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The relativistic corrections to the cohesive energies of the alkali metals are studied from two points of
view. In the first, perturbation theory is applied to the second approximation to the Dirac equation. Calcula-
tions are made for potassium and cesium. The limitations of this approach are discussed. In the second, the
quantum defect method is extended to include almost all relativistic effects. A relativistic analog of Sardeen's
expression for the eAective mass ratio is derived. Application is made to cesium.

I. INTRODUCTION

S TUDIES of electronic energy levels in solids com-
posed of heavy atoms must include, in principle,

the relativistic eGects due to the motion of an electron
in the strong attractive potential near any nucleus.
The theory can be formulated on the basis of a rela-
tivistic self-consistent 6eld. The wave function of the
E-particle system is an Eth order determinant of Dirac
spinors

@(xt x )=detU, (a,),
where

'I;I(X;)

U ( )
I;s(x;)
tt;s(X;)
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The Hamiltonian for the system is

H=g;[ cn; p; —P,ec'+—V;+g;,y; V;;]., (3)

Here V;; is the potential energy of interaction between
particles i and j.We neglect the magnetic interaction
of the electrons so that V;; contains only the electro-
static potential energy.

V,;=e'/r, ;.
In Zq. (3), V; is the potential energy of electron t'in the
Geld of the nuclei of the system:

V;= Q I Ze'/r;t, —

where the sum runs over all the nuclei.
The Hamiltonian is constructed to include relativistic

eGects due to the motion of an electron in the average
field. of the other electrons and the nuclei. It neglects
relativistic effects in the interaction of the electrons
with each other.

When wave functions of the form (1) are used,
minimization of the energy of the system with respect
to variation of the spinors U;, subject to the usual
conditions of orthogonality and normalization, leads to
relativistic Hartree-Fock equations for these functions:
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In (6), e; is the energy eigenvalue; it is in the neighbor-
hood of mt, ' for all except the most tightly bound
electrons. Summation over spinor indices is implied in
all integrals. These equations form the basis of the
relativistic self-consistent field. Because of the corn-

plexity of these equations, there has been no adequate
comparison of the results of Eq. (6) with those of the
standard nonrelativistic theory. '

If we could regard the Coulomb and exchange terms
in (6) as essentially the same as those of the nonrela-
tivistic self-consistent field, it would be possible to
treat the relativistic eGects according to perturbation
theory. This approach is discussed in detail in Sec. II
where it is applied to potassium and cesium. Unfor-
tunately, this simple approach is not quite valid. The
screening of the nucleus by the core electrons should be
more eGective in a relativistic than in a nonrelativistic
calculation, so that the change in the Coulomb and
exchange integrals for a valence electron should tend to
cancel the additional binding resulting from the rapid
motion of an electron near a nucleus.

Since perturbation theory does not lead to quantita-
tive results, it is desirable to work directly with the
relativistic equation in such a way that explicit con-
struction of a potential function is avoided. The quan-
tum defect method oGers such a possibility. ' In Sec. III
the cohesive energies of the alkali metals are discussed
formally in terms of the Dirac equation for one particle
in a periodic potential. We derive there a relativistic
analog of the formula of Bardeen4 for the eGective mass
of electrons. In Sec. IV, the corrections to the standard

2 The only existing relativistic self-consistent Geld for an atomic
system is that for Cu (without exchange): A. O. Williams, Phys.
Rev. 58, 723 (1940).

s T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950);
F. S. Ham in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press, Inc. , New York, 1955), Vol. 1, p. 127.

4 J. Bardeen, J. Chem. Phys. 6, 367 (1938).
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quantum defect calculation due to the relativistic If we calculate the expectation value of (8) by using
eBects are obtained for cesium. these wave functions, we obtain after a straightforward

but somewhat tedious calculation':
II. PERTURBATION THEORY

In this section we assume that the effective potential
acting upon an electron in a solid is the same in both
the relativistic and nonrelativistic self-consistent 6eld
calculations. We consider only the change in energy
brought about by the relativistic motion of an electron
in that potential. Although the basic assumption is not
really justi6ed, this approach does provide a useful
estimate of the orders of magnitude of the relativistic
eBects. The work reported in this section has already
been discussed brieQy. '

The assumption of an unchanged potential permits us
effectively to reduce Eq. (6) to the Dirac equation for
one particle in a periodic potential. We can employ the
second approximation to this equation for our purposes, '

E—Vp p' fP
Elf =

~

1—
( +V— VV V

2srscs ) 2m its'cs

A

+ (~VXP) lt. (7)
4m'c'

The terms

(E—V~ p'
vv v — ~ (vvxp) (8)

E 2mc' ) 2rw 4nssc' 4m'c'

A'k'
Es E0+ Es

2m

1+k s) sr r dr+2 Qpor dr

(Eo—V)' A' dV d
X &Eo+sk'

2rrsc' 4m'c' dr dr

(Eo—V)' A'k'
Xsrr'dr+2k' Qo 4 or'dr+

2mcs 4rre'c'

Np t' df'= 1. (14)

t ( dV dso dV dPoq

g
(

eo— +so )r'dr . (13)
dr dr dr dr )

Addition of a multiple of so to (11) does not affect the
expectation value to order k'. In (11), (12), and (13),
Ep is the eigenvalue of the lowest state, —AEp is the
expectation of (8) with the function so, and Es is the
effective mass ratio res/m". The normalization ap-
propriate for (13) is obtained by requiring that'

may be regarded as perturbations. To determine the
eGect of these terms on the cohesive energies of the
alkali metals, we calculate the expectation value of (8)
for the valence electron both for the lowest state in the
free atom and to order k' in the solid. To do this, we
need wave functions for the solid which are correct to
order k'. We consider Bloch functions

Equation (13) has been evaluated for potassium and
cesium by using wave functions obtained in the calcu-
lation of cohesive energies in these elements. ' If we
de6ne

fAsks'l
&Es—Es—Eo—

I &2~)
ling= O' Qo(r),

Qg= so+1k cosBsr+k (ssPs+Qo),
where

(9)
where Es is given by (13), the results can be given in
atomic units as follows:

Sr= fr rSo, — (10)

Ps= (3 cos'B—1)/2.

In Eq. (9) the functions Qo sr Qs, and po are essentially
those given by Silverman'.

for potassium,

for cesium,
AEo ———L0.00226—0.00005k']

EEI,= —[0.0226+0.0248k'i.

(16)

where fp is a P-state solution of the homogeneous wave
equation for energy Eo and Qr(r, ) =0. (Here r, is the
radius of the atomic sphere. )

Po = 'r fr or'Qo+Es(Bso//BE) — —(11)

The function Bso/BE satisfies

d 2rrs ( Bso) 2ers—+ (Eo—V)
~

r ~= — rso. (12)
as & BE)

' J. Callaway, Phys. Rev. 102, 919 (1956).'L. I. Schiff, Qganilra kfechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), second edition, p. 333.' R. A. Silverman, Phys. Rev. 85, 227 (1952).

The small coeKcient of the k' term for potassium is
apparently accidental. The change in the energy of the
lowest state of a valence electron in the free atom, as
computed from self-consistent 6eld wave functions, "
is (in atomic units)

Further details are given by V. Sirounian, Master's thesis,
University of Miami, 1956 (unpublished). Some negligible terms
have been dropped.' The normalization here is different from Eq. (5) of reference 5
where jo"reosr'dr= 1/4~ and res~ was written in place of our eel."Herman, Callaway, and Woods, Phys. Rev. 101, 1467 (1956);
J. Callaway and E. L. Haase (to be published).

"D. R. Hartree and W. Hartree, Proc. Cambridge Phil. Soc.
34, 550 (1938);R. M. Sternheimer (private communication).
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for potassium,
AE = —0.00119;

We now utilize the customary perturbation expansion
for u~ and E~ in terms of k:

for cesium,

DE,= —0.01673.
up= up+ur+us+ ' ' '

)

EI,=Ep+Er+Ep+
(21)

From these results, the change in the cohesive energy
is computed to be 0.33 kcal(mole in potassium and 2.41
kcal/mole in cesium. In both cases, the effect increases
the binding.

There is an error resulting from the use of first-order
perturbation theory applied to the second approxima-
tion to the Dirac equation as compared to the Dirac
equation with the same potential. The error was esti-
mated by comparing the results of this approach with
the Dirac energy eigenvalue for the 6s state in a Gcti-
tious hydrogen-like atom with Z= 55. The error is only
6% for that case and may be less in a more realistic
example.

where n; and E; are proportional to k'. Upon substi-
tuting (20) and (21) into (19) and collecting terms pro-
portional to the same power of k, we have

(—cn y —Pmc'+ V—Ep)up=0,

(—cn p —Pmc'+ V—Ep)ur ——(Et+ken k)up,

(22a)

(22b)

Er =—AcJt up*n ' ku pdr =0. (23)

(—cn p —Pmc'+ V—Ep)u,
= (Er+hcn k)ur+E, up. (22c)

It is easily determined that

III. RELATIVISTIC THEORY OF THE
COHESIVE ENERGY This is a consequence of the crystal symmetry. (Sum-

mation over spinor components is implied in all in-
tegrals. )

It is now possible to solve the second of Eqs. (22) if
the solution to (22a) has been obtained. A particular
solution of (22b) is

ur= —s(k r)up. (24)

To this must be added some multiple of a solution of
the homogeneous equation in order to satisfy the
boundary condition. The boundary condition in the
cellular method is that an even function has zero radial
derivative on the atomi. c sphere and that an odd func-
tion is zero on this sphere. In an alkali metal, the ground
state function is almost entirely characterized by /= 0
and j=sr. H we take k along the polar axis, then the
large component of N~ is an odd function. For this large
component to vanish on the atomic sphere, it is neces-
sary to add multiples of solutions for /=1 and j=-,'
and —', (we choose m;=rsfor all functions). In what
follows, y~, ; denotes the solutions of the homogeneous
equation for a state characterized by l,j and m;=»
while g~, ; is the radial part of the large components. If
we require each q g, ; to be normalized with respect to
integration over solid angle, an examination of the
explicit form of the function" shows that we must have( cn p Pm—c'+ U)g—p Esgg. ——(19)

The cohesive energies of the alkali metals are de-
termined, as discussed by Wigner and Seitz," prin-
cipally from the difference of two quantities: the
boundary correction and the Fermi energy. The former
is found by subtracting the energy of the lowest state
of a valence electron in the free atom from the energy
of the corresponding lowest state. The Fermi energy
can be computed if the eGective mass is known. "The
Coulomb interaction of the valence electrons can be
taken into account, but the eBect on the cohesive energy
turns out to be small.

This picture is not changed in any essential respect
by considering the relativistic motion of one electron in
the Geld of an ion. The boundary correction is still
obtained in the same manner, except that one must
solve the Dirac equation )or more precisely, Eq. (6)j
to determine the energies of the states of interest. The
principal change comes in the calculation of the eR'ec-

tive mass. We derive a relativistic expression for this
quantity below, following the method of Silverman. '

We consider the Dirac equation for one particle in
periodic potential:

lt =s'"'u (20)

where u~ is periodic in the lattice.

'2 E. signer and F. Seitz, in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic Press, Inc. , New York, 1955),
Vol. 1, p. 97.

'p Terms in the series exPansion of E(k) of order k4 and higher
are important in detailed calculations of the cohesive energies of
the heavier alkali metals, but they are disregarded in this calcula-
tion. The effects of core polarization are also neglected.

Since Bloch's theorem still holds (it is a consequence of
symmetry and is independent of the form of the
Hamiltonian), we write

gr. —:(r.)=gr, —:(r.). (26)

The third component will be zero when

«.go„(r.) = 2gr. ;(r.)+gr. :(r.). (27)

We now solve Eq. (22c) to determine us. We write (25)

14H. A. Bethe in Handblch der Physik (Edwards Brothers,
Inc. , Ann Arbor, 1943), Vol. 24, Part 1, p. 312.

u, = —k (r cos8ppp, ;—v2 p, , ;—ppr, ;). (25)

The fourth component of u,. will vanish on the atomic
sphere, r= r„ if
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in the form
Q i= —o (k ' Iu p+ k'Pi) .

With this substitution, we have to solve

[—cn. y—Pmc'+ V—Ep]up
=E,up —okcn k[(k. r)uo+kvi]. (28)

A particular solution of this equation is

Equation (32) is in a form suitable for use in the
quantum defect method. It is nevertheless instructive
to obtain an expression resembling more closely the
original result of Bardeen. 4 To do this, we need to
evaluate the quantity

(B'go. «
1

EBrBE)»„zp
(Buo)

up ——E,
i i

—k(k r)Vi ——',(k r)'uo,
&BE) zo

where (Bup/BE) zp satisfies

(29) Let fi, ; be the radial function belonging to the small
components of the function «oi, ;.The functions fp; and
gp., satisfy the equations:

1 dgp,
[E—V—(r)+mc'jf p, «

Ac dr
(Buo t[—cn. p —Pmc'+ V—Ep] i i

=up.
(BE) zo

(30)
(35)

1
[E V—(r) —mc']g—p, ;

Ac

p, $ 2
fp &. —

dr r"Equation (30) is obtained by differentiating (22a) with
respect to E and setting E=Ep.

The function N2 is a solution of the Dirac equation to
second order in k. We decompose this into a linear com-
bination of functions with angular dependence ap-
propriate to states of de6nite l,j, and m;= —', . The
boundary condition which we employ is that the part
of N2 which has angular dependence appropriate for
(1=0, j=—', ) must be such that the radial derivative of
the large component is zero for r=r, . This is also the
boundary condition for up, and it clearly cannot be
satis6ed by adding some mul. tiple of Np to N2. Conse-
quently, the boundary condition suffices to determine E2.

The part of the third component of (29) belonging to
1=0, j=—', is easily determined to be

If we differentiate the first of Eqs. (35) with respect to
energy and evaluate the result at r =r, and E=Ep and
then note that fp, «must vanish at r„we obtain

1 (Bfo,«) (B go. «l—[Eo—V(.)+ c'jl I
=

I I
. (36)

Ac E BE )»„zp t B»BE)»„zo

In Eq. (36), Ep+ V(r,) is very nearly equal to mc' since
W=mc' Ep is close—to V(r,) for an alkali metal. To a
very good approximation, we have

(B go, «) 2mc (Bfo,«)

«.B»BE)».,zo i' 0 BE )», ,zp
(37)

Bgp, -', k'r'
+k r (2gi, —;+gi,-',)— go, ,

(4 )-: BE
(») To obtain. (Bfp, «/BE)», , zp, we multiply Eq. (30) by uoo

and integrate over the atomic cell, giving

k'», (B'go, ;~
(2g, +g, «')I

3
' '

EBrBE) .„z,
' (32)

If we require this to have zero radial derivative at
r=r„we obtain BNp

up*( —cn. p —Pmc'+ V—Ep) d»
BE

uo Qpd»=1. (38)

where the prime indicates the derivative with respect
to r. We can use (25) to write (32) in a form which is
evidently independent of the normalization of all the
functions:

(B'go. —:&
' (2gi. (»)+gi. — (») &

Eo= — 'go, «l

''
I I

' '*
I

~ (33)
3 3 BrBE)»„zo E 2gi, «(r,)+gi, ;(r,) )

If we introduce the functions N~, ~=rg~, g, etc., a little
algebra sufFices to transform (33) into

k r, (B go, «q
'

&B»BE)

A straightforward calculation transforms (38) into

Blp
[(—cn y —Pmc'+ V—Eo)uo]*

kc r Buo
uo*n ds=1. (39)

i&

The first term on the left-hand side of (39) vanishes.
The other term may be evaluated by noting that n ds
=O.„r'dQ and then using an explicit representation for
o.„.It turns out that

( r 'idui, «( r pdui, «

X -'oI
I

'+pi
(ui, «) dr «.Qi, «) dr

Bup 1 ( Bgp; Bfp «)&fo„+&g—o. «
BE 4nI BE BE )
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Integration over solid angles cancels the factor (4s.) '.
Since fat(r, )=0,

(Bjs '*l—Au, 'gs, ;(r,) I I
=1.

( BE)r„zp
(41)

Combining (41) and (37) gives:

(B'ga I) 2m

(BrBE& r„zp A'r, sgp;(r, )

Upon substituting (42) into (34), we have finally

0'0'r Ns "(r )
jv2—

2m 3

IV. APPLICATION OF THE QUANTUM
DEFECT METHOD

Because relativistic self-consistent Gelds are not
available for the alkali metals, it is not possible to
calculate the boundary correction and the effective mass
directly from the self-consistent field Eq. (6).However,
we have recourse to the quantum defect method. ' In
this method, the experimental energy levels of the free
atom as determined from spectroscopic data are used
almost directly to circumvent the construction of the
potential.

In order to. apply the quantum defect method in the
present instance, we note that at large r, in the region
of the atomic cell where the potential energy of the
valence electron is just that for a Coulomb field, e'/r, —
the Dirac equation can be reduced by standard pro-
cedures to the ordinary Schrodinger equation. In this
region, the only relativistic effects are those pertaining
to the exterior Coulomb Geld, which may be neglected
because they are very small. For this reason, no basic
modification is required in the theory of the quantum
defect method. We shall, of course, expect that states
of the same orbital angular momentum but of diferent
total angular momentum j will have diferent energies
due to the relativistic effects in the interior. Since the
lowest state of a valence electron is a state of zero
orbital angular momentum, which cannot be split by
spin-orbit coupling, all important relativistic effects for
this state are already contained in the standard calcu-
lations. In order to calculate the eGective mass, we
need p functions corresponding to j=—', and j=s.
We must therefore obtain separate quantum defects
for these states, but the calculation is otherwise
unaltered.

( r pdgr, ,* t'r ader, ;
X -',

I
—

I
'+ ',

I
-I "—1 . (43)

EN, I) dr Eg, ;i dr

This is the result desired. It diGers from the original
formula of Bardeen only in that the functions are solu-
tions of the Dirac equation and that a combination of
the derivatives of the different P-state functions is used.

The practical application of the quantum defect
method, as discussed by Ham, depends critically on the
function g (E), which is defined at the eigenvalues of the
free atom for a state of angular momentum / by

s.rf~(E) =are tan
I"(I+l+1)

cot%8 )
ts"+'I'(I—I)

(44)

I ' (r) =a(e) (s/2) Js~t (s)+p(N) (s/2)1Vs~r (s). (46)

Here s= (Sr) & and J and 1V are certain Bessei functions
discussed by Ham. The coeKcients a and y are re-
lated by

u(e)/y (I)= —cot(s ti). (4&)

Knowledge of g as a function of energy makes it possible
to determine the wave function for any energy as a
function of r at large r. The required Bessel functions
J and Ã may be constructed from tables. "The normal-
ization of the function is not known but only logarithmic

3.65-

5.60-

5,55=
0

I

I

~2

t
I-3

I

I-4
I

I-5
EhIEROY (RYOBEROS)

Fro. 1. Extrapolation of quantum defect method function v(E)
for cesium. The solid curves show the extrapolations used for the
l = 1 states of j=s (v&) and j=—,

*
(va), and for the nonrelativistic

(vrr) case. The circled points show the values of rl obtained from
experiment for the upper and lower curve, and as averaged by
Ham for the middle one.

"F.S. Ham, OKce of Naval Research Technical Report No.
204, Cruft Laboratory, Harvard University, 1954 (unpublished).

where E= —1/e', and the quantity 6~ is determined by

e=m —bg,

where m i,s an integer which increases by unity between
adjacent terms of the same spectral series. The function
g(E) is supposed to vary in a slow and regular fashion
with energy. This property is extremely important since
it is necessary to determine g by extrapolation. The
function q must be evaluated at the energy of the lowest
state of a valence electron in the solid, which is con-
siderably lower than the energy of the lowest valence
state in the free atom. Once g is determined, the ratio
of the coefficients of the regular and irregular Coulomb
functions which compose the solid state wave function
in the exterior of the cell can be determined. According
to Ham, ' we may write r times the radial wave function
for a state of angular momentum l and energy E as
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TABLE I. Least squares quadratic extrapolation of g(E) The.
coefficients c, b, and c in the expression q= a—bE+cE are given,
as determined by a least-squares 6t to the spectroscopic data.
The coefficients proposed by Ham are also given.

Nonrelativistie

3.5680
0.3329—0.0747

i =&/2

3.5883
0.3329—0.0747

j=3/2

3.5586
0.3329—0.0747

Ham

3.5696
0.3019
0.0479

The so-called nonrelativistic coe%cients are determined
from the values of g given by Ham, ' which were ob-

tained from an average of the components of the
spectral doublet. Ham, however, proposed a different

extrapolation scheme. The coeKcients in the extra-
polating polynomial used by Ham are also given in

Table I. The difference is a measure of the uncertainty
in extrapolation.

The energy Eo for which the wave functions and their
derivatives are required was taken from the work of

"H. R. Krats, Phys. Rev. 75, 1844 (1948).

derivatives, which are independent of normalization,
are required.

We have determined the effective mass of electrons
in cesium by using Eq. (34) and the quantum defect
method. The function rf was calculated for P states of
j=-, and j=—', from spectroscopic data. "It is exhibited
in Fig. 1 which shows both the points determined from
the experimental eigenvalues and the extrapolations
used. It can easily be seen that there is a large amount of
uncertainty in the extrapolation procedure. This un-
certainty detracts from the accuracy of the quantum
defect method. For the purposes of comparison of rela-
tivistic and nonrelativistic calculations, it seems de-
sirable to extrapolate all the functions in the same way.
There is no fundamental justification for such a pro-
cedure, but no better one has been found. Ham's
values were fitted with a quadratic expression using the
method of least squares, and the other curves were

required to be parallel to it. The values of the coefficients
of the least-squares quadratic are given in Table I.

TABLE II. Results for cesium: effective mass and cohesive energy.

sg = (Sr,)&

6.0
6.5
7.0

&2 (rel. ) =m/m+

1.5307
1.2200
1.1216

B2 (nonrel. )

1.5413
1.2182
1.1232

d,P& (kcal/mole)

—0.36—0.04—0.03

Brooks,"as was the quantity

(4S)

This is legitimate since the relativistic effects are already
included in the ground state function. The p state func-
tions and their derivatives were evaluated according to
the procedures discussed. The effective mass computed
according to (34) is given in Table II together with that
computed from the nonrelativistic extrapolation accord-
ing to the standard formula. The same three values of
the radius of the atomic sphere employed by Brooks
were used. The nonrelativistic effective mass values
quoted here are different from his. The changes in the
cohesive energy can be computed directly from these
effective masses and are quite small —considerably
smaller than the residual experimental and theoretical
uncertainties.

The small size of the change in the effective mass, as
compared with that given by Eq. (17), reveals the
competition between the increased attraction and the
more effective screening discussed in the introduction.
The separate effects are sizable, but the cancellation is
nearly complete. Relativistic effects will probably be of
more numerical significance in a calculation of the
value of the wave function at the nucleus, which is
required in the theory of the Knight shift.
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