
FAST S I'ATES ON Ge SURFACES

The irreproducibility of the measurements of the
surface recombination velocity and the dark field eGect
is primarily due to a change in the center trap density.
After repeated ambient cycles, the surface becomes
more or less stabilized. However, the stability may be
disturbed by long exposure to a wet atmosphere. The

eGect of water vapor upon the germanium surface may
involve some slow chemical processes. It would be of
interest to see whether a thick oxide layer can provide
a protection against water vapor.

The authors wish to thank Sumner Mayburg for
helpful discussion and criticism of the manuscript.
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Nuclear electric-quadrupole moments interact with electric-field gradients at the nucleus. In a perfect
cubic crystal, the average gradients vanish and there are no quadrupolar interactions. Nuclear magnetic
resonance studies of the semiconductors InSb and GaSb have revealed no quadrupolar interactions in our
samples, indicating a high degree of crystalline perfection. By applying stresses to these crystals, we have
been able to destroy the crystalline symmetry reversibly, thereby producing quadrupole broadening of the
nuclear magnetic resonance lines. Strains of less than 10 4 have been detected and the resulting field gradients
measured. The "gradient-elastic" proportionality constants connecting stress and field gradient are discussed
in relation to crystal symmetry and have been deduced from the measurements.

INTRODUCTION

' 'NTERACTIONS between nuclear electric-quadru-
~- pole moments and electric-field gradients at the
nucleus have been shown to be responsible for many
features of nuclear magnetic resonance lines in solids. '
Line shapes, splittings, and relaxation times have been
shown in certain cases to be determined by quadrupole
interaction. Of course, there are many other kinds of
nuclear interactions in solids and it is only under
certain conditions that the quadrupole interactions
will be dominant. One condition required for this inter-
action is that the electric-field gradient at the nucleus be
nonvanishing. If the nuclear environment is cubic, there
should not be any field gradients at the nucleus.
Watkins and Pound, ' however, have shown that quad-
rupole interactions were strong in their "good" alkali
halide crystals. They attribute the presence of electric-
field gradients to internal strains arising from crystal
imperfections.

In previous investigations' it had been indicated that
samples of InSb, kindly supplied by Dr. H. J.Hrostow-
ski, were perfect enough cubic crystals so that the eGects
of internal strain upon NMR (nuclear magnetic reso-
nance) lines were negligible. Since the first-order
quadrupole components of the In"' resonance had not
been removed by internal strains, it was decided to
deform the InSb crystal elastically in order to destroy
the cubic symmetry and split the quadrupole compo-

' R. V. Pound, Phys. Rev. 79, 685 (1950).
~ G. D. 'tA'atkins and R. V. Pound, Phys. Rev. 89, 658 (1953).
3 Shulman, Mays, and McCall, Phys. Rev. 100, 692 (1955).

nents. We were able to do this, and also to measure
this splitting and relate it to the applied stress. Watkins
and Pound attempted the same experiments in alkali
halide crystals but were unsuccessful because, as men-
tioned above, they found that internal strains had
already split the quadrupole components.

APPARATUS

A modified Pound-Knight-Watkins4 spectrometer
was used in these experiments. The main modification
was to replace the 6J6 oscillator tube by a General
Electric GL-6072. Because of the lower gain of the
GL-6072 it was necessary to use two tubes in parallel.
The advantage of this circuit is that the GL-6072
generates less noise in the audio range than any other
tube tested. Its disadvantage is the lower gain of the
tube. The magnet is a Varian Associates six-inch
electromagnet with a gap that was at various times 1~~

inches and 14 inches. In the smaller gap measurements
were made with Ho 8300 oe while in the larger gap
Ho 6500 oe. Since signal-to-noise was not very large
all measurements were made at 77'K. Figure 1 repre-
sents the sample holder, coil, and pressure equipment.
A single-crystal rod was placed in the inner phenolic
fiber tube. Both ends of the sample rod were squared
off with a diamond cutting wheel. No additional pre-
cautions were taken to insure purely axial forces. The
bottom end of the sample rested on a fiber plug fastened
in the fiber tube. A short piece of fiber rod was placed on

4 G. D. &atkins, thesis, Harvard University, 1952 {un-
published).
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Two sets of measurements were made on the crystal
compressed along (110j and one set upon the (010j
crystal. The second moment of the In"' absorption was
measured for the $110j crystal with and without a
stress of 3.5X10r dynes/cm'. These measurements were
made while the angle between $001) and Hs, which we
will designate as 8, was maintained at O'. The results
of these observations are presented in Table I. The
ratios of the integrated intensities with and without
stress are listed in the third column and the second
moments of the upper and lower halves of the absorp-
tion line are shown in column four. The experimental
results presented in this section will be interpreted in the
following section.

In addition to the results of Table I, measurements
were made on the $110) crystal as a function of the
angle 8,. Our apparatus records the derivative of the
absorption. The peak-to-peak recorder deQection was
measured as a function of 0, and the normalized results
are plotted in Fig. 3. All the points represent an average

TAm. z I. Experimental values of second moments and relative
intensities of In"' resonance for Ps=8300 oe for (110] com-
pression, where 0,=0'.

In Sb

Fxo. 1. Schematic diagram of sample holder and
magnet showing method of applying stress.

top of the sample and on top of this a stainless steel rod
transmitted the force from the weights.

EXPERIMENT

Measurements were made on two single crystals of
Insb. In one the $110]axis was along the coil direction,
and in the other the (010j.These samples were cut from
crystals which were n-type extrinsic at 77 'K with
(Es—E~)~1X10rs/cms and (Xa+E ) slightly larger
than 10's/cm'. They were lapped to an octagonal shape
and the cross sectional areas were 0.13 cm'. Typical
results of applying axial stresses are shown in Fig. 2,
where absorption derivatives are plotted vs magnetic
Geld for the tw o diGerent cases of zero stress and
3.5X10' dynes/cm'=500 lb/inch'. As the stress was
increased the absorption derivative became shorter and
broader. These results were reversible as would be
expected since the strains are well within the elastic
range.

ZERO LBS / SQ. IN. 500 LBS / SQ. IN.

/ 1 ~ K—5 GAUSS
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3.5
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IV
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V
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0
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0
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0
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31.1
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24.5
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29.7
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35.4

30.2
32.5

33.2

of at least four measurements with applied stress and an
equal number wi thout. The unstressed line measured
at each position was used to normalize the results. It
had previously been determined' that in the absence of
compression the absorption was independent of crystal
orientation and this, too, was confirmed in these
measurements. In the following section we shall show
how the quadrupole splitting may be related to the
second moment which in turn may be expressed in
terms of the recorder deQection if one assumes a line
shape.

The (0107 crystal presented a much simpler system
and the only measurements made on this crystal were
recorder deflection vs 0, where 8 is still the angle
between (001j and Hs. This crystal did not show any
dependence of recorder deBection upon angle as may be
seen from Fig. 3.

INTERPRETATION

In order to understand the effects of applying elastic
FJG. 2. Derivative of In"~ absorption at diGerent applied pressures. Stress to the InSb it is necessary to describe what we
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knew of the lines before stress was applied. In an early
experiment' the In"' resonance in a single crystal of
InSb was examined before and after 20% plastic
deformation. After deformation the integrated intensity
had decreased by a factor of ~5. If the eGect of de-
formation was to remove all of the Grst-order quadrupole
components leaving only the m= —sr~+xs transition,
the intensity should have been reduced by a factor of
6.6. We took the decrease of intensity upon compression
as an indication that the original intensity included con-
tributions from transitions other than the m = —rz&-++ sr.

The numerical factor being close to the theoretical value
of 6.6 meant that most of the Grst-order components
were included in the original intensities.

Since we believed that all the components were
present, we decided to remove them by destroying the
cubic symmetry of the InSb zincblende structure in a
reversible, controlled fashion. For example, a compres-
sive stress along [010$ will make the crystal tetragonal
with the [010$as the unique axis. A stress applied along
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Fro. 3. Plot of dI/dP), eglt-tg& pgag ss e, . Open circles are normalized
experimental values of dI/dP)„~ ta ~„q for L110j compression
while solid curve is best fit of L1+ Z A S '] '. The summation
over m was taken as the average value of the sum from m =—5/2
to 7/2 and the sum from m =—7/2 to 9/2. The straight line is the
average of 25 experimental values of dI/dH~ w t, ~„q for $010$
compression.

[110$makes the crystal orthorhombic, the three axes of
twofold symmetry being the [110j along which we

compress, the [001jperpendicular to this direction and
the [110j perpendicular to both. The strains can be
calculated from recent determinations~ of the elastic
constants of InSb, and are listed in Table II for com-
pression along [110j and [010j. The electric-field
gradient tensor VE will also lose its cubic symmetry,
and, like the strain, becomes orthorhombic for [110j
stress and tetragonal for [010j.

our object here is to relate the observed broadenings
to the stress. This involves three steps: First, finding
the splittings from our measurements; second, Gnding

the Geld-gradient tensor in terms of the splittings; and
third, relating this to the stresses. For the second step
we use the following formula from VolkoB, Petch, and

~R. F. Potter, Bull. Am. Phys. Soc. Ser. II, 1, 53 (1956);
McSkimin, Bond, Pearson and Hrostowski, Bull. Am. Phys. Soc.
Ser. II, I, 111'(1956).

TanrE II. Strain ss stress of 3.5X10r dynes/cms along
$010j and $110j.

E
EVQ
Es.
E,„
Egg

3.$ &(107 dynes/cm&
along L110)

2.8X10 5

2.8X10-~
—3.0X10 1
—S.9X10 ~

0
0

3.S )&107 dynes/cm~
along t010j
—30X10 5

+8SX10 ~

—30X10 5

0
0
0

v ~ &~ is the frequency of an individual transition,
and 8 is its observed splitting in gauss; y, , is the
second derivative of the electrostatic potential at the
nucleus along the s' axis parallel to the steady magnetic
field Hs, and eQ is the nuclear quadrupole moment. The
various components of the second derivative q. .. etc, ,
form the Geld-gradient tensor, which must be made
traceless, since its trace does not affect the frequency,
and is symmetric, since V XE=0. This tensor has five
independent components in general; if we know its
principal axes, though (as we do in our particular
experiments), we need to know only two of the principal
values. Relative to its principal axes, which we call
x, y, and s, it may be written

y, 0 0
V'yy 0

0 0 (9 +pflv)

In order to relate q, , to y, and q» we need to
transform x, y, s into x', y', and s'. In our experiments
one of the principal axes of the tensor was, by symmetry,
ahvays the axis along which we applied compressive
stress; let us call this @=x'.Then the field IIs (i.e., s')
was rotated in the plane ys perpendicular to x. Arbi-
trarily identifying one of the other two axes as s, the
frequency as a function of the angle 8 between the Geld
s' and s is

3 (2m —1)eQ
~&m~m-1 =

SI(2I—1)1's

X[9 + (9 +2) ss) cos28 ) (2)

by simple transformation formulas.
For In"', Eq. (2) predicts a symmetrical pattern of

nine components since I=9/2. As mentioned above, the
resonance lines were broadened in our experiments but
the individual components were not separated. There-
fore it was necessary to determine the quadrupole
coupling parameter eQy, , for a given deformation and

' Volkoff, Petch, and Smellie, Can. J. Phys. BO, 270 (19S2).

Smellie'

3 (2m —1)eQ gPb
(+&)m,

=&m~(m-r) &o= (1)
4I(2I—1)h h
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crystal orientation from the line shapes as follows. The
second moments of the absorptions are deGned as

AH '=
) x'I(x)dx (3)

to interpret these results. From the average increase
of AH00 at 3.5X10' dynes/cm' it was found that
eQq, ,

~
e, =o'=44 kc/sec. This value of quadrupole

splitting indicates that the ) 7/2(~
~
9/2 ( transitions

should be displaced six gauss which means that th ey

where x=H —Hp and I(x) is the normalized intensity.
Since in the absence of strain the line breadth is

determined primarily by exchange with the Sb nuclei, '
we can assume that the shapes of the individual compo-
nents do not change with strain. Thus we can use the
additive property of the second moment and obtain

DHpp=d, Hpp(0)+Q. A 5 ', (4)

where AH00(0) is the second moment of the unstrained
crystal and 3 is the normalized relative intensity of the
m~ (m —1) transition.

By using Eq. (4) it is possible to convert changes of
the second moment into values of 5 and hence into
eQpp, , It was not possible to compute hHP for stresses
much larger than 3.SX107 dynes/cm' because the tails
of the distribution became too important and too
uncertain. On the other hand very small stresses hardly
changed the second moment and there too the errors
were judged to be too large to enable eQq. .. to be
calculated. A series of runs with 3.5X101 dynes/cm'
along (110j with 8,=0' was the basis for calculating
eQpp, ,

~
p, =o'. The changes in AHpp and integrated

intensities observed under these conditions are listed in
Table I. In the fourth column the second moments are
listed for the low-Geld and high-Geld halves of the In"'
line. It can be seen that the high-Geld half has a larger
moment than the low half regardless of the stress. It is
believed that In'", which is four percent abundant, and
which for the frequencies used lies ~15 gauss higher,
creates this slight asymmetry. The average increase of
QII22 is 7.4 gauss'. In the third column we compare the
relative intensities of the lines with and without
deformation. It can be seen that 12%%uq of the integrated
intensity is lost during compression. The uncompressed
comparisons were sometimes measured before the com-
pression and sometimes after so that the intensity loss
as well as the broadening are deGnitely reversible.
From the matrix elements' one calculates that the
N0=7/2~9/2 and —7/2~ —9/2 transitions contribute
11%%uo to the total intensity. Therefore we assume for the
initial calculation that these components have been
spread too far and are lost in noise. Equation (4) was
used in the form

7/2

AH 00 =hH 00 (0)+

should contribute to the second moment which resulted
from summing contributions as much as Gfteen gauss
away. A solution consistent with these displacements
but inconsistent with the measured relative intensities
would include the contributions of the (7/2j~(9/2~
transitions. Including these terms the calculated value
is 38 kc/sec. For the best estimate from these data
eQ[jp, .,

~
p, -o'=41 kc/sec=—eQpp[001].

In order to confirm the hypothesis of quadrupole
splitting, the two samples were rotated about their
compression axes and the peak-to-peak derivative
intensities measured as a function of rotation. A vari-
ation of intensity with rotation was observed in the
crystal compressed along L110jand rotated around this
direction. For the purposes of rotation we identify the
three principal axes of the Geld-gradient tensor in this
crystal, $110), $110$, L0011 with x, y, s respectively.
In this way t], is the angle between L001) and Hp ~

Ideally one should plot AB2' as a function of the
angle [],since Eq. (4) relates these quantities. Reason-
able agreement between theory and experiment was
found, however, by assuming the lines continue to be
Gaussian under compression and this simpler approach
is illustrated in Fig. 3. Sy assuming Gaussian lines
oH=2$AHp j&, where bH is the full width between line
derivative extremes. In addition, for Gaussians the
product of the peak-to-peak recorder deQection and the
square of the separation of the peaks is proportional to
the integrated intensity. Combining this relation with
Eq. (4) and assuming the integrated intensity to be
constant, we have

where

peak-to-peak

~~&~(m-1)

3 (2am —1)eQ
6] 1 ——— (p„(3 cos'[]—1),

8I (2I—1)
(6)

where 8 is now the angle from (not around) the x axis.
This explains the absence of orientation dependence
shown as a straight line in Fig. 3 and enables one to
calculate eQq [pip]=&60 kc/sec and eQp[100] eQp[001]

and 6]'~& 1] is defined by Eq. (2). Interpreting
these results in the manner described above, we Gnd the
best fit to the data to be eQpp[110] ——%16 kc/sec;
eQ[0[001]=&36 kc/sec and eQy[rlp] &52 kc/sec. The
solid curve in Fig. 3 has been calculated from these
values.

As mentioned above, the L010) compression is
simpler to interpret. For this case p» = p„=—

~

Therefore when the crystal is rotated about L010j there
is no change in y, .... In this case, Eq. (2) reduces to
Pound's formula':
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&PKK C11LXKK 2(Xww+XKK)3&

PKy=C44XKyv
(8)

where x, y, and z are the usual cubic axes.
We shall not give explicitly the various transforma-

tions necessary to use (8) in the present case, but
simply present the result: With a strain X along L110$,
the field-gradient tensor is, in our previous notation,
(*=L1103, y= L110j,.= L0013)

'(4Cii+2«4)X 0
(-',Cil gC44) X 0, (9)

0 0 g ~11+i

which, using the experimental values for this case, gives

eQCii= W 2)& 10 '(kc/sec) (cm'/dyne),
(10)

eQC44 ——&2)& 10 '(kc/sec) (cm'/dyne),

with an estimated accuracy of about +20%.
Using the known quadrupole moment of In"~,

1.161)&10 "cm', this can be converted to an actual field
gradient;

Cii= (&2.4+0.5))&10' statvolts/dyne,

C44 = (~2.4~0.5) X 10' statvolts/dyne.

The compression along $001) provides a check on
these values using the theory of the gradient-elastic
tensor, which may be expressed most simply as follows:
in the cubic case (not generally —see appendix) the
gradient-elastic tensor is symmetric. Therefore stress
along $110j should produce, along t 001), the same
field-gradient tensor principal value that stress along

t 001j gives along L110j. Thus the 30 kc/sec value
obtained for L010$ stress must be compared with the
36 kc/sec obtained along L001j with t 110j stress. The
difference of 20% is of the order of our estimates of our
experimental error.

It is interesting to compare the values (11) with
crude estimates which we have made by assuming that a
single electronic charge of appropriate sign is at each
lattice point and that the deformation of the unit cell
is uniform. Such an estimate involves a dificult lattice

=+30 kc/sec. All the signs of the coupling parameters
are undetermined by these measurements since the
first-order quadrupole splitting is symmetric. However,
the relations between the three coupling parameters for
each compression are accurately described by the ~
and W signs. (Also, for the assignment of relative signs
between the two see below. )

In the appendix we introduce the concept of "gradi-
ent-elastic" constants relating the Geld gradient to the
applied stress by a linear tensor equation:

0
Ppv Ppv =~g) ~p~; xx+x) ~

For the special case of a cubic site in a cubic crystal we
show that the relationship (7) is particularly simple,
involving only two constants C11 and C44.'

sum of which we did only the first three shells. The
first shell gives C»=380 esu/dyne; the second, —100;
and the third, +40. Clearly the sum does not converge
rapidly, but a figure like 350 esu/dyne represents a
likely order of magnitude. Thus we have an anti-
screening factor of at least 70. The true factor is even
larger since we have assumed an effective charge much
larger than that which is present, and ignored screening.
However, the true cause of the eGect is more likely to be
a change in the bonding orbitals than motion of the
charges on the "ions."

Finally we should like to report that qualitatively the
same results have been obtained with a single crystal
of GaSb.

CONCLUSIONS

1. The cubic symmetry of single-crystal InSb has
been destroyed by elastic deformation and line broaden-
ing from quadrupole interactions observed.

2. Strains of less than 10 4 are readily detectable by
this kind of measurement. This compares well with the
best mechanical strain gauges.

3. The nuclear magnetic resonance method of de-
tecting strain is localized so that one may observe
electric field gradients at different lattice sites by
observing different nuclear transitions.

4. It has been possible to detect the quadrupole
eBects that are caused by elastic deformation alone.
Therefore it should be possible to use this type of
measurement to determine crystalline perfection.

5. It has been shown that the change in electric-Geld
gradient at the nucleus upon compression is 70 times
too large to be explained by the displacement of charge
considering all constituents to be ionic.

6. The relations between stress and Geld gradients
have been derived and are shown to be consistent with
the observations.
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APPENDIX

There is a close analogy between the problem of the
effect of stress on the field-gradient tensor as measured
by quadrupole splitting and the theory of crystalline
elastic constants.

The elastic-constant tensor is a linear relationship c
connecting the stress tensor X„,with the strain x,q.

*KX—EK, v CKi;KKXKv j

~, X, p, , and v all run over x, y, ands. Since x and X are
necessarily symmetric tensors they each have only 6
independent components, giving only 36 rather than 81
meaningful components of c. For convenience, (A1) is
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often written in the misleading notation~:

x;=$8 cssXs, j,k= 1. ~ 6, (A2)

or in Voigt's notation
3

Q C;8=0, (AS')

C11 C22 C33)

c44= csg=c66, all others=0,

C12—C23 =C31)

while for trigonal or hexagonal symmetry

(A4)

Cll= C22) C18 C28) C44= C66) C66 2 (Cll C12) )
1/

all others but c88 and cls ——0. (AS)

1=xx) 4=ye)
2=yy, 5=sx) (A3)

3=sr, 6=xy,

which is briefer but de-emphasizes the important fact
that x, X, and c are 2-, 2-, and 4-index tensors, re-
spectively. Conservation of energy further simpliGes

(A1) or (A2) by requiring that c be symmetric in jand
k, which leaves it with at most 21 independent
components.

For crystals of any greater symmetry than the very
lowest (A1) or (A2) can be simpli6ed by taking this
further symmetry into account: that is, one requires
that the quantities x, X, and c transform in the proper
way under rotations, while at the same time (A1) must
not change under symmetry rotations of the crystal.
For example, any cubic point-group symmetry can be
shown to require

C11=C22= C33,

C44= C55= C66,

C12=C23= C31=C13=C32= C21,

all others=0.

(A9)

To these conditions we may add (AS)

leaving C with 30 independent components. Unfor-
tunately, there is no such energy-conservation principle
here as in the elastic case and so C need rot be sym-
metric in j and k.

In a syminetric crystal (A6) must not change under
symmetry operations of the point group of the site under
consideration (although this group may of course be
much less symmetric than the total point group of the
crystal). This will often lead to simpli6cations.

So far the discussion is quite general. The case at
hand, however, is the specific one of a site of tetrahedral
(=cubic for even-order tensors) symmetry in a cubic
crystal, in which all of the quadrupole splitting is
caused by stress. Because of the asymmetry of C we
cannot immediately use (A4) but must start over again.
However, re-examination of the arguments on which
(A4) is baseds reveals that C need not be totally sym-
metric in order to prove that

Since elastic strains are so small it is certain that in
the present experiments the change in the Geld-gradient
tensor is a linear function of elastic stress or strain:

Cll+C12+Cls

C11=—2C12,
,(A10)

0
PPv PIhV ~K, X CPv8 K~XK~y (A6)

~&;=P C;,X,. (A7)
k=1

Since the trace of the 6eld-gradient tensor is unobserv-
able we may as well set it equal to zero and as a result
we have another requirement on C:

Z/4 'Pejl Zs ZK, 1 C Jx;K8eXK1 Op

vrhich, since X is arbitrary, implies

Q„C„„,„1—0,

where p„,' is the Geld-gradient tensor at the site of
interest in the absence of the stress X. Since X and q
are symmetric tensors, C has at most 36 independent
components and thus it can be written in the Voigt
notation:

=Cll(X e—-,'X„„+X,.) (cyclic),

p „=C44X,„(cyclic),
(A11)

which is used in the text. The x, y, and 2 axes are taken
to be the cubic axes.

Measurements such as those in the text determine the
constants Cll and C44 (or the larger number of C's for
less symmetrical situations). Such measurements on
perfect crystals would then allow one to interpret
results on less perfect crystals in terms of internal
strains' if the sects of charged imperfections could be
discounted.

and there turn out to be only two independent gradient-
elastic constants. The Gnal result is the relationship, for
our cubic case, of Geld gradient to stress,

8 F. Funn, Acta Cryst 1, 44 (1952).. We are indebted to J. C.
W. Voigt, Lehrbttch der EristallPhysih (Teubner, Leipzig, Phillips for this reference and the above observation.

1910). 8 F. Reif, Phys. Rev. 100, 1597 (1955).


