 8*/E, deduced from the present
measurements are in good agreement with the results of
Shoenberg?® using the diamagnetic susceptibility.

It is noted that the electrical data appear to exhibit a
faint amplitude modulation, which suggests the presence
of oscillations of a somewhat different frequency, but
the effect is too indistinct for any definite conclusions
to be drawn.

5 D. Shoenberg, Trans. Roy. Soc. (London) 245, 54 (1952).

PHYSICAL REVIEW

VOLUME 107,

NUMBER 4 AUGUST 15, 1957

Approximate Wave Functions for the M-Center by the Point-Ion Lattice Method*

BaArrY S. GOURARY AND PERRY J. LUKE
A pplied Physics Laboratory, The Jokns Hopkins University, Silver Spring, Maryland

(Received May 13, 1957)

Qualitative arguments are presented, suggesting that the point-ion lattice model, first used by Gourary
and Adrian for the F-center, should be generalized to all those states of electron-excess color centers in the
alkali halide crystals which give rise to transitions, obeying the Ivey relations.

The point-ion lattice model is then postulated for Seitz’s model of the M-center, and two sets of transition
energies are obtained for a whole series of alkali halides. The 4B transition agrees with the M-band within
some 15%. Its dipole matrix element has the [1107] direction. The 4,B; transition lies at a shorter wave-
length. In LiF and NaF it is close to the F-band. Its dipole matrix element has the [100] direction. Oscillator
strengths are also given. There is some possibility, however, that the B; state may not be bound.

The contact term in the hyperfine structure is estimated for LiF and Lil, using an alternate form of wave

function.

Experiments are suggested to verify the Ivey relations and the other predictions of the point-ion lattice
model in suitably chosen sets of alkali halide crystals, which have almost identical interionic distances.

1. INTRODUCTION

NE of the important absorption bands in x-rayed

or otherwise colored alkali halide crystals is the

M-band, named after its discoverer, Molnar.! It lies on

the long-wavelength side of the F-band, and the wave-

length of its peak in millimicrons is given quite well by
Ivey’s empirical formula?

Mmax=51.8a1-%6, (1.1)

where a is the nearest neighbor distance in Bohr radii.
It is believed to be due to an F-center which has
captured a neutral vacancy pair.l* This model, which
has been proposed by Seitz, has been tested to some
extent by polarized light experiments,* but thus far
only one theoretical treatment of it has been attempted
by Inui, Uemura, and Toyozawa.® This calculation has

* Work supported by the Bureau of Ordnance, Department of
the Navy, under NOrd 73860.

1 F. Seitz, Revs. Modern Phys. 18, 384 (1946).

2. F. Ivey, Phys. Rev. 72, 341 (1947).

3 F. Seitz, Revs. Modern Phys. 26, 7 (1954).

4 M. Ueta, J. Phys. Soc. Japan 7, 107 (1952); J. Lambe and
W. D. Compton, Phys. Rev. 106, 684 (1957).

5 Inui, Uemura, and Toyozawa, Progr. Theoret. Phys. (Japan)
8, 355 (1952). Professor Inui has kindly checked his calculations

two weak points. First, the energy is obtained as the
difference of several large quantities, each of which is
computed only approximately. This is the usual diffi-
culty experienced in the application of the molecular
orbital technique in the LCAO (linear combination of
atomic orbitals) approximation to the problems of elec-
tron-excess color centers. Secondly, Inui, Uemura, and
Toyozawa have used wrong numerical values of the
interionic distances. Thus both the method and the
numerical results of that calculation leave room for
considerable doubt.

Recently, Gourary and Adrian® treated the F-center
by a simplified Hartree method. They solved the wave
equation for a lattice composed of point ions, and later
estimated the effects of electronic polarization, lattice
distortion, and exchange and overlap. It turned out
that electronic polarization was not particularly im-
portant in the ground state and even in the first excited
and finds that because of the values of the interionic distance
used in his work, his results should probably pertain to LiF and
NaF, not to LiCl and NaCl, respectively. The observed M-bands
then lie approximately halfway between the predicted 41B; and

A1B; transitions.
¢ B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).
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state. Lattice distortion was not too significant for the
ground state binding energy, but it did change the
transition energy by some 79, because it affected
the energy of the first excited state. Exchange and
overlap effects were estimated only roughly. They did
not seem to affect the transition energy even though
they changed the individual binding energies by an
appreciable amount. In the calculation of the hyperfine
structure, exchange and overlap effects became para-
mount. Gourary and Adrian managed to get a good
wave function for the ground state by simply orthogo-
nalizing to the core orbitals the wave function computed
for the point-ion lattice. Their results agreed well with
the experimental optical energies and observed hyper-
fine splittings for a whole series of alkali halides.
Recently, double spin resonance experiments in KCl
confirmed these predictions in an even more striking
fashion.”

It now appears reasonable to postulate that the point-
ion lattice model holds for all those states of electron-
excess color centers in the alkali halide crystals which
give rise to optical transitions obeying a formula of the
Ivey type. The qualitative reasoning on which this
generalization rests is the following. Ivey’s formulas
predict a smooth monotonic variation of the wave-
length as a function of the interionic distance. It is
plausible, therefore, to postulate that only quantities
which vary smoothly with the interionic distance should
be included in a model suitable for the calculation of
wave functions for these states of the centers. Now, the
high-frequency dielectric constant is not a smooth
function of the interionic distance. The contribution to
the cohesive energy, however, due to the repulsive po-
tential r—* acting between nearest neighbors, does
decrease smoothly with increasing interionic distance. It
follows that electronic polarization is probably not a
relevant quantity while lattice distortion may be im-
portant. Similarly, exchange and overlap between the
trapped electron and the core electrons of a given ion
might be a smooth function of the ionic radius of the
given ion. They can hardly be expected, however, to
depend smoothly on the interionic distance since in
almost every electron-excess color center, ions of one
kind are closer to the trapped electron than are the
ions of the other kind. Thus, if exchange and overlap
do indeed play an important role, they must depend
primarily either on the alkali or on the halide, but not
on the interionic distance. It follows, therefore, that
exchange and overlap probably do not influence these
transitions greatly. They do determine the behavior
of the wave function in the close proximity of each ion,
but they do not affect its over-all shape. Thus the general
behavior of the wave function can be obtained from the
point ion lattice model, and its form inside the ionic
cores can be calculated by subsequent orthogonalization

7 G. Feher, Phys. Rev. 105, 1122 (1957); F. J. Adrian, Phys.
Rev. 106, 1356 (1957).
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F16. 1. Seitz’s model of the M-center. Note that the y axis is
perpendicular to the plane of the paper.

of the wave function to the core orbitals, provided that
not too much of the charge is drawn inside the ionic cores
by the orthogonalization procedure. The last proviso is
important because, in the final analysis, the basic
justification for the validity of the point ion lattice
model is that most of the charge of the trapped electron
stays outside of the ionic cores, where the correct
potential is indeed closely approximated by the poten-
tial of the point-ion lattice. Most of the charge is, in
fact, usually localized inside the vacancy, thus rendering
the center electrically neutral and preventing any
extensive polarization from taking place.?

The purpose of this paper is to apply the above pro-
cedure to Seitz’s model of the M-center. Because of the
lower symmetry, the computations are much more in-
volved than for the F-center. Because of the large size
of the resultant vacancy, lattice distortion can be
expected to play a less important role. We shall, there-
fore, proceed to treat only a rigid point-ion lattice,
neglecting lattice distortion.

2. “CENTER OF SQUARE” (CS) EXPANSION

Consider a point-ion lattice of the NaCl structure,
from which two negative ions and one positive ion are
missing. One electron is assumed to be trapped in the
center. This center is shown in Fig. 1. Clearly the z axis
is a twofold symmetry axis, and the xz and the yz
planes are symmetry planes. The symmetry group
corresponding to this center is Cy. This group has

8Tt is possible to extend this line of reasoning to speculate on
the behavior of electrically charged centers where electronic
polarization must play a role and the Ivey law may be expected
to break down. A case in point is the F’-center, which consists
of two electrons trapped at a single negative ion vacancy. If
this band obeys an Ivey law, then an extrapolation of the straight
line on a logA-loga plot requires that the F’-band in LiF should be
at shorter wavelengths than the F-band. This is hardly believable,
since the binding in the saturated system would be expected to
be considerably less than in the unsaturated F-center. Unfor-
tunately, no conclusive experimental evidence is available. The
authors are indebted to Dr. W. Dale Compton for a discussion
of this point.

It should be noted that Miessner and Pick [Z. Physik 134, 604
(1953)] have shown that the position of the V;-band is determined
by the anion, not by the interionic distance. This also seems to
support the views expressed in this paper.
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F16. 2. Pictorial representation of the wave functions belonging
to the several irreducible representations of Ca..

four one-dimensional irreducible representations,® whose
properties can be visualized from Fig. 2, which shows
the sign of a wave function belonging to a given
representation at the following four points: (x,y,2),
(_x;y:z)) (_xl —D’;Z), and (x; “)’;Z)

The real spherical harmonics® S; (6, ¢) belong to the
several irreducible representations according to the
scheme shown in Table I. This table tells us what terms
can arise in an expansion of the wave function in a
series of real spherical harmonics. In this section, the
origin for the expansion is taken (Fig. 1) at the center
of the square, three of whose vertices lie at the vacant
lattice sites. We call this the “center of square” expan-
sion, and abbreviate it as CS. Thus

¥(T;n|r)= )3P3 R(nlu|n)S,u@,0).  (2.1)

=0 u

Here I' denotes the representation, and # is an energy
quantum number. (We shall be interested only in the
lowest energy state of each symmetry; consequently,
# will be omitted.) The R(#n,,u|7) are variational trial
functions. Since z belongs to 44, y to By, and « to By,
electric dipole transitions can take place from a ground
state of 4, symmetry to all but a state of 4, symmetry.

In the actual variational calculations, we have used
the following trial functions:

TasLE I. Reduction of the real spherical harmonics according
to the irreducible representations of Cs,.

H Representation
Positive, zero or even A
Negative, even but not zero As
Positive, odd B,
Negative, odd B,

9 Eyring, Walter, and Kimball, Quzmtum Chemistry (John Wiley
and Sons, Inc., New York, 1944)
bC.C.J. Roothaan TJ. Chem. Phys 19 1445 (1951).

GOURARY AND P. J.

LUKE

Y(Aa] D) =A /1) (u/d)} (1+pr/d)e 1S, o (6,¢)
+B(4/3)}(v/d)}(vr/d")em19S1,0(0,0), (2.2)

Y(Bi|1)=(4/3)}(\y/d")E(\rr/d)e 17811 (6,0).  (2.3)

Here (B/A4), u, v, and \; are variational parameters.
¥(B:|r) differs from ¥(B;|r) only in having \, instead
of Ay, and Sy, —1(8,¢) instead of Sy, 1(0,). Thus B; has a
node in the yz plane while B, has a node in the zx-plane.
The quantity d’ is @/V2, where a is the nearest neighbor
distance. The resulting energy functionals are given in
the appendix, and the energy and parameter values are
summarized in Table II, using Hartree atomic units.
In Table IT, f is the oscillator strength.

In Fig. 3, the logarithm of the wavelength of the pre-
dicted 41B; and A4,B; transition is plotted against the
logarithm of the nearest neighbor distance, giving
straight lines in accordance with Ivey’s formulas. Some

TABLE II. Term values, parameter values, oscillator strengths,
and transition energies obtained by the ‘center- of-square ex-
pansion.

Substance LiF NaF NaCl KC1

a 3.80 4.37 5.31 5.93
E(4y) —0.267 —0.247 —0.218 —0.203
E(B1) —0.174 —0.164 —0.148 —0.140
E(B,) —0.097 —0.092 —0.086 —0.082

“ 1.75 1.75 2.00 2.00

v 1.75 2.00 2.00 2.25
B/A 0.493 0.501 0.560 0.563

M 1.25 1.25 1.50 1.50

A2 1.00 1.00 1.25 1.25

f(41B1) 0.22 0.26 0.24 0.27

F(4:B.) 0.37 0.44 0.43 0.49
E(B1)—E(4.) 0.093 0.083 0.070 0.063
E(B3)—E(41) 0.170 0.154 0.132 0.121

of the available experimental data are also shown on the
graph. Clearly, the 4,B; wavelength agrees with the
observed M-band within 159 or better. For LiF and
NaF, the 4B, transition lies close to the F-band. In-
clusion of exchange and overlap probably would not
change the A1B; transition much, but it would tend
to concentrate the wave function more in the vacancy
(away from the ions), and change the binding energy.
This might result in a B, state which is not bound.
How good are our wave functions? Certainly they are
not accurate in the immediate vicinity of the ions,
because the ions are represented as point charges.
Moreover, they are not even mathematically correct
solutions of the point-ion lattice problem, because they
do not have the freedom to behave like hydrogenic 1s
orbitals in the vicinity of the cations. It is clear, how-
ever, that we do not want to solve the point-ion lattice
problem too accurately in the immediate neighborhood
of the ions, because the potential is incorrectly repre-
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sented in this region. We do have to use variational
wave functions that are reasonably flexible, but which

cannot change too much in a volume of the order of the.

cube of the first Bohr radius. We have, therefore, tested
our wave functions by two alternate procedures. First,
we tried to add a term of the form

CL32(45)¥ ) (u/d')}(ur/d')?e*71%S0,0(0,)  (2.4)

to ¥(4:|r). This led to an insignificant lowering of the
energy. We have also considered adding some d-state
to all the states, but the labor entailed was excessive.
We have, therefore, resorted to the somewhat less
satisfactory procedure of comparing our wave functions
with analogous wave functions centered on the ‘“central
ion” (Fig. 1) (henceforth, “central ion’’ will be abbrevi-
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F1c. 3. The A1B; and the 4,B; transitions: theoretical curves
and their comparison with the experimental M-band and F-band
data. The experimental data on NaCl and KCl are those of
W. H. Duerig and J. J. Markham [Phys. Rev. 88, 1043 (1952)].
The data on LiF are those of C. J. Delbecq and P. Pringsheim
[J. Chem. Phys. 21, 794 (1953)]. The NaF data are preliminary
[N. W. Lord (private communication)]. It should be noted that
few of these points have been taken at very low temperatures.

ated as CI), which had been computed in an earlier
attempt and which are discussed in the following
section. This comparison led us to the conclusion that
the present wave functions were adequate for most
purposes except hyperfine structure calculations.

3. “CENTRAL ION” (CI) EXPANSION

While the “center-of-square” (CS) wave functions
are adequate for optical calculations, they do not have
the requisite flexibility to permit the trapped electron
to desert the central ion (Fig. 1) and to become localized
in the negative ion vacancies. This leads to too high a
density at the central ion. The natural remedy within
the framework of the point-ion lattice model would be
to add some d-state terms. Since this. entails extensive
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numerical calculations, we have postponed this project
until further experimental work makes the calculation
unavoidable. Meanwhile, we shall use some calculations,
which have been made by us earlier in connection with
another attempt to treat the M-center, in order to
obtain estimates of the contribution of the central ion
to the contact term of the hyperfine structure in the
lithium halides.

These wave functions were obtained by centering an
expansion of the form (2.1) on the central ion. The axes
were taken parallel to the axes of Fig. 1, but with the
origin at the central ion. In order to obtain correct
behavior at the central ion, the trial functions were
orthogonalized to the core orbitals of the central ion,
and exchange and overlap with the core electrons of the
central ion were included. Only lithium halides were
treated in this manner. The trial functions were:

(A1 1)=A[(4/3)}(u/a)}(ur/a)e+rl
=28 (uo/a) e 14150, 0(6, )

+B(4/3)}(v/a)i(vr/a)em1°S1,0(0,¢), (3.1)
wo=2.70a,
S=8(3ud*u®)/ (utmo)?,
o(Bi|1)=(4/3)*(\/a)}(\rr/a)eM7eS 1 (0, ¢), 3.2)
¢(Bs|1)=(4/3)}(\o/a)}(\or/a)e 128, _1(6,0).  (3.3)

The resulting energies, parameter values, and densities
of the square of the ground state wave functions at the
central ion are given in Table III, using Hartree
atomic units.

For LiF, we have computed the energy that would
have been obtained if this “central ion” (CI) expansion
were carried out in the strict point ion lattice model,
i.e., with the central ion represented by a point charge
and with a nonorthogonal wave function. These energy
values are:

E(4)=—0.225, E(By)=—0.152,

E(Bs)=—0.09, (34)

TaBiE III. Term values, parameter values, and the value of
the square of the wave function at the central ion which are
obtained by the central-ion expansion.

Substance LiF LiI
a 3.80 5.67
E(A41) —0.197 —0.170
E(B1) —0.153 —0.126
E(B3) —0.099 —0.082
" 2.125 3.00
v 2.125 2.75
B/A 0.532 0.581
M 1.68 1.96
A2 1.32 1.61
| o(CI)|2 0.080 0.062
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This ground state binding energy is smaller than the
one given in Table II, and therefore the CS ground
state function is better than the CI wave function.
Parenthetically, it should be noted that one term in the
CS expansion for the ground state gives an accuracy
comparable to two terms in the CI expansion. It should
also be noted that the orthogonalization and inclusion
of exchange and overlap which is done in the CI
expansion does not produce a superior wave function,
except in the immediate vicinity of the central ion.
This is so because exchange and overlap with the core
electrons of other ions are not included, and an unsym-
metric treatment of exchange and overlap usually
leads to erroneous conclusions, even as far as the
transition energy is concerned. For the B; state, the
energy given by the CS expansion is the lower one, and
the CS function is to be preferred somewhat. For the B,
state, the CS and the CI functions are equally valid.
We have used the CS function for convenience.

The density of the square of the orthogonalized wave
function at the central ion is probably given more accu-
rately by the CI function, because all that the CI
function needs in order to attain greater accuracy is a
few more terms in the spherical harmonics expansion.
Although such a calculation is too cumbersome to be
carried out in practice, it is not too difficult to see that
its effect on the density of the wave function at the
central ion would have to come through the normalizing
factor. It would probably be rather small. The CS
function, on the other hand, is too inflexible near the
central ion to be reliable for this purpose. The density
of the square of the orthogonalized wave function at
the central ion given in Table IIT for LiF is about 3.5
times as large as the experimental density at the nearest
neighbor alkali in the F-center in LiF. This leads to a
contribution to the second moment of the paramagnetic
resonance line which is about two times larger than the
second moment for the F-center. Other ions may also
contribute. This prediction is compatible with recent
second-moment measurements by Lord.!! It should be
interesting to test this prediction further by the in-
herently more accurate double spin resonance technique
for a whole series of lithium halides.

4. DISCUSSION

While the success of the point-ion lattice model in the
calculations leading to the A.B; transition energy is
obvious, it is not so clear that the qualitative arguments
presented in Sec. 1 and in reference 8 are correct; nor
it is self evident that the B, state cannot be pushed up
into the conduction band by exchange. It is essential,
therefore, to supplement the present theoretical work
with a series of experiments. First, it is necessary to
verify the validity of the Ivey relations at liquid helium
temperatures. These relations should be verified for all
those electron-excess color centers which are believed

11 N. W. Lord, Phys. Rev. 106, 1100 (1957).
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to be electrically neutral. This certainly includes F, R,,
and M, and possibly R;. A particularly critical test of
these relations and the degree of their validity should be
provided by the study of sets of alkali halides with
almost identical interionic distances. Several such pairs
are: Lil and CsF, NaCl and RbF, Nal and KBr, etc.
Electron spin resonance and double spin resonance data
on such pairs of crystals should enable one to check the
hypothesis that a wave function computed on the basis
of the point-ion lattice model needs to be orthogonal-
ized only to the core orbitals, since the unorthogonal-
ized wave function would be practically identical for
the two members of such a pair. Finally, a careful search
for the 4,B, transition should be made optically in a
series of different alkali halides, since the B, state may
be bound in some crystals but not in others because of
different exchange effects. Because of the diffuse nature
of the B, state, electronic polarization may become
important, and the 4B, transition may deviate from
the Ivey law towards longer wavelengths.

Such an experimental program could do much to
clarify our understanding of the electron-excess color
centers in alkali halide crystals. If the qualitative con-
jectures voiced in this article are confirmed, this would
lead to more unified understanding of the subject. If
they are disproved, we would have to look for an alter-
native explanation of the definite successes of the point
ion lattice model.
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APPENDIX. ENERGY FUNCTIONALS FOR THE
CENTER OF SQUARE EXPANSION
The Hamiltonian in the center of square expansion is
3=—3V*+D(r)+M(r). (A.1)

Here the potential energy is separated into that due to
the central ion, M (r), and that due to the remainder of
the lattice, D(r).

M (1) =—[x"+y*+(z—d)* ],
D(r)=% EZ; L= = (=¥} (= D[ (x—&d)?
B
+(y—mVBE) - (s~ )T,
The summation is over positive and negative integer
values of £, 9, and {. The prime denotes the omission of
the points (%1, 0,0) and (0,0, 2=1). D (r) belongs to

the A4i, irreducible representation of the D, group;
hence, it can be shown that an expansion of it in terms
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of the S7,,(6,¢) can only contain terms with / even and
#2>0 and even. Furthermore it is obvious that the /=0
term is missing.

The problem thus becomes that of varying the param-
eters in the wave functions [Egs. (2.2) and (2.3)] so as
to minimize the expression

B0 [ wiosesr i / [ oy (a2

The resulting functionals are:

E(A 1) = {[A2TAA +B2TBB (V):I (2(1'2)—1
+B2DBB(V) (dl)_l+[A2MAA+2ABMAB

+B*M (@) H{A*+B%,  (A3)
E(B1)=Tgs(\)(2d"*)"'—Dpp(\1)(d')!
+Ms(\) (@)Y, (A4)
E(B3)=Tgs(\2)(2d"*)+M5(\2) (@), (AS)
where
Tan=3u/1, (A.6)
Tpe(v)=v", (A7)
Dgg(v) =, >s§; o 2= (— 1) — (= DHJ(—1)"
XL(2—£2)/p*I(9/ (4v%6%) — (2/5)v%p*
X[46(2vp)—A4:1(2vp) ]}, (A.8)
M ga=—14 4w/ T){u[A:(20)— A5(2p)]
+2ulA3(2p) — A2(21) ]
+[4:20)—4:2w) ]}, (A9)
M 4=~ (4/3) (u**/7)¥{24(6p+») (u+»)~*
—[Au(pt») = A1 (p+9)]
—u[As(pt+v)—A2(u+2)]}, (A.10)

Mpp=—1—3/v*+ (455/15){2[ Ae(2v)— 4:1(29)]
+5[A4(2)— A3(20) ]}, (A.11)
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M p(\1) =—1+3/(2M2)+ (40,%/15)
X{—[46(2\1) —A1(27\1)j

+5L44(20)—45(2M) ]}, (A12)

A (%)= f EreokdE,
1

In Eq. (A.8), the prime on the summation denotes
omission of the point (0,0,1), ® is the number of zeros
in (¢7,), and

PP=E+2n+ 0
The term in Eq. (A.8) varying as p~* was summed by
the method of van der Hoff and Benson.!?

In Eq. (A.3) the minimization was first done with
respect to A and B for fixed values of x and ». Since
Eq. (A.3) can be written as a homogeneous quadratic
equation in 4 and B, differentiation and setting
dE(A1)/94 and 0E(A:)/9B equal to zero leads to a
pair of homogeneous linear equations in 4 and B
involving E(4,) as a parameter. This leads to a quad-
ratic equation for E(4,). The lower root of this equation
is obtained, and it is further minimized numericaily as a
function of x4 and ». The ratio (B/4) and the wave
function can then be computed readily. Parenthetically
it should be noted that the higher root of the quadratic
gives the value of E(4,,1), i.e., the energy for the first
excited state of 4, symmetry. Unfortunately, this ex-
cited state wave function is not orthogonal to the
ground state wave function unless x and » are given the
values which minimize the energy of the ground state.
If this is done, however, the trial function for the
excited state has only (B/A4) as an effective variational
parameter, and this is grossly inadequate. The only
way to obtain a good wave function for the first excited
A, state would be to start with a trial function con-
taining several parameters and orthogonal to our
¥(41|r). For the excited states, E(B;) is minimized
numerically with respect to A;.

2B, M. E. van der Hoff and G. C. Benson, Can. J. Phys. 31,
1087 (1953).



