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Model of Nonefluilibrinm Ensemble: Knudsen Gas*
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An example of a nonequilibrium ensemble is constructed, a Knudsen gas in a container whose walls are
maintained at diferent temperatures. The approach to a stationary state is investigated, and an iteration
procedure for finding the stationary velocity distribution is derived. An explicit stationary solution is found
for the case where a Knudsen accommodation coefficient completely characterizes the eKect of gas collisions
with the walls. The heat transport is found. A stochastic mathematical model which mimics in certain
aspects the above system is investigated.

1. INTRODUCTION

HE distribution in phase space of a system in
equilibrium with its surroundings is specified by

the values of a small number of suitable physical
parameters, such as the temperature, chemical potential
of the components, etc. To date no set of analogous
parameters generally characterizing a distribution of
systems not in equilibrium is known. Recently it has
been possible to construct'' models of Gibbs-type
ensembles for open systems not in equilibrium which
in principle at least would be capable of furnishing such
a description. While the internal dynamics of the
system is governed by its Hamiltonian H, the inter-
actions of the system with its surroundings (reservoirs)
are assumed to be described in terms of impulsive
interactions (collisions). The surroundings are to consist
of an infinite number of independent, identical com-
ponents, each of which is to interact with the system
but once. ' The ensemble density, tt(x, t), in phase space
of the system (x), now obeys an integro-differential
equation:

Bp—+ (ts,H) = LE(x;x')ts(x') —E(x';x)ts(x)]dx',
at

where E(x;x')dx' is the transition probability per unit
time from the state x' to x due to collisions suGered by
the system with the reservoirs. So far it has not 'been

possible to Qnd general solutions of this equation.
This paper stems from a previous attempt' to inves-

tigate a special class of these systems, namely those
which interact with their surroundings only at their
spatial boundaries. 4 The particular problem we shall
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study is that of an extremely rarified gas (i.e., a
Knudsen gas), so that collisions between the molecules
can be neglected, in a container whose walls are kept at
diferent temperatures. ' ' We shall exhibit explicit
stationary nonequilibrium ensembles corresponding to
particular stochastic models for the collisions between
the gas and the walls. Certain properties of these sta-
tionary solutions (of the general integro-di8erential
equation) will be derived and finally the approach to
the stationary distribution will be investigated.

2. KNUDSEN GAS

We wish to describe the time evolution of a gas so
rarified that collisions between the molecules composing
it may be neglected. The only forces acting on a
molecule arise at the walls of the container holding this
Knudsen gas. As stated in the introduction the inter-
action between a molecule and a wall which here acts
as our temperature reservoir is impulsive. "The state
of a molecule (system) after a collision with the wall will

be determined both by its own state and that of the
wall at the "beginning" of the collision. We can only
specify a certain probability that the walls are in some
particular state prior to collision. In turn this implies
that for any initial state of the molecule there will be
many final states (after the collision) corresponding to
diBerent initial states of the wall. In short, in view of
the nature of the reservoirs alluded to in the intro-
duction" there will exist a stochastic kernel E(v;v')
such that if the velocity of the system prior to collision
is v', then E(v;v')dv is the probability that the system
will have a velocity in the range (v, v+dv) after the
collision. '

Without any loss in generality we may consider our
container to be a right cylinder whose axis is the x axis
of unit length, i.e., 0 & x & i. We assume that molecules

5 C. S. Wang Chang and G. E. Uhlenbeck, "The heat trans-
port between two parajlel plates as functions of the knudsen
number, " University of Michigan report, September, 1953 (un-
published) .' E. H. Kennard, Kinetic Theory af Gases (McGraw-Hill Book
Company, Inc. , New York, 1938), p. 311 ff.' M. Knudsen, Ann. Physik 34, 593 (1911).

Note that the kernel function does not depend on time.
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are perfectly reQected except from the normal bounding
walls at x=1 and x=0. This reduces our problem to
that of a one-dimensional gas. '

Let E be the total number of molecules in our gas,
e the x component of their velocity. The probability of
finding a particle in the interval (x, x+dx) having its
velocity in the range (v, v+dv) at time t we denote by
f(x,v;t)dxdv. The one-particle distribution function is
normalized, i.e.,

canonical distribution:

f~(v) =f (v) = (1/Z) exp) —Pmv'/2],

f
P= (kT) ', Z= exp( —Pmv'/2)dv= (2pr/Pm)&

(6)

A necessary and sufhcient condition for this to be the
case is that the kernels should have the following sym-
metry property'

~oo

dv ' f(x,v;t)dx=1.
p where

E,(v;v') =R, (v;v') exp(P;mv"/2)/v',

ef~(0,v;t) = Ep(v;v')v'f (O,v';t)dv',
0

f
vf (1,v;t) = Ei(v;v') v'f+(1,v';t) dv'

4p

(4)

with Ep(v;v') and Eq(v;v') the stochastic kernels for the
walls x=0, and x=1. The specification of initial data
for f+ and f completely prescribes with (3) and (4)
the temporal evolution of the distribution of the system.

From the definitional of the kernels it follows that

P;(v) = E;(v';v)dv'=1, i=0, 1.
p

At any time there will be two noninteracting streams
of molecules; one going to the right with e&0 and one
to the left with v&0. Because there are no collisions
between the molecules, f(x,v;t) may be discontinuous
at v=O, not only near the walls but also in the interior.
The mean free path is the length of the cylinder. We
therefore break up f(x,v;t) into two parts, one for each
stream,

f(x,v;t) =f+(x,v;t) for v) 0
=f (x,v;t) for v(0.

Since no forces are acting in the interior of the
cylinder, we can write

af,/at+vaf, /ax=0,

Bf /Bt vlf /Bx=0—

in 0&x&1, e&0. The stochastic boundary conditions
on f are

R, (v;v')dv'=
Jp

R, (v';v)dv', i =0, 1.

3. STATIONARY SOLUTIONS

One of the questions of greatest physical interest
concerning the time evolution of a system obeying (3)
and (4) is: Is a stationary distribution of the system
independent of a given initial distribution attained in
suKciently long time and what is the form of this
stationary distribution? It is clear from (3) that if we
exclude the case where a finite fraction of molecules
have zero velocity that any stationary solution will be
independent of the position x. Let f+(v) and f (v) be
such distributions which by virtue of (4) satisfy

vf+(v) = Ep(v;v')v'f (v')dv',
4p

vf (v) = Kg(v;v')v'f+(v')dv'

Substituting the first of these equations into the second
and vice versa we find that

vf (v)= Ep (v;v')v'f (v')dv',

This can be verified by substituting the canonical dis-
tribution (6) into (3) and (4). Since our two walls act
independently we may write in general (i.e., when

TgW Tp),

Ep(v;v') =Rp(v;v') expL+Ppmv"/2j/v',

E,(v v') =Rg(v;v') expL+Pgmv"/2j/v'.

This insures that the normalization of f is preserved in
time.

The explicit form of the kernels, X, will depend on
the nature of the forces between the system and the
wall and on the temperature of the wall. When both
walls are at the same temperature, Tp ——T~=T, we
expect from the general principles of statistical me-
chanics that a stationary solution of (3) and (4) is the

~ For real gases the neglect of the y and s dependence may not
be justi6ed.

aj p

vf~(v) = Ep+(v;v')v'f+(v')dv'.
0

fOO

Ep+(v;v') = Ep(v;v")Eg(v";v')dv",
Jp

Ep (v;v') = Kg(v;v")Kp(v";v')dv"
p

(10)
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The stochastic kernels E~+ and Ep are normalized [see
(5)]:

Ep+(v;v')dv= Ep (v;v')dv=1
Jo

We shall now show that when a stationary distribu-
tion exists it will be approached in the course of time for
almost all initial distributions. The proof consists in
constructing a functional 8', which is a minimum for
the stationary distribution and showing that for any
other distribution the time rate of change of 8' is
negative. Let f'(v) be the stationary distribution satis-
fying (3) and (4). We define W to be

v= 0 which we shall ignore, such that a molecule starting
out in one such region can never get to another one, then
W will keep decreasing until (13) is satis6ed. But (13)
can remain an equality only if

q =q~=i, or f+=f+' and f =f '.
Hence f will approach f' as t~~. We should note that
when Tj=T2=T, W reduces to the Helmholtz free
energy divided by kT and dW/dt is the entropy pro-
duction divided by k.

In the more general case when the two wall tem-
peratures are not equal the entropy production 0. is
given by

a=8 J. o/T—o Ji/T—i,
1 0O

W= ~ I f(x,v;t) [lnf(x, v;t) —lnf'(v)]dvdx
0 —0O

~0O

[f(lnf lnf')—+f' f]dv—dx
, J

~OO

f+(lnf+ 1 f+')+—f+' f-
J~ 0+0

+[f (lnf lnf ')+—f ' f ]}dvdx—.

where the J's are the energy Quxes from the walls at
@=0 and x=1 and S is the entropy of the system. '
This 0 is given by

(11) o'= Rp(v';v) v (O,v;t)
4

X[lnv (O,v;t) —lnv+(O, v';t)]dvdv'

Ri(v', v) v+(i,v;t) [lnv+(1, v;t)

—lnv (1 v';t)]dvdv'&0,

vp(i v;t) =exp(P,mv'/2) fp(i, v;t) i =0, 1.

mizing the entropy production does not lead to
the stationary distribution of velocities even for small
wall-temperature diGerences.

In general the problem of solving for the stationary
distribution f'(v) in (10) may be quite dificult. Still, by
making use of the stochastic nature of the kernels E2+
and E2, we can give an iteration procedure for
improved approximations to the stationary distribu-
tion. Starting with some trial functions f+ (v) and

f '(v), we define

dv) dv'Ep(v;v')v'f '(v')
04 0

X(q (O,v';t) inq (O,v';t) —
q (O,v';t) ln&p+(O, v;t)

f
q+(O, v;t) —

q (O,v', t) }— dv dv'
~o o

(12)

The integrand in the square bracket is always positive"
and is zero only when f=f'. Hence W can serve as
measure of the deviation of the distribution function at
time t from the stationary distribution. The time rate
of change of W when f obeys (3) and (4) is given, after
some manipulations, by Mini

XEi(v;v') v'f~'(v') (q+(1,v', t) in q+(i,v';t)

—q+(1,v', t) lnq (1,v;t)+q (I v;t)

—q+(i,v';t) },

f+'""( ) = " E '( ') 'f+'"( ')d ',

(14)
where

and
q (x,v;t)=f (x,v;t)/f '(v)

q (x,v;t)=f (x,v;t)/f '(v).

vf '"+'(v) = Ep (v;v')v'f '"(v')dv'
Je

n=0, 1,

The terms in the curly brackets are always non-
negative" and vanish if

q (O,v';t)= q~(O, V;t),

q (1,v';t)= q+(1,v;t).

lim f+'"(v) =f+'(v),
&~00

limf '"(v)=f '(v).
yt~ 00

(15)

Assuming that the velocity space cannot be decomposed
into noncommunicating regions, other than the point

' Since G(x;y) =xJ'pI' Intdt=yglny —Inxj —y+x&0.

The outline of the proof of (15) follows that used above
in showing the approach of the nonstationary distri-
bution to the stationary one. The functional which is
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now used is 8'„where, e.g., molecule at the wall. The kernels will have the form

W,„= ~ {vf '"(v)Dnf '"(v) —lnf '(v)]
Jp

vf—+'"(v)+vf'(v) )dv

+ {vf & )()v)Dnf &))(v) lnf e( v)]
4p

vf—'"(v)+v f'(v) }dv) (1&)

Kp(v v') = (1—ao)&(v —v')+nofIo(v),

Eg(v;v') = (1—ag)b(v —v')+ngBg(v);

H;(v)dv=1, i =0, 1,
p

(17)

with

f+"=f+"(v)
goo

vfp" (v)dv,

where (1—ap) and (1—n~) are the fraction of molecules
specularly reflected at the walls at x=0 and x=1,
respectively. In order to satisfy Eq. (7) we must choose
H;(v), i=0, 1, to be

f+'= f+'(v)
4p

vfp'(v) dv

We show then that Wp~p& 8'p„unless f"=f'

4. KNUDSEN GAS WITH ACCOMMODATION
COEFFICIENTS AT THE WALLS

We consider now an explicit example of the foregoing
theory. We will assume that at each wall a certain
fraction of the incident molecules is specularly reflected
while the remainder is diffusely reflected. The diGuse
reflection is to be such as to lead to a redistribution of
the velocities independent of the initial velocities of
the molecules. This redistribution may be thought of as
due to surface adsorption and subsequent release of the

H;(v) = v exp( —P,mv'/2) (p,m). (18)

The thermal accommodation coeScient ap at the wall
x=0 is defined to be:

~o= (~-—J+)/(~- —Jo')

where J is the energy carried across per unit time by
molecules moving towards the wall at x=0, J+ is the
corresponding energy carried by the molecules away
from the wall, and Jp' is the energy which would be
carried by the same current of molecules moving away
from the wall if their velocity distribution were Max-
wellian corresponding to the temperature Tp of the
wall at x=0. Since these energies are purely kinetic,
we have

v'f (v)dv v'f—+(v)dv
p 0

(19)

v'f (v) dv 'v' exp( ——Ppmv'/2) dv
J, -~p

vf (v)dv
4p

v exp( —Ppmv'/2) dv

If we substitute Ep(v;v ) given by (17) and (18) into vf+(v) of (9) and insert this into (19), we find that ap ——ap and
by symmetry n&= a&.

The stationary distribution corresponding to the kernels given by (17) and (18) can be found from (9) and
(10) to be (see Appendix I)

apmPp exp( —Ppmv'/2)+ay(1 —np)mPt exp( —Pymv /2)
(v) =

p L~p(2 —
Q, q) (v.mPp/2) &+aq(2 —np) (ormPy/2) $

u~mPq exp( P~m /v2—)+a (1puq)mPo —exp( —Pomv'/2)
(v) =

-,'Ln p(2 —ng) (v mPo/2) &+ng(2 —no) (v.mPg/2) &j

(20)

(22)
We find that

(
I
&&(2'o—&x)

k ~0+F1 ~opl)
(23)

the kernel Ep+(v;v') being

Kp+(v;v') = (1—np) (1—nq)5(v —v')+nptnPov exp( —Ppmv'/2)+nq(1 —no)mPp exp( Pqmv'/2—) (2. 1)

From (20) we can calculate the rate of heat transfer from the wall at @=0 to that at x=1, Jp. Jp is the difference
between the heat transfer by molecules with ~&0, J+ and that by molecules with e .0, J, i.e.,

Jp= J+—J .

Jp=
( ap —o)y ) (am' t' n~ —ao y t' vm)

I 1+ II I +I 1+
ao+&y —&y&o~ (2kTo J ( no ay agny~ E2—kTq—~
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which to terms O(Tp —Ti)' reduces to

o.one ) Xk
(To—Ti).

Go+&i—&op!i ) (2v'eo/PT0)I

This result divers from that given by Kennard" since
we neglect the redistribution of kinetic energy in the y
and s directions. For a truly one-dimensional gas the
Rux J given by Kennard reduces precisely to the above

expression.
Thus, for this simple kernel we can find the stationary

distribution explicitly. However, in order to study the
"temporal" evolution of the distribution we must resort
to a picture involving the discrete collisions. We mean

by this that instead of looking directly at f(x,v;t) we
concentrate on a representative molecule of the gas and
find the probability of its having a velocity in the range
(v, v+dv) after undergoing e collisions with the walls.
We call this probability p„(v)dv. Since we neglect inter-
actions between the molecules there will be no change
in the velocity of a particle between collisions with the
wall. Assuming for simplicity that f(x v;0)=f+(x,v;0),
we set

po(v) = dxf+(x, v;0),
ai p

geo

p,~,(v) = Ki(v;v') pp„(v')dv',

where C (x,v;t) is the number density of particles in

(x, x+dx; v, v+dv) at time t which have undergone e
collisions in the interval from 0 to I,. The C's obey

vCp„(x,v;t) =vC 0„(Q,v; t—x/v)

"o
Kp(v;v')v'Co~i(0, v'; t—x/v)dv'

for t—x/v&0

=0 for t x/v—&0; e&0,

po (v)= lim pp„(x,v;T),

pp„(x,v;T) = C,„(x,v;t) dt.

In the limit as T—+~, pp„(x,v;T) becomes independent
of x~ $M.

q

~
F—x/v

pp„(v) = lim d$ vip„(0,v;f).

In the next section we introduce a mathematical model
in which the system is described wholly by the discrete
collisional distribution.

with a similar equation for C2„~. We thus can exhibit
the relation between the temporal distribution and the
discrete collisional distribution in the form

pp~p(v) = ' &o(v;v') pp~i(v')dv',

g 0 1 ~ 0 ~

vf (x,v;t) vf-'(v)
lim pp~i(v) =limn~ ~co ~co

vf (x,v;t)dv vf '(v)dv
0 0

vf+'(v)vf+(x v;t)
lllll Pp~p('0) =lllll

,f-+co ~ca geo

vfg(x, v;t)dv ) efp'(v)dv

At any given time,

f+(x,v;t) =P 40 (x,v;t)

f (x,v;t) =p co~i(x,v;t),

"Refelence 6, p. 317.

These equation. s are equivalent to (14) and make trans-
parent the physical meaning of the iteration procedure
given there. As was shown there, when a stationary
distribution exists, then

5. MATHEMATICAL MODEL

Consider again a Knudsen gas in a right cylinder.
Rather than following the behavior of this gas in time
we 6x our attention on the collisions swered by a
representative molecule with the walls. Without loss in
generality we assume that the representative molecule

. starts with a positive velocity and thus collides 6rst
with the wall at x= 1.Subsequently every even collision
occurs at the wall x=0 and every odd collision at the
wall x= 1.Let the energy of the molecule after the 2lth
collision be e(2e). This energy remains unchanged
during the Right of the molecule from x=O to x=1
Lsee (3)j. We assume that the collision with the walls
is such that a fractional 1—u; of the incident energy of
the molecule is conserved and an extra positive incre-
ment u,pt, (n) is added to the eth collision, i.e.,

e(2e) = (1—ap) e(2e—1)+ay(0(2e),
e(2e—1)= (1—ui)e(2n —2)+algl(2n —1); (24)

0&a;& 1.

The random energies g;(e) are independent of one an-
other, o10(2e) is independent of e(2e—1), and gl(2n —1)
is independent of e(2e—2) for all e. We also assume
that the probability density distribution of the qp(2e),
go(q), and the probability density distribution of
qi(2e —1), gi(lt) are the same for all values of e. Then
g;(lI)dg is the probability of finding lt;(e) in the range
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(2I, 2I+diI). One can show (see Appendix II) that if
f+'"(e)de denotes the probability that the molecule
possesses an energy lying in the range (e, e+de) after
the 2eth collision then

f+2n(e 72ne(p)) — h(e +e~) f+2n 2(e&— +2ne(p))de'

where
y= (1—ai) (1—ap) &1,

These relations although they may be thought of as
de6ning a thermal accommodation coe%cient are not
identical with that introduced by Knudsen and used
by us in the previous section, since the 8's are the
temperatures of a representative molecule and not the
energy carried per unit time by the stream of molecules
moving in either direction. Finally if the conditions (26)
are fulfilled then as the number of collisions becomes

sufficiently large, i.e., n~~,

h(e) = gp(e')gi[e(iii —oiiip) '—e'a 0(a 1—aiap) ')de',

(1 imp)iilT1+opT0
~+(»)-~+=

iii+112 iii+0
(29)

with e(0) the initial energy of the molecule. If

po0 00

e= eh(e)de& 00, ~ $e e)'—h(e)de& ~, (26)J, do

then
lim f+'"(e—y'"e(0)) =f+'(e),

exists almost everywhere and satisfies

22„=Dn (1/y))-'. (30)

Similar results apply to the higher energy moments. The
same temperature discontinuity found for 8+ or 8
Lsee (29)) also holds for the temperatures of the gas
streams in our previous model, as can be verified
directly from (20).

exponentially with n. The relaxation number of col-
lisions for this approach, I„, is (see Appendix II).

APPENDIX I
(27)f+'(e) = h(e ye') f+'—(e') de'

To find f+(v), we first calculate E2+. Substituting (17)
and (18) into (10), we find

A similar equation is satisfied by f '(e) for a molecule
possessing initially a negative velocity Equa. tion (26)
is the analog of (10) since e= ', mv'; he-nce &2+(v'v) =

J
dv'{5(1—«)~(v —v")

0

vf+'(-,'mv') = I vhL2m(v2 —yv")]mv'f+'(-', mv")dv',

01
E2+(v;v') =mvhPm(v' —yv")].

We assume that the average random energy imparted
by the wall to the molecule is directly proportional to
the temperature of the wall, thus

(m/k)(2I (222))= Tp, (m/k)(q (222 1))= T—,.

+«Ppmv exp( Ppmv'—/2))L(1 ni)5(v—" v')—
+niPimv" exp( —P,mv'"/2)]}

= (1—np) (1—ni) 8 (v—v')+npmppv

Xexp( Ppm/v—2)+ 12(1i np)mP—ivexp( Pimv'/—2)

Substituting this into (10) and letting

Similarly, if we denote by 0+(222) the temperature of
the molecule leaving the wall at x=0 after the 2eth
collision, we can set

we find that

v'f+(")d"

and

1S
t

8+(222) =— ef+'"(e)de = (m/k) (e(222)),
k ~o

8 (2n 1)= (m/k)(—e(222—1)).

f~(v) = (upmP0 exp( —Ppmv'/2)
&0+nl i20121

+ni(1 —np)mP1 exp( —Pimv /2) };
From (24) it follows that, for all I,

e,(2~)—a (2N —1)
co=

Tp —8 (222—1)

0 (222—1)—8 (222—2)

Ti—8+(222—2)

f (v) is found from the above by changing «~eti and
Pp-+Pi. The function f is found by virtue of (1) to be

(2&) 1= (ap(2 n )( 1p2rp—m/2)&
2(~0+~1—~c i)

+&1(2—a0) (2rmpi/2) &}.
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APPENDIX II

The recurrence relation (24) allows us to find by
iteration e(2N) in terms of the various rt s and e(0), vis

(31), ebs. ,
a-1

y.=P y'~, ; 0&'y&1, (33)

e(2N) y—'"e(0)=P y'{(1—ap)arstr(2so —2i—1)

+aprtp(2N 2—i)} .(31)

To proceed further, we extend the definitions of g;(rt)
and f+o"(e) to negative values of the arguments by
requiring that

g;(rt) =0 for —~ &rt &0,

f '"(e)=0 for —~ &e&0.

We can then introduce the absolutely continuous dis-
tribution functions G;(rt) and F~'"(e):

G;(rt) = g;(rt') drt',
J

F on(e) f ow(e)de,

where the mutually independent, commonly distributedx; possess the distribution function H(e e) —We .now
will show that the distribution function F+'"(e) of y„
converges to a stationary distribution function F+(e)
as ss—+~ under condition (26) that x P&~. To do
this we consider the sequence y&, y2, ~ where

e-1
y =P'y'~;,

cM

with x; one of the x s. It is known" that if x
the y„converge in mean of order two and hence con-
verge in distribution, i.e., if F+ "(e) is the distribution
function of y„ then there exists a distribution function
F+(e) such that

F~'"(e)~F~(e) essentially as I—+~.

But since the x; are independent and possess a common
distribution function P(e e), we no—te that F~ "(e)
=P '"(e) Hence

Since the go and g~ are independent, the distribution
function of the (1—ap) atrt t(2N —2i—1)+aprtp(2st —2i)
for all values of i and I, H(e) is

F+'"(e)~F~(e) essentially as rt—&'o. (34)

e aoe'
II(e) = ' Gp(e')Gt

(1—ap) a, (1—ap) a,

are independent random variables.
To show the approach to a stationary distribution,

we introduce the reduced variables Evaluating this sum and multiplying both sides of this
equation by ~t/srt, we obtain Lsee (29)]

&+(2st) —7'"@+(0)= et+ (I—'y'"),
y„=e(2rt) —e(2N) —y'"{e(0)—e(0)},

where or

Since for e(0) & ~, y„~e(2rt) —e(2N) as rt—+co, and y„
possesses a stationary distribution, then so does e(2rt).

(32) Equation (34) insures the desired approach to a sta-
tionary state. Equations (34) and (35) imply (27)."

Finally we study the approach to the stationary
Equation (25) now follows by virtue of (31) and (32) state of the average energy. From (31) we find, on
since averaging,

(1—ap)a, st t(2n —2i—1)+aprtp (2rt —2o) (P) n 1—
(e(2st)) —y'"(e(0))=

I
—

I P 'y*{(1—ap)arTr+'ao2 o}
Esto) '=o

and

e(2N) = e(2N)dHLe(2N) j& ~ rt+(2rs) e'~t~P+(0) = r't—+(1 e'"t"")—
with N„given by (30).

(35)

;= (1 ap)ai{sl—t.(2rt 2i 1)——std(—2tt —2i—1)} "See, e.g. , J. L. Dooh, &tochastcc Processes (John Wiley and
Sons, Inc., New York, 1953), p. 154 G.

+ao{8P(2N 2o) 'Vo(2rt 2o)} "Since y„+&—y =(y —1)y„+a„+~, we can immediately con-
clude that does not converge in probability, i.e, for any e&0,

The relation between the y and the x; follows from lim „Pr( y„+z—y„()e) +0.


