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The macroscopic dynamical equations of a tenuous ionized gas in a magnetic field are developed by aver-
aging over the individual ion and electron motions, which do not necessarily possess an isotropic distribution.
It is shown that the principal motion of the gas is related to the magnetic field by the usual hydromagnetic
equations, as developed for conducting liquids and dense gases; the anisotropy of the individual particle
motions shows up primarily as a coefficient multiplying the pondermotive force exerted by the magnetic
field on the plasma. The results reduce properly to the earlier work of Schluter, Cowling, and Spitzer for
isotropic pressure, and are in agreement with the recent developments from the Boltzmann equation. It is
pointed out that the magnetic lines of force are permanently connected and move in the frame of reference
of the electric drift. It is shown that near static equilibrium, when the principal motions vanish, there remain
small macroscopic drift motions of the gas in the field inhomogeneities.

It is also shown that the field equations, obtained by assuming that the radius of gyration of the thermal
motions is small compared to the scale of the field, are valid even near neutral surfaces, on which the field
density vanishes.

I. INTRODUCTION

'HE usual hydromagnetic equations

BB Q2

=VX(vXB)g v'B,
BI 4xpo.

Bv—+(v V')v= ——|7p+ (VXB)XB,
Bf p 4xp

for the magnetic field B and the velocity field v in a
fluid with material density p, hydrostatic pressure p,
and electrical conductivity o, are conventionally derived
from Maxwell's equations by assuming that the conduc-
tion current density i is related by Ohm's law to the
electric field E' in the frame of reference moving with
the fiuid,

i=o'E . (3)

Restricting ourselves to nonrelativistic Quid velocities
(v((c), it follows that

then from (3)

E'= E+ (v/o) XB;

E= —(v/c) XB+i/o. (4)

*Assisted in part by the 0$ce of Scientific Research and the
Geophysics Research Directorate, Air Force Cambridge Research
Center, Air Research and Development Command, U. S.Air Force.' W. M. Elsasser, Phys. Rev. 95, 1 (1954).

Maxwell's equation,

4 i+aE/at =oVXB,

upon omission of the displacement current (since'
s((c), gives

i= (c/4r)&XB;

then from (4) it follows that

E= —(v/c) XB+(c/4rro) V XB.

Hence the field equation

aB/a&= —oVXE

reduces to (1).Equation (2) is derived by adding to the
classical Euler equation of motion the Lorentz force
(i/c) XB and using (5) to express i in terms of B.

In liquids, and in gases suSciently dense that the
collision rate of the free electrons is large compared to
their cyclotron frequency in B, we have no reason to
doubt that (3), and hence the hydromagnetic equation
(1) deduced from (3), is valid. However, in tenuous
ionized gases in which the collision rate is small com-
pared to the cyclotron frequency it is not obvious that
(3) is applicable; an electric field impressed. across a
tenuous plasma results first of all in a drift of both
electrons and ions perpendicular to the electric field
with a velocity cEXB/8', and there is no net transport
of charge.

Schluter2 has shown that in the 6nal analysis the
situation, though now more complicated, may still be
represented adequately by (3) in most cases. A more
formal and detailed treatment of the problem based on
the Boltzmann equation has been presented by Chew,
Goldberger, and Low' and also by Watson4 and by
Brueckner and Watson. ' They have investigated the
dynamical properties of an ionized gas which is suK-
ciently tenuous that direct interaction between the
individual ions and electrons may be entirely neglected.
They restrict themselves to magnetic fields whose scale
of variation is large compared to the Larmor radius of
the gas particles. They have been able to show in a
formal way that in the 6rst approximation the equa-
tions of motion reduce to the hydrodynamic form given

~ A. Schluter, Z. Naturforsch. Sa, 72 I'1950};Ann. Physik 10,
422 (1952).

s Chew, Goldberger, and Low, Proc. Roy. Soc. (London) 236,
112 (1956).' K. M. Watson, Phys. Rev. 102, 12 (1956).

s K.A. Brueckner and K.M. Watson, Phys. Rev. 102, 19 (1956).
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by (2), and that the equation for 8 approximates to (1)
with 0 = ~, provided that the system is not too greatly
disturbed by large amounts of heat conduction along
the lines of force, etc.

Now since the formal developments based on the
Boltzmann equation neglect all interaction between
individual particles, so that the collision terms vanish
from the Boltzmann equation, we see that we can just
as well deduce the macroscopic behavior of the gas by
summing over the individual motions of the gas atoms:
Because the particles do not interact we may compute
their individual motions ahead of time, using Newton's
equations to relate their velocities to the electromag-
netic Geld variables; in the absence of interaction the
e-body problem reduces to e one-body problems. Ke
may then sum over all individual particle motions,
obtaining the total mass motion as a function of the
field variables; we may also obtain the total current
density as a function of the field variables, which is then
inserted into Maxwell's equations to yield the electro-
magnetic field equations appropriate to the tenuous
ionized gas.

Thus, we shall carry out our development of the
macroscopic motions of the plasma from much the
same point of view as used by Schuter, ' and by
Spitzer', but we shall endeavor to show explicitly
the effects of anisotxopy of the individual particle
motions and we shall strive to express the macroscopic
equations of motion in a form as closely analogous to
the hydromagnetic equations as possible. We shall
cover much of the same ground as Schluter and Spitzer
in the construction leading up to the final equations. '

The results of such a Newtonian procedure are, of
course, entirely equivalent to conclusions based on the
Boltzmann equation. The Newtonian point of view has
the advantage that it avoids the formal mathematics
associated with the appropriate solution of the Boltz-
mann equation; it works directly with the basic physical
phenomena of the individual particle motions so that
one may see immediately how the microscopic me-
chanics directly produce the final macroscopic fields.
It has the formal disadvantage that one does not auto-
matically obtain a general expression relating the
macroscopic pressures, p„perpendicular, and p, parallel
to 8, to other macroscopic quantities; however, in
practice the relations are usually easily supplied when-
ever the problem at hand is sufFiciently simple that the
formal relations from the Boltzmann equation are
useful. Finally, it should be noted that the Newtonian
procedure is limited by the fact that one is not able to
go on with further developments where collisions are
included as a small perturbation.

' L. Spitzer, Astrophys. J. 116, 299 (1952).' E. Astrom l Arkiv Fysik 2, 443 (1950)g has previously used
the Newtonian point of view to establish under what circum-
stances it is possible to reduce the field equations in a plasma, by
suitably defined dielectric and permeability coeScients, to the
form assumed by the Maxvrell equations in a homogeneous non-
conducting medium.

Recognizing these advantages and weaknesses of a
Newtonian development, we shall concentrate our at-
tention in this paper on exhibiting the details of the
macroscopic mass motions and their relation to the
microscopic particle motions; in addition we shall
investigate the macroscopic equations in the vicinity
of a surface on which 8 vanishes, to show that though
the usual approximation of small Larmor radius is not
valid, the general conclusions based on that approxi-
mation are correct there.

Fortunately, except in one case we shall not have to
consider the microscopic velocity distribution: We
shall find that the contribution of each individual elec-
tron and ion in the final macroscopic Geld equations
involves the particle mass M multiplied by the square
of the thermal velocity m; upon summing over all
particles to obtain the macroscopic equations we ob-
tain, then, QMw, which is just the hydrostatic pressure
regardless of the velocity distribution.

II. CURRENT DENSITY

A. Individual Particle Notion

Consider the nonrelativistic motion of a particle of
mass M and charge q in an electric field E and a mag-
netic field 8 whose scale I and period of variation T
are both large compared. to the radius of gyration E.
and cyclotron period 2z/0 of the charged particle. We
shall decompose the motion w of the particle into the
usual circular motion about the guiding center plus the
drift. of the guiding center. We use the subscripts e and
s to denote the component of a vector perpendicular
and parallel to 8, respectively.

It has been shown by Watson4 that the principal
motion of the guiding center is the drift

u„=g(E&(8)/8 + (tMw sg/rj84)BXVgP/2
+(Mw, sc/qB')BXL(8 V)Bj, (6)

perpendicular to 8, and the drift u, parallel to 8, where

Mdu, /Ch= —(-',Mw„'/8')B(8 [(8 V)B]}. (7)

The first term on the right-hand side of (6) represents
the usual electric drift. The second term is the d.rift
perpendicular to both 8 and VB' as a consequence of
shear in B. The third term is the drift arising from the
reaction against 8 of the centrifugal force of the motion
z, along a curved line of force; as will be shown later
B)&L(8 V)Bj represents the curvature of the line of
force. The acceleration along the lines of force given by
(7) arises from the reaction of the centrifugal force of
the circular motion against diverging lines of force, and
represents a repulsion along the lines of force away from
regions of dense field.

The circular motion about the guiding center of the
particle is described principally by the f'amiliar adiabatic
invariant w„/8' =constant.

On the basis of the above motions of the individual
particle let us now compute the resulting total current
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density in an electrically neutral plasma composed of
S electrons, with charge —e, and S ions, with charge
+e per unit volume; the generalization to ions with
charge Ze and Zg electrons per unit volume will be
obvious.

B. Circulating Current

We consider first the net current density resulting
from the circular motion of each particle, ions and
electrons, about its individual guiding center; we shall
for the moment ignore the drift u„and u, of the guiding
center. Taking advantage of the large scale of the mag-
netic Geld, L&&E, we may construct at any point a
locally Cartesian coordinate system with its s axis
tangent to the line of force through the origin of the
local system. We shall consider all the ions lying be-
tween the planes s=0 and s=bZ; the guiding centers
of the ions lie between s=0 and s=bZ, and the circular
motion of each ion about its guiding center carries it in
a circle parallel to the s=0 or xy plane.

We suppose that the number of ion guiding centers
per unit volume is N(x, y). The cyclotron frequency
Q(x,y) is related to the field B(x,y) at each guiding
center in the usual way

Q(x,y) =q8(x,y)/Mc. (g)

We denote the particle velocity about the guiding
center by w„(x,y) where x and y are the coordinates of
the center. Hence the radius of gyration is

R(x,y) =w. (x,y)/Q(x, y). (9)

To compute the x component of the ion current den-

sity in the layer 8Z, we must calculate the rate at which
the distribution N(x, y) and circular velocity tc„(x,y)
causes charge to be transported across the element of
area x=X, F&y&F+5F, 0(s(BZ. To determine
which ions the circular motion carries through this
element of area we construct the locus of all points
(xi,yi) which lie at a distance R(xi,yi) from (X,F),
and the locus of all points which lie at a distance R(xs,ys)
from (X, F+5F); it is easily seen from Fig. 1 that all
ions whose guiding centers lie between these two loci
pass through the element 5I'BZ. The two loci are
given by

R'(xi, yi) = (xi—X)'+ (yi —F)', (1o)

R'(xs, ys) = (xs—X)'+ (ys —F—BF)'. (11)

With the magnetic field in the positive s direction,
an ion will circle in a clockwise sense as viewed from the
positive s axis. Each ion with guiding center between
the two loci and for which y& F will contribute a mean
current —eQ/2x across BIZ; each ion with guiding
center at y&F contributes +eQ/2s. . To sum over all
of the ions with guiding centers between the two loci
it is easiest to use the polar coordinates (r,8), defined by

x—X=r cose, y—I'=r sintII;

the element of area between the loci becomes

dA = ,'(rs-s rP—)d8,

where from (10) we have

ri=R(X, F)[&+(BR/BX) cos8+ (BR/BF) sin8j,

and from (11)

rs t
——R(X,F)+5F' sin8]

X L1+ (BR/BX) cos8+ (BR/B F) sin8 j,
upon expanding R(x,y) about (X,F') and neglecting
all terms of second and higher orders in (R/1.). Then

dA =8FR(X,F) sin8

&&[1+2(BR/BX) cos8+2(BR/BF) sin8)d8. (12)

Upon carrying out the integration from 0=0 to
0=2m, we 6nd that the x component of the current
density across the element SI'bZ is

r'. (X,F) = —-', e(B/B F) (NQR')

c(B/B—F) (-,'NMtc„s/B) (13).
In a similar way we find that

i„(X,F) =+c(B/BX) (-'NMw„'/B). (14)

Equations (13) and (14) have been deduced on the
assumption that the planes of the circular motion of
each ion are everywhere parallel to the xy plane; thus
we have tacitly assumed that the lines of magnetic
force are straight, and all parallel to the s axis. We
will now generalize the expressions (13) and (14) to
include current density resulting from the circular

Fj:G. 1. Geometrical setup for computing the x component of the
Larmor current density ir, at the segment (X,F}, (X, F+5F}.



i ON IZED GASES OF LOW D ENSITY

motion of ions in a magnetic 6eld whose lines of force
have a radius of curvature R in a plane making an
angle p with the x axis. In such a case we again con-
sider those ions with guiding centers between s=0 and
z=R(x,y) where now

bz(x, y) =HZ[1 —(x/R) cosp —(y/R) sin&).

Then the circular motion of each ion with guiding center
in 0(z&bz(x,y) lies entirely between the two planes
z=0 and z= 5z(x,y): In an element of volume dA8z(x, y)
there are N(x, y)dAbz(x, y) guiding centers, transporting
charge across the element of area 51'5z(X,Y) at a rate
[qQ(x,y)/2z jN(x, y)dA5z(x, y); we proceed as before
except that 5z(x,y) is now a function of x and y, and is
no longer a constant. It is readily seen that 5z(x,y) will

be included in the differentiation on the right, -hand side
of (13) and (14), yielding

i.(x,y) = [', q—/bz-(x, y) $(8/By) [NOR'bz(x, y) $
=—c{(8/By) (-', NMw '/8)

—(-'NMw„'/8) (sing/R) }, (15)

and

i„(x,y) =+c{(8/Bx) (-', NMw„'/B)
—(i2NMzv„'/8) (cosP/R) }. (16)

We note that the sense of the resulting current is inde-
pendent of the sign of charge of the particles.

In order to express the current density in vector form,
we note that we may write the identity

(B v)B=(1/a'){BB [(B v)B]—Bx[Bx(Bv)B]}.
The 6rst term on the right-hand side is the component
of (B V)B parallel to B and represents the change in
the 6eld density, as one moves along a line of force, as
a consequence of the diverging of the lines of force; it
affects the drift of the ion centers as given by (7). The
second term is the component of (B V)B perpendicular
to B and represents the change of direction of the lines
of force as one moves along 8; it is the centrifugal term
and may be expressed as

~

—BX[BX(Bv)B)/~ ~=a/R. (17)

Using (17) we may eliminate R from (15) and (16).
At the same time we de6ne the total pressure component

p due to motions perpendicular to B as

p„=-',NMw„P+ 2Nmm „,',
where nz and m„, are the electron mass and velocity.
Then for both the ions and the electrons together we
have the total current

ii, = (c/B)BX{V(p„/8) (p /8 )(B.V)B} (18)

= (~/8 p.)Bx{vp.—-', (p./p. )vp.
—(p /p„) (B V)B/8~}, (19)

as a consequence of the circular motions. p represents
the magnetic pressure 8'/8n. .

iii =¹[u„(ions)—u„(electrons) j (20)

= (./8 p )Bx{-',(p./p )vp

+(p./p-)(B v)B/8 } (»)
The electric drift cEXB/8' contributes no net current
because both ions and electrons drift in the same direc-
tion.

There will also be a drift current parallel to the field,
in addition to the lateral current iD, as a consequence of
ordinary electrical conductivity along the magnetic
lines of force; with no interaction between individual
particles, as we are assuming, the electrical conductivity
paraHel to B would be inlnite.

Assuming no initial hydrostatic pressure gradient,
from (7) we see that variation of the field density J3
along the lines of force results in greater acceleration
along B for the electrons than for the protons since the
electron thermal velocity is much greater than the ion
thermal velocity, both represented by w in (7).
Thus we would expect that there might arise currents
along B as a consequence of B [(B V)Bj/0. Schliiter'
and Spitzer' have shown that when the distribution of
individual particle velocities is isotropic no macro-
scopic motions and no current arises from this eGect.
We shall consider the problem in detail in Sec. IV for
an anisotropic velocity distribution. For the present it
is sufficient to note that if a current along B were to
result, in the anisotropic case, as a consequence of the
component of (B.V)B parallel to B, a space charge
would quickly appear, giving rise to an electric 6eld
which would stop the current. The electric field arising
in this way is

IEI =O[(R/L) (w/~) al,
and so is smaller than the field given in (43) by the
factor R/I. ; hence we shall neglect its effects.

D. Polarization Current

The 6nal contribution to the current density which
we shall consider is due to the polarization of the
plasma'~ in the presence of an impressed electric field;
it is the current resulting in the charge separation pro-
duced by inertial forces. We have just discussed the
polarization along the lines of force and we shall now
develop the appropriate lateral results.

We let the magnetic 6eld lie along the s axis of a
local Cartesian coordinate system. We suppose that
there is an electric 6eld in the local y direction. Then the

C. Drift Current

As a consequence of the drift velocity u, given in
(6), there will be a current density, which we denote
by i&. Noting that —,'XMm„' is the contribution to the
lateral pressure p„, and NMw, ' to the longitudinal
pressure p„we see from (6) that the total drift current,
due to both ions and electrons, may be written
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motion of a particle of charge q and mass M is

dX gdf
M =——8,

dt' c dt

d'y (q) dx
M =qE

/

——
f

8.—
dP &c) dt

(22)

(23)

Equation (34) represents the contribution to VXB of
the change in direction of the lines of force as one moves
perpnedicular to B; the first term in the brackets on the
right-hand side of (35) represents the contribution of
the shear in B, the change in the magnitude of B as one
moves perpendicular to B; the second term in the
brackets represents the change in the direction of B
as one moves along B, as discussed in (17).

We eliminate x by dividing (23) by 8, differentiating
with respect to t, and using (22) to remove d'x/dt'
Then, with Q=q8/Mc, we have

(d/dt) [(1/Q)d'y/dt']+Qdy/dt= c(d/dt) (E/8). (24)

Remembering that the cyclotron period is small com-
pared to the period over which E, 8, and 0 change ap-
preciably, we average over many cyclotron periods,
thereby eliminating the circular motion from the equa-
tion. Hence the first term on the left-hand side of the
equation drops out because it contains d'y/dt', and
there remains only the slowly varying portion of dy/dt,

(dy/«) = (c/Q) (d/dt) (&/8) (25)

This polarization drift may be written in vector form as

u p = (iirlc'/q8') BX{(d/dt) [EXB/8']) (26)

and results in a current

i,=oE,.
Substituting (37) into (35), we obtain

BE,/Bt+kroE, = (c/8')B[B (VXB)],

which admits of the formal solution

(37)

(38)

A. Electric Field Parallel to 3
With the aid of (34), the component of (31) parallel

to B may be written

aE,/at= (c/8')B[B (VXB)]—4 i,. (36)

But, as noted earlier, we have the usual free conduction
of electric charge along the lines of force, so that

ip= (pp/gp)BX{(d/dt)[EXB/gp]) (27) where for convenience we have written

The polarization velocity and current are simply
expressed in terms of the electric drift uD for both the
ions and electrons,

f(t) = (c/8')B[B (VXB)]

In the limit as o.~~ we have

(39)

uD=cEXB/8', (28) E,(t)-f(t)/4 ~. (4o)

and the usual cyclotron frequency Q=q8/Mc, accord-
ing to

(29)u p ——(1/Q) (B/8) XduD/dt,

lp= (pc /8 )BxdUD/dt. (3o)

III. FIELD EQUATIONS

Having computed the current density resulting from
the freely moving ions and electrons in a tenuous
plasma, let us now insert the result into the Maxwell
equations,

Thus the component of the electric field parallel to B
vanishes in the limit of no collisions between particles,
and the resulting infinite electrical conductivity along
B; we obtain the usual result that E B=O. As a conse-
quence of the large value of e/1N no significant mass
motions are involved in i,.

B. Electric Field Perpendicular to 8
The component of the current density perpendicular

to B may be written

aE/at=+CV XB &i, —
&B/Bt= —CVX E,

(31)

(32)
1~= lr, +1D+1p (c/81rp~)B

X(VP.+[(P.—P.)/P ](B.V)B/8 + « /«) (41)

so that we may determine the appropriate equations
for the fields K and S.

%e will find it convenient to decompose the curl of
the magnetic field in (31) into components according to
the vector identity

VXB= ( XVB),+ (VXB), (33)
where

using (19), (21), and (30). It is to be remembered that
ua is the conventional electric drift velocity, given by
(28). We note that the drift current due to the second
term on the right-hand side of (6) has just canceled the
term in (19) due to the variation of the 'cyclotron fre-
quency, or magnetic field density, with position.

The component of (31) perpendicular to B becomes

(VXB),= (B/8')B VXB, BE„/Bt=,' (cB/p„) X ( pdu-i)/dt V(p„+—p )—
(VXB)„=(B/8') X[—)V'8'+ (B.V)B]. (35) +[(B.V)B/4w][1+ (P„—P,)/2P ]). (42)
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Now from (28) it follows that
E= —(uD/c) XB. (43)

Thus, if 8/Bt may be regarded as being of the order of

~ un/L~, it follows that BE/Bt is of the order of
(cB/L) (tens/c'). The individual terms on the right-hand
side of (42) are all of the order of (cB/L). Hence we
have the well-known result' that the displacement
current may be neglected. But equating the right-hand
side of (42) to zero gives us the equations of motion
of UD.

pdun/dt= —7 (p„+p„)
+«B ~)B/~&-n+(p. -p.)/2P & (44)

If (p„/p, )/p is small compared to one, as it is in a
suSciently strong magnetic 6eld or when the thermal
motions in the plasma are nearly isotropic, then

pdun/dt= —T p + (1/4sr) (&XB)XB (45)

upon using a familiar vector identity; the electric drift
velocity satisfies the conventional hydrodynamic equa-
tion of motion. Using (43) to eliminate E from (32),
we obtain the equation

aB/el= v X(uDXB). (46)

Thus, we have found, as has already been shown by
Low, Goldberger, and Chew, ' and by Watson4 and by
Brueckner and Watson, ' that the electric drift velocity
in a tenuous plasma plays the same role in the equations
of the motion and of the magnetic field as the mass
velocity v in the usual hydromagnetic equations in
liquids and dense gases: The magnetic lines of force are
permanently connected and move with u&, there is no
possibility for reconnection' of lines of force. Equation
(46) is independent of the anisotropy, and so is in
agreement with the work of Schluter and Spitzer.

IV. MASS TRANSPORT VELOCITY

A. Perlpend. ieular to B
The mass velocity v„perpendicular to B may be

computed from the expressions for the various current
densities: Suppose that i; is the ionic current density.
Then i;/e is the number of ions passing across one cm'
each second, and +Mi, /e is the mass per cm' per
second; —ski, /e is the electronic contribution. The total
mass Qow is N(M+ns) v, so tha, t

N(M+srs) v = (Mi;/e) —(sni,/e). (47)
With (19) and (47) we find that the mass transport
velocity due to the circular motions is

(
ESsrP ) eN(M+ns)

1 (Mp„;—srsP„.)
V(Mp„;—srsp, )—— Vp„

2

(Mp„;—snp„,)
(B.V)B/S~ t. (48)

z E. N. Parker and M. Krook, Astrophys. J. 124, 214 (&956).

From (6), or from (47) and (21), the contribution of the
drift motions to the mass transport is

( c
vs=un+

I

ESsrp f eN(M+ns)
-', (Mp.;—snP. ,)

X ~7p

p

ai se
(B V)B/S~ . (49)

From (30), or from (30) and (47), the polarization
mass transport is

vp=(c(M ns)/eB—'$$Xdun/dk .(50)

The total mass velocity v is the sum of vl. , v~, and
vs. If the electron partial pressures p„„p„are not
immensely greater than the ion partial pressures p„;,p„,
then, because the ion mass M is large compared to the
electron mass sn, if follows that Mp„;))tnp, and
Mp„))mp„. Hence the total mass velocity may be
approximated as

v un+(M—c/SsrP e)BXduD/dt+(c/SsrP eN)B
X(Vp„,+t (P„—P„,)/p„](B V')B/8~). (51)

The first term, 7'P„;, in the braces results in a pressure
drift, just as in (19) it resulted in the familiar pressure
current. '" The second term in the braces contains
(p„—p„;)/p and represents the competition between
two processes: on the one hand, thermal motion, +p„,
along curved lines of force, with the attendant cen-
trifugal force, leads to a drift perpendicular to B,
resulting in an electric current given by the second term
in the braces in (21), and in a mass transport; on the
other hand, the crowding together on one side of the
circular orbits of neighboring particles and the separa-
tion on the other side as neighboring particles circle
curved lines of force results in an opposite electric
current, and in a mass transport, proportional to—p„;. When P„.=p„;, the two effects cancel and the
equation of motion (44) reduces to the usual hydro-
magnetic form (45); the mass transport velocity v sim-
plifies to

v = un+ (Mc/SsrP„e) BXdu&/dt

+ (c/SsrP eN) BXV'p;. (52)

We may use (44) to eliminate dun/dt from (51).Ap-
proximating the total material density p by the ion
density NM, and remembering that p„=p„;+p„„etc.,
we obtain

v=un+(c/Ssrp eN)BX( —V(P„,+p )
+I (B &)B/4 3L1-(p*.-p-)2p-j}. (53)

' L. Spitzer, Physics of Felly Ionized Gases (Interscience Pub-
lishers, Inc. , New York, 1956).IY. G. Cowling, The Sun, edited by G. P. Kuiper (University
of Chicago Press, Chicago, 1953}.
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B. Para11e1 to B

The mass motions parallel to B arise as a consequence
of pressure gradients along 8, and also as a consequence
of the reaction of diverging lines of force against the
centrifugal force of the circular motions of the indi-
vidual particles. Unfortunately this latter eGect, given

by (7), depends on the anisotropy and its variation
along B; to consider it quantitatively requires explicit
introduction of the velocity distribution function.

Consider, therefore, a slender static tube of magnetic
Aux across which the 6eld density is uniform. We let s
represent distance Ineasured along the tube, so that
the field density within the tube may be written B(s).
In the absence of electric fields of external origin an ion
(or electron) initially circling the lines of force within
the tube will always be contained within the tube,
circling the same lines of force; since the 6eld is static,
the magnitude of the velocity of each particle, denoted
by m, remains constant. We shall denote the number
of ions per unit volume by 1V(s). If A(s) is the cross-
sectional area of the tube, then since |7 8=0, it follows
that

A(s)B(s) =A(0)B(0). (54)

The number of particles per unit length of the tube is

n(s) =X(s)A (s). (55)

We shall suppose for the present that all ions move with
the same speed m. Then if 0 is the angle of pitch of the
helical trajectory of an individual particle (the angle
between w and 8), we see that

m„=ze sin0,

We shall denote the distribution of the ion velocities
by the function f(s,8,t), so that f(s,8,t) d8 is the number
of particles per unit length with an angle of pitch be-
tween 8 and 8+d8. It follows that

Thus, when we include the polarization mass transport
explicitly, the mass transport velocity in excess of the
electric drift, viz , (.v —u~), depends upon the ion partial
pressure, as in (51);when we eliminate the polarization
transport, the excess velocity depends upon the electron
partial pressure.

From (51) or (53) we see that the mass transport
velocity v, and the electric drift velocity uD are equal,
neglecting terms O(R/L). Thus uD is, in general, the
principal mass velocity. However, there are cases when
u~ may vanish identically, and the remaining terms
remain Gnite, as discussed in the next section; then,
obviously, u~ is not the principal mass motion.

adiabatic invariant, zv„'/B=constant. Hence, if 8(0)
is the angle of pitch when the particle is at s=0, then
at s (~0)

and

sin8(s) = [B(s)/B(0))-'*sin8(0),

d8 tan8(s) (dB)
I

~

ds 2B(s) & ds)

(58)

(59)

d0 d8 (8) d8
8(s)+Li8+— As =8(s)+68+—5s+

i

—
i

8siN—
ds g+gy ds &88), ds

Thus, whereas the particles occupied an interval of h6
at s, they occupy the interval 68[1+(8/88), (d8/ds)bs)
at s+bs. Their velocity along the tube, w cos8 at s,
has increased to w cos[8+ (d8/ds)5s), or w cos8—w sin8
X(d8/ds)8s, so that they spend less time at s+8s,
and their spatial density is correspondingly decreased.
Therefore, the distribution function, the spatial density,
at (s,t) is related to the distribution function at
(s+5s, t+8t) by

w cos8f(s,8,t)LB
= [w cos8—w sin8(d8/ds)bs)

Xf(s+8s, 8+ (d8/ds)8s, t+5s/w cos8)
X68[1+(8/88), (d8/ds)8s), (60)

from which it follows that

8f 8f Bf (msin8q pdBq0=—+—w cos8
at as 88& 2B ) &ds)

w cosH ( dB)
+f I I (61)

2B & ds)

The equation may be somewhat simplified, and the
spatial variables s and 0 may be separated from t, if
we let

f(s,8,t) =P(s,8)[B(0)/B(s))' exp(wkly), (62)

where k is a constant with dimensions of inverse length.
Then

We consider those particles in (8, 8+LB) at s at
time 3 At t. ime t+5t, where 8t=ls/m, they will be at
s+8s. A particle with angle of pitch 8(s) at s will have
an angle of pitch of

8(s+8s) =8(s)+ (d8/ds)8s,

at s+bs; a particle with angle of pitch 8(s)+68 at s
will have an angle of pitch of

e(s,t) = ~ d8f(s,8,t). (57)

8$ (sin8 ) ( dB )
0=kg+ cos8+—i-

8s 88& 2B] E ds2
(63)

As a given particle moves along the tube its angle of
pitch varies in such a way as to preserve the usual

We shall go no further with the time-dependent solu-
tion: we shall defer further discussion to Sec. V where
we consider the static solutions.
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V. STATIC EQUILIBRIUM

A. Isotroyy

Complete static equilibrium obtains when the mass
velocity v vanishes and the magnetic field is static,
8B/gt=0 Su. ppose that in such a case p, and p
eventually become equal to each other, whatever may
have been their initial values. Then using a familiar
vector identity, (53) requires that

uo= (c/Snp eN) ( —V'p, + (VXB)XB/4n. ) XB,

"B(0)
- i (~+i)

f(s,g) =c sin 8
B (s)

(6S)

as the basic solution of (61);c is a constant.
If P(s,g) is the distribution function per unit volume,

rather than per unit length of the flux tube, then F(s,g) dg

represents the number of particles per unit volume with
angle of pitch in (8, 8+dg), and

The variables are immediately separable, and we obtain

(46) becomes
N s = dgF sg).() (,

0=VX (uiiXB)
=V'X { (c/eN)LV„p, —(V'XB)XB/4n)). (64)

(69)

Thus static equilibrium across the lines of force results
when p'„pne (VXB)X—B/4n) is expressible as the
gradient of a scalar. ""The simplest static condition is a
force-free magnetic field, (VXB)XB=O, and uniform
density N and pressure p„. If the fields are, say, inde-
pendent of the z coordinate, then VX (V„p„,) =0 for all
p„„and it is not necessary that the pressure be uniform
over the x and y directions.

It is interesting to note that if we require that the
principal velocity uD vanish, rather than the total
velocity v, then BB/gt is automatically zero. Again
putting p„=p„we have from (44) that

P(s,g) =f(s,g)/A(s) =C t B(0)/B(s))&t '& sin 8, (70)

where C is a constant. A more general solution is

B(s) '* t." B(0)
F (s,g) = ' dnC(n) —sin'8 . (71)

B(0) p LB(s)

V„p.= (VXB)XB/4, (65)

upon using a familiar vector identity. Eliminating B
inside the braces on the right-hand side of (53) yields
the mass motion

v= (c/87rp eN)BXVp, (66)

There is the residual mass motion, the pressure drift' "
given by (66).

B. Anisotroyy

When p„W p, the situation is more complicated. Not
only are the held conditions under which v can be made
to vanish, in (53), and 8Bjgt, in (46), somewhat more
involved, but the degree of anisotropy is a varying
function of position; the particle velocity distribution
function must satisfy (61). We shall consider time-
independent solutions of (61) to show the manner in
which p„and p, must be related in order that there be
static equilibrium with 8/gt= 0

For the velocity distribution to be independent of
time, we put k=0 in (62). Then (63) reduces to

(72)F(0,8) =
Jo

duC(n) sin 8.

We may compute F(s,g) from the C(e) thus determined,
by using (71). The particle density N(s) may be
reduced to

-B()-i ~" 4B(0)-."I'L!(+1))
N(s) = — — ' dnC(n), (73)

B(0) ~, B(s) r(~+1)
8$ 8$ (sing~ (dBp0=—cosg+—

i

gs 88( 2B) &ds))
67

upon using the integral

For isotropy, 0.=1, we have the result already shown

by Schliiter' and by Spitzer' that the isotropy is pre-
served and the particle density is uniform, inde-
pendently of how B(s) may vary. We see from (70) that
if F(s,g) has the form sin&0 at one value of s, it will de-
pend upon 0 as sin&0 for all values of s; the form of the
anisotropy does not vary with the 6eld density. Further,
it may be seen from (70) that y&1 corresponds to
p„&p„ in which case the particle density increases as
B(s) increases. If on the other hand y)1, then p )p,
and the particle density decreases with increasing B(s).

If F(s,8) is not expressible as sin&8 for a single value of

y, but involves values of n, in (71), both greater and
smaller n= 1, then we see from the presence of the factor
$B(0)/B(s))i" that p,/p„will be relatively large where
B(s) is large and. small where B(s) is small.

Presumably the velocity distribution at some loca-
tion, say s=0, serves to determine the function C(n),

'" S. Luudquist, Arkiv Iiysik 2, 361 (1950)."S.Chandrasekhar and K. H. Prendergast, Proc. Natl. Acad.
Sci. U. S. 42, 5 (1956).

dg sin~'0=2~'I'(-, 'x)/I'(x). (74)
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The pressures p„and p, may be represented as

p„=)" d8F(s, 8) i2Mw-'
p

-B(.),—: &-
=2Mw' I' AC(n)

.B(0) ~o

4B(o) 12 I't 2(~+3)3X-- (75)
B(s) I'(n+3)

Ro/L«1. We see, of course, that suKciently close to
x=O, where B~O, R/L is not small.

The equations of motion of a particle of charge q and
mass M in the field B(x) may be written

d x
B(x)v,

dt' Mc

di = —(q/Mc)B(x)dx,

where w=dy/dh. Besides the usual energy integral

p, =, r d8F(s,8)Mw, '=Mw'N(s) 2P—
"o

(76) (dx/dt)'+ iI'= w „'

there is obviously the integral

(80)

When F(s,8) is of the simple form sin&8, as discussed
above, then it is readily shown from (70) or (71) that

iI+ (q/Mc) I dxB(x) =0, (81)
$(0)1'(y+1) B(0)-l&&—'&

F(s,8) = — — sin&8. (77)
2 -'I"Ll(&+1)J B()

It follows that $(s) =E(0)[B(0)/B(s)J'*'~ " and

1(y+1)12I z(p+3)] B(0)
p„=2Mw'.V (0) (78)

P(.+3)'L-:(.+1» B()

where x~ is the value of x at which the particle is turned
so that it moves parallel to the x axis, i.e., dy/dt=0.

The problem is now readily reduced to two quadra-
tures. When B(x) is a linear function of x, as we have
supposed here, the integrals are elliptic. We de6ne u~

and a2 by the relations

R0 Mw„c/qBo—— (79)

for a particle with velocity M1„ in Bp, and require that

VI. WHEN R/L CANNOT BE SMALL

Though a development of the dynamical properties
of a tenuous ionized gas in slowly varying fields

(R/L((1) is widely applicable, there is one commonly
occurring, and in two dimensions unavoidable, situa-
tion where the approximation is invalid in slowly

varying fields of 6nite extent, vis. , in the vicinity of a
point or line on which the field density vanishes: As a
particle approaches a neutral surface, 8=0, between
two regions of oppositely directed 6eld, the Larmor
radius increases without bound and no matter how

slowly B may decrease, R/L becomes large.
To investigate this one essential breakdown, consider

the magnetic field B in which the lines of force are all

parallel to the s axis and point in the positive s direc-
tion. We shall suppose that the 6eld. density is a func-
tion only of x and vanishes at x=O; then 8 = B(x) and

B(0)=0. Thus the ys plane is a neutral plane.
We suppose that the scale of variation of B(x) is L,

and is very large. Then we may expand B(x) about
x=0. The zero order term vanishes by assumption; the
second order term may be neglected provided the first
order term does not vanish identically: We write

B(x) =Box/L+0 (1/L'),

where Bp is a constant and is of the order of the field

density far from the neutral plane. We define the radius
of gyration

ag'= xg' —2LEp,

a22 =xi2+ 2LRII.

(82)

(83)

Then if the particle will be at x=x2, Y=y~, when t=t~,

4

FIG. 2. The trajectory of a positively charged particle sweeping
widely across the neutral plane, x =0. The magnetic field is in
the positive s direction and varies as Box/I. , The net drift is in the
positive y direction.
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we have

(84)
w ~

I (as' —x') (x' —uP) g»

dx(xp —x')
y y2=

L(xp —ttP) (u22 —x2)]»
(85)

We are interested in the case that 2LEO)x~', so
that a~' is negative. Then x'—a~' has no zeros for real
values of x; the orbit is symmetric about x=0 and is
confined between &a2, as shown in Fig. 2. We let P

represent the distance along the y axis which the par-
ticle travels in one period P of its motion. Then ) is equal
to four times y

—
y2 at x=0,

r " dx(x '—x')
X= —4

I:(x'-~P) (&2' —*')j»

The period is

p+2 sx
P= (8L/Rp)

"p L(t22' —x') (x' —ttp)]»

(86)

(87)

ay unary

It is readily shown" that

lt =—4(LRp)»(K(k) —2E(k) ),
P=4(LRp/w„')»K(k),

where
k2 —g 2/(g 2 tt 2) .

(88)

(89)

(90)

K(k) and E(k) are complete elliptic integrals of the
first and second kinds, respectively. It follows that the
particle possesses a drift velocity I along the y axis
given by

22=7'//P
=w„L1—2E(k)/K(k) ). (91)

The drift velocity is in the positive y direction when
k&0.9092, zero when 4=0.9092, and negative for
k&0.9092; k=0.9092 corresponds to xi=1.143(LRp)'.
Thus, particles sweeping widely across the y axis, as
shown in Fig. 2, drift in the positive y direction;
particles confined close to the y axis, as shown in Fig. 3
drift in the negative y direction.

Given the particle distribution in the vicinity of x=0,
we may compute the resulting current density. How-
ever, we no longer have the convenient guiding center
with which to locate the individual particle trajectories,
and it is not clear how to de6ne the usual parameters,
E, p, etc. Therefore, we shall content ourselves with a

'3 P. F.Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and PItyssessts (Lange, Maxwell, and Springer Ltd. ,
New York, 1954), formulas 213.00, 213.06, 312.05.

FIG. 3. The trajectory of a positively charged particle moving
close to the neutral plane, x=o. The net drift is in the negative
y direction.

physical description of the dynamics in the vicinity of
the neutral x=0 plane, based upon the above orbit
calculations; we will find that stability is quickly
reached and the field behaves as in classical hydro-
magnetic theory in a medium of infinite conductivity.

Suppose that initially the .only particles moving in
the vicinity of the x=0 plane have large values of x,
so that they progress in the positive y direction as shown
in Fig. 2. Then Maxwell's equation BE/Bt=cV'XB 42ri, —
in which VXB is in the negative y direction, shows that
BE/Bt is in the negative y direction. Now an electric field
in the negative y direction results in a drift toward the

y axis from both sides, according to (28), and the
particle trajectory shrinks closer to the y axis, as shown
in Fig. 3. Shrinking the trajectory closer to the y axis
decreases xi, until it becomes less than 1.143(LRp)';
then i reverses sign, becoming more and more negative,
until a balance is achieved with cV'XB=42ri and
BE/Bt=0. Therefore, whatever the initial particle con-
figuration in the vicinity of the neutral plane, a stable
configuration will soon result, with i= (c/42r) V'XS, just
as in classical hydromagnetics; the exception to R/L((l
in the vicinity of a neutral plane leads to no violation
of our previous special conclusion that the conventional
hydromagnetic equations are approximately valid in a
tenuous plasma.


