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Approximate Solutions of the Einstein Etluations for Isentropic Motions
of Plane-Symmetric Distributions of Perfect Fluids
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An approximation procedure is developed and applied to the problem of determining the gravitational
and hydrodynamical fields associated with a plane-symmetric distribution of a perfect Quid with arbitrary
caloric equation of state in isentropic motion. Special relativistic hydrodynamics in co-moving coordinates
are discussed and methods are given for solving speci6c problems. These solutions provide a zero-order
approximation of the corresponding general relativistic problems. The linear equations describing the
higher order corrections are discussed and the application of the method of characteristics is pointed out.
The existence of shock waves in special relativity makes plausible their existence in general relativity, and
they may be used to avoid using physically unacceptable solutions of the 6eld equations.

1. INTRODUCTION system can be introduced in which the 6eld equations
become partial differential equations for the metric
tensor alone.

Because the special theory of relativity is to provide
a zero-order approximation to the solution obtained,
we devote the first part of the paper to a discussion of
the formulation and solution of the one dimensional
motion of a perfect Quid in terms of co-moving coordi-
nat;es.

In addition to leading to an example to which the
approximation procedure can be applied in some detail,
a plane-symmetric distribution of a perfect Quid in
isentropic motion leads to another problem of interest.
In classical theory and in the special theory of relativity
shocks occur in certain cases. These cases are discussed
in the general theory and it is shown that the same
difficulties arise in this theory as do in the special theory.
That this is so, is evident from the fact that the non-
linearity of the problem is con6ned to the zero order
approximation and that approximation is given by the
special theory of relativity.

' 'T is the purpose of this paper to discuss by means of
~ ~ an example an approximate procedure for solving
the Einstein field equations of general relativity. The
procedure consists of considering the coefhcients of the
metric tensor as a power series in the constant

k =87rG/c' (1.1)

where 6 is Newton's constant of gravitation, and
obtaining a sequence of sets of equations, each set of
equations arising from the coefficient of a single power
of k.

The Einstein field equations are

(1.2)

where TI'" represents the stress-energy tensor which
"creates" the gravitational field. The equations ob-
tained by using the zero-order terms are

(Ro")~' =0 (1.3)

where the left-hand side is the Ricci tensor calculated
from the zero-order terms in the expansion of the g„„,
which we denote by g„„(".

We shall assume that g„„&'& represent a fiat (Min-
kowski) space. This assumption will be shown to be
plausible for the example considered. Equation (1.3)
does not imply that space-time is Qat, as has been
shown by examples. ' By means of this assumption we
make the special relativity theory solution of a problem
the zero order approximation to the general theory one.

In dealing with the example to be described below it
is convenient to use a noninertial coordinate system in
the Minkowski space-time and therefore we do not
suppose that the g„„")are constants.

The example to which we apply the approximation
procedure is that of solving the Eqs. (1.2) for a plane-
symmetric space-time where the stress-energy tensor
describes a perfect Quid with an arbitrary caloric
equation of state in isentropic motion. It has been
shown earlier' that for this case a co-moving coordinate

' A. H. Taub, Ann. Math. SB, 472 (1951).' A. H. Taub, Phys. Rev. 103, 454 (1956).

2. LAGRANGIAN COORDINATES IN SPECIAL
RELATIVITY

In an inertial coordinate system in special relativity,
the line element is taken to be

1
ds'=dt' (dx'+dy—'+—ds') =g dxodx"

C2

(2.1)

with x'=x, x2=y, x =s, and x'=t. The equations of

hydrodynamics in this coordinate system are the five

conservation laws: The four conservation laws involving

energy and momentum,

(2.2)T~" =0
y

and the conservation of mass

(pg&), „=0, (2.3)

where the comma denotes the partial derivative, the
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summation convention is used, and

ppl p
T~"=pI 1+—+—Iu"u"—go"—=ou~u" —g""—,

c' pc') c2 c2

where X is the value of x on this curve at t =0.Equation
(2.14) then is said to give the world line of the "particle
X." The variable X is the Lagrange coordinate of
classical hydrodynamics.

We write Eq. (2.14) as a pair of equations

I& is the four-velocity of the Quid, p the rest density,
p the pressure, and

*=x(X,t'), (2.15)

o=o(p p)

is the caloric equation of state of the Quid. The vector
field I& satisfies the equations (2.16)xi ~ = Bx/Bt =cu,

and the conservation of mass equation is equivalent to
the statement that

(2 5) and consider these as a transformation from the
coordinates x, t to X, t'. Then Eq. (2.13) becomes

It may be shown that Eqs. (2.2) imply that xx = B*/BX=po(1 —u') «/p, (2.17)

TS,„N"=0, (2 7)

where T is the temperature and S is the specific entropy,
these quantities being defined as functions of p and p

by the equation
TdS =do+ pd(1/p). (2.8)

For the one-dimensional motion of a gas, we have
N2=zP=O and I' and N4 functions of x and t alone. We
may write

t»=Bt/BX=O, ti =Bt/Bt'=1. (2.18)

Equations (2.16), (2.17), and (2.18) together with
the rules of diGerentiation then imply that

X,=
Bx po(1—u.') «

where po is the density at t=0. It follows from the
second of equations (2.15) that

u4= 1/(1 u') «—u'= cu/(1 u') «— (2.9)

where I is a function of x and t and represents the
three-dimensional particle velocity in units in which
the velocity of light is one. Equation (2.6) is then
satisfied.

When the motion is isentropic, that is when

BX —csp

Bt (1—u )'po

t,'=Bt'/Bx=0,

t ' = Bt'/Bt = 1.

(2.19)

S(p,p) =constant, (2.10)

Eq. (2.7) is satisfied, and p is a function of p alone.
The five equations (2.2) and (2.3) then reduce to the
two equations

cux ——(po(1 —u') «/p) i . (2.20)

Equation (2.1), the conservation-of-mass equation,
is simply the statement that X is a function of x and t
defined by the transformation (2.15). Differentiating
Eq. (2.17) with respect to t' gives

1( p l ( pu
I+I

c E(1—u')«) i ((1—u')«),
(2.11) The rules of partial differentiation and Eq. (2.20)

enable us to write Eq. (2.12) as

1 (ocu ) (o'cu
I+I +P I

=0,
c E1—u'I

& (1—uo
(2.12) t

poo.c'u i
I

+cpx=0
& (1—u') «] ~

(2.21)

The coordinates X, t' may be called Lagrangian
coordinates in special relativity. Since

dx= xxdX+x&.dt'= (po/p) (1 u') «dX+�cud-',

tdt=�txdX+,

dt'=dt',

the line element (2.1) becomes

pou

(2.13)
ds'=I (1—u')«dt' ———dX

Idx/dt= cu(x, t).

where the subscript denotes partial diGerentiation with
respect to the variable indicated. Equations (2.11) and
(2.12) are obtained from (2.3) and (2.2) respectively
by using (2.9) and by setting ti=1 in the latter equa-
tions.

The particle paths, the curves describing the world
history of a point of the Quid, are defined as solutions
of the ordinary diGerential equation

Let us write the solution of this equation as

x= x(X,t), (2.14)

po 1———dX' ——(dy'+ds'). (2.22)
C2 p2 C2
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3. ORTHOGONAL CO-MOVING COORDINATES

The Lagrangian coordinates, X, t', are co-moving
since in this coordinate system

u' =u"BX/Boo"=u'X, +u'X =0

as follows from Eqs. (2.19) and (2.9). However, they
are not orthogonal. An orthogonal co-moving coordinate
system may be introduced as follows: For isentropic
motions the integral

N~= e-~b4~, (3.6)

since the coordinate system is obtained by a time
transformation from a co-moving one and since the
velocity vector must be a unit time-like vector.

the original density may be a function of X. However
by a suitable replacement of X by a function of itself
we may replace the line element by one of the form of
(3.5) with po a constant. In the coordinate system in
which Eq. (3.5) holds, the velocity field is given by

"yo
dp/oc' (3.1) 4. EQUATIONS OF MOTION IN CO-MOVING

COORDINATES

t', , pou
dT=e—

oi (1 u')tdt' — dX —i.——
pc )' (3.2)

This defines a function T(t,X) if the right-hand side is
a perfect diGerential. The condition for this is of course

defines a function p(p) since o is a function of p alone
due to the isentropy condition. The quantity po
appearing in Eq. (3.1) is that value of the pressure
corresponding to the given entropy and associated with
the density pp.

Now consider the equation

We may of course formulate any problem in special
relativistic hydrodynamics in terms of the X, T coordi-
nate system since that theory is an invariant one. If
this is done we must obtain a method for determining
the function p(X, T) which determines the velocity
field and the pressure field (and hence the density field).
Conversely, for any problem in hydrodynamics for
which the velocity 6elds and the pressure field is known
in an inertial frame, we may determine the function
y(X,T).

In the X, T coordinate system the conservation
equations, Eqs. (2.2) and (2.3), which describe the
motion of the Quid become

or

pp I
Le &(1—u')*'$»+ e &—— =0,

p g gi

(3.3)
and

T~".„=0

(pu"), „=0,

(4.1)

(4.2)

(pou) pou
L(1-u)'j -4 (1-u)'+

I

——
I

-y, ,—-=0.
Ep cl, . pc

Now from Eq. (3.1) we have

y»= —(1/oc') p», yg —(1/oc') p, .——

Moreover, since the motion is isentropic,

That is,
o, .=—P(1/p), =—(P/p)i +(1/p)Pi .

(1/p)P&' = ( +P/p) &' (c o/p) i'
By using these results and Eq. (2.21), we may verify
that Eq. (3.3) is satisfied. Hence the equations

respectively, where the semicolon represents the co-
variant derivative with respect to the metric tensor
given by Eq. (3.5). These equations are identically
satisfied. We verify this statement for Eq. (4.2). A
similar argument applies to Eq. (4.1).

Equation (4.2) may be written as

t9

LV'( —g)pu"l =o.
g(—g) Oooo

On substituting from Eqs. (3.5) and (3.6), we see that
since

V'( g) = e'po/(c'p—),

T= T(X',t'), X'=X, (3.4)
the above equation becomes

where the function T is defined by Eq. (3.2), define a
coordinate transformation to an orthogonal co-moving
coordinate system in which the line element is given by

pp
ds' = e' od T' dX' (dy'+ds') . — ——

(pc) c
(3.5)

where we have dropped the primes since they are no
longer needed for clarity. The quantity tt is a function
of X and T, p is a function of p, determined through
the relations g(p) and p= p(p), and po which represents

(po)r=0,

which is identically satisfied as a consequence of pp

being a constant.
Since Eqs. (4.1) and (4.2) do not impose any re-

strictions on the function p(X, T), it would appear that
this function could be arbitrary. However this is not
the case. Since we are dealing with special relativity,
the space-time described by the line element (3.5)
must be the Minkowski one. That is, the Riemann-
ChristoGel curvature tensor must vanish. To each
p(X,T) for which this condition is satisfied, there then
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corresponds a hydrodynamic motion determined by
the world lines of the particles of the Quid which are
the curves

x=x(t),

function 8 is given by the equation

1 I
1/t/ =-', log

1—I (5.4)

given parametrically by the equations

x=x(X,T), t=t(X,T), (43)
where X is kept fixed to obtain the world line of the
particle X.

Equations (4.3) are the transformation equations
from the orthogonal co-moving coordinates (X,T) to
the inertial ones x, I,. They may be determined from a
knowledge of the function 4t (X,T) by solving the metric
tensor transformation equations. Ke shall discuss these
equations later.

po e t po't p
&4II4————eo

~

—
(

——{eo)x

Hence the requirement that the space-time be Hat is
equivalent to the requirement that

e o t' pp) p——(e')x
c' &p&r r po x

(5.1)

and hence there must exist a function t/I/' such that

5. DETERMINATION OF P

The situation encountered here, of having the con-
servation equations satished identically as a result of a
condition imposed on the metric tensor and the choice
of the coordinate system, is precisely that found in the
general theory of relativity. However, in the latter
theory the requirement of the vanishing of the Riemann-
ChristoGel tensor is replaced by the requirement that
the Einstein gravitational field equations be satisfied.
Since we shall discuss the Geld equations of general
relativity by an approximation scheme in which the
zeroth order approximation to the metric is given by
Eq. (3.5), where p is determined as in the special
theory of relativity, we evaluate the Riemann-ChristoGel
tensor for the case where Eq. (3.5) holds.

It may be shown that in this coordinate system the
only nonvanishing component of this tensor is3

and u is the quantity entering those equations. In
verifying this result one uses the rules of partial di6er-
entiation, and Eqs. (3.1) and (3.2) in the form

and

T, =e-o(1—242)&

po I
rx ————e-~—.

p c

(5.5)

(5.6)

Thus, starting with the co-moving coordinate system
in which Eq. (3.5) holds, we find that the requirement
that space-time be flat is equivalent to Eq. (5.1), that
is, to an equation for the determination of p. This
equation is in turn equivalent to Eqs. (5.2) and (5.3),
the form that the equations of motion in the original
coordinate system take when we introduce X and T as
independent variables. In the next section we show how

to define the function I (and hence W) by starting
from the co-moving coordinate system.

6. FUNCTION u{X,T)

This function represents the tangent in the x, I, plane
of the curve given parametrically by the Eq. (4.3)
where X is kept fixed. That is,

cl=xr/tr (6.1)

( pp

f
=0,

pc2 )r & po &x
(6.2)

such that

Hence if we can determine the transformation from the
coordinate system X, T to the inertial one x, t, that is
determine the functions x(X,T) and t(X,T) we would
then determine the function 24 from Eq. (6.1).

Many methods exist for determining these functions.
For example, we may say that this as the classical
equivalence problem between two metrics. %e consider
another one. Let x be defined as a solution of the equa-
tion

po
Wx=

c (p)r

(5 3) aildcp
Wr = (eo)x. —

pa

e
—2/x 2 c2(p2/p 2)x 2— c2

tx=e &(pp/pc2)xr,

tr eo (p/p p) xx. ——

(6.3)

(6.4)

(6.5)

p' 1 I' p'
e &tIP c tx'= ——

~

—e —&xr2—c —xx
~
=1. (6.6)

c' E. p2 )
L. P. Eisenhart, Riemueeiue Geometry (Princeton University

Press, Princeton, 1926},p. 44.

Equations (5.2) and (5.3) are equivalent to Eqs Equation (6.2) is the integrability condition of these
(2.20) and (2.21) if the latter equations are expressed equations. Then it follows that
in terms of X, T as independent variables and if the
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)
Bx t"Bx" pv Bx &

The functions x and t so defined are the transforma- and t(X,T) by solving the equation
tion functions that were being sought, for Eqs. (6.3)
and (6.6), respectively, give the g" and g components
of the metric tensor in the x, t coordinate system. We
also have

(6.13)

gi4=e o&xrtr (cop—o/poo)xxtx=0.

It follows from Eqs. (6.1) and (6.5) that

e &xp

(P/Po)»

(pc'/po) tx

e &tz

Equation (6.3) may be written as

xx= po/Lp(1 —N')'j.

Equation (6.2) may be written as

(N ) ( p

Ec )r ( po

On substituting for xx, we'have

fl po ) ( e&

E c p(1 N, )&—J r &(1 oi)'&—x

( Po ) (
/

e-~ tr I
—

/

eo t. )
=0. —

pc' )r 0 po ~x

Equation (6.5) may be written as

tr =eo/(1 —1')i.
Hence we have

( p 1 ) ( e~u

Epoc (1—N')i) r & (1—ii')'j x

It is a consequence of Eqs. (6.2) to (6.5) that

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

subject to Eqs. (6.6), (6.7), and (6.3), where the primed
variables refer to the co-moving coordinate system,
the unprimed ones to the inertial one, and the quantity
in parentheses is the Christo6el symbol computed from
the metric tensor given by Eq. (3.5). In this notation,
we have

Bx4/Bx" = tx,

cjx /cjx =xx~

ax "/ax'e =be,

Bx4/Bx'4 = tr,

8x /Bx =xr,
(n, P= 2, 3).

It may be verified that Eqs. (6.13) are equivalent to
Eqs. (5.3) with N defined by Eq. (6.1).

Still another method is that used in classical hydro-
dynamics, namely, to determine functions W and p
satisfying Eqs. (5.2) and (5.3) subject to the given
boundary conditions. The function x(X,T) is then
determined from the function N(X, T) by an integration.

'7. BOUNDARY CONDITIONS

Before reviewing the methods for integrating Eqs.
(5.2) and (5.3), we state the various conditions that
the functions N and p may be required to satisfy. These
will be called boundary conditions here and they are of
two sorts: (1) requirements on these functions on the
surface t(X,T) =0, and (2) requirements on these
functions at certain fixed values of X.

For example, consider a tube of length J. in an
inertial coordinate system filled with gas, closed at one
end by a rigid wall and at the other by a movable
piston. The tube and gas are initially at rest in the
inertial coordinate system and at constant pressure,
density and entropy. Move the piston in accordance
with the equation

Equations (6.10) and (6.12) may be solved for Nr
and N~ to give

N&= (1 N )c(P/Po)(e )» N&= (1 N )(e %)(po/P)&.

These equations are just Eqs. (5.2) and (5.3).
The formal results of Sec. 5 and this section may be

summarized as follows. In order to solve the conserva-
tion equations determining the isentropic motion of a
Quid in an inertial coordinate system, we determine a
function p(X,T) and a function x(X,T) in which p is
determined in terms of x~ and xp. Since the coeScients
of Eq. (6.2) are known when g is known, the equation
for x(X,T) is determined. The function p determined
by the method outlined will satisfy Eq. (5.2) since
Eq. (5.3) are a consequence of (6.2) and (6.3) and the
dehnition of N, as a function of xz and x~.

Another method consists in determining g(X,T) as
a solution of Eq. (5.1) and then determining x(X,T)

*=xo(t), (7.1)

N(x, 0) =0 N(xo(t), t) =dxo/dt,

g(x,0) = constant, N(L, t) =0. (7 2)

That is, on the initial surface t(X,T), oi and p are
prescribed and in addition N is prescribed along two
"particle paths" given by the parametric equations

x=x(X,T), t=t(X,T), (7.3)

with x equal to J in one case and in the other case
X=XO, where Xo is such that the curve described by
Eq. (7.1) is given parametrically by Eqs. (7.3) with
X=Xo.

The first two of Eqs. (7.2) are boundary conditions
of type (1) and the second two are of type (2). In

where xo is a given function of t. It is required to find
the motion of the gas. The boundary conditions for
this problem are
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other problems Eqs. (7.2) are replaced by corresponding Then
statements.

and hence
8. CHARACTERISTIC FORM OF THE EQUATION

W=II —pp,

I= tanh(P —Pp). (9.1)

The first Eq. (8.7) may be written as

(1/c)fr+ ne p (p/p p) p» 0. ——
e ~pp

Wx =— —p'Pr,
c p

p
Wr =c—e&@x,

po
(8 1) This equation has as its general solution

f(4) =X c~e—'(p!pp) T,

We now turn to the integration of Eqs. (5.3) which
may be written as

(9.2)

(9.3)
where the prime denotes the derivative with respect to

It may be shown that' 0., the ratio of the velocity of
sound to the velocity of light, is given by the equation

plp'- (8 2)

We deane the quantity

rf' dp (a4'( p )I'

&p 4 p&
(8.3)

e & o.p
Pr+—Wx= 0

po

The second of Eqs. (8.1) may be written as

e &

Wr+n~x =0
c po

(8.5)

Adding and subtracting these equations gives

Hence

fx= ( p'/p—)'4x—, 4r= ( p'/p)—'er— (84)

Multiplying the 6rst of Eqs. (8.1) by n, one obtains

where f(p) is an arbitrary function. It may be deter-
mined from a boundary condition such as the third of
Eqs. (7.2) by using Eq. (9.1).

Equation (9.2) states that @ is constant along
straight lines in the X, T plane with slope

I'= ewe&(p/p p), (9.4)

and hence this quantity is the velocity of propagation
of p. Depending on the nature of the function f(@)
this set of straight lines may or may not intersect
in the region of interest in the X, T plane. When they
do, as they will for a compressive motion of a piston
into a compressible gas, a shock forms and the di6'er-

ential equations no longer can apply. These equations
must be replaced by the Rankine-Hugoniot equations. 4

10. COMPOUND WAVES

Solutions of Eqs. (8.7) for which neither r nor s are
constant are called compound waves. Such solutions
are most readily obtained by interchanging the role of
independent and dependent variables in these equa-
tions. ' This may be done since

J= rxsr rrsx 2cne& (p/—p p) sxr——x/ 0, (10 1)

e &

rr+n, —rx =0,
C po

e @ p
sz —n—sg =0,

C po

by the definition of compound waves
It is a consequence of the rules of partial differenti-

ation, that
where

r =f+W, s=P—W.

Equations (8.7) are the characteristic form of the
equations of hydrodynamics in terms of the Riemann
functions r and s. They state that r is a constant along
the curve given by

X,—rT, =O, X„+I'T„=O. (10.3)

On adding and subtracting these we obtai~, after
using Eq. (8.8), the equations,

JX,=sr, —Jx,=rr, —JT„=sx, JT,= rx. (10.2)

Hence Eqs. (8.7) are equivalent to

dX/dT = ce&(p/pp)n,

and that s is constant along the curve

dX/d T= —ce& (p/pp) n.

(8.9)

(8.10)

x,+rT =o, x +IT,=0. (10.4)

Since I' defined by Eq. (9.4) is a function of g alone
and hence of P alone, the second of these equations
states that there is a function of Z(P,W) such that

9. PROGRESSIVE WAVES

Solutions of Eqs. (8.7) which are such that either r
or s is constant are called progressive waves. They
propagate in one direction alone. We shall discuss the
case

s=fp= constant.

z —(I/r) (rz,),=o,
4 A. H. Taub, Phys. Rev. 74, 328 (1948), p. 332.' A. H. Taub, Ann. Math. 47, 811 (1946).

(10.6)

T=z =z„—z„x=—I'z, = —r(z,+z.). (1o.5)

The first equation is then the linear equation
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which may be written as

Zs s —Z~~ —(logI') ~Z~
——0,

of the Quid is
N~=e '94~. (11.2)

or as

Z„,+[(logi') „+(logI'), ](Z,+Z,) =0. (10.7)

The Einstein field equations, in this coordinate
system, may be taken to be

Solutions of this linear equation define X and T as
functions of r and s by Eqs. (10.5). On inverting
these, that is solving for r and s as functions of I and
T we obtain solutions of Eqs. (8.7), that is solutions
of our original problem. We may obtain x and t as
functions of f and W (hence of r and s) by noting that
the line element of the Minkowski space may be written
as

1 (pl'
ds'=e»(Te@+TsdW)'

~

—
~

(Xp@+XwdW)'
c& (p, f

1——(dy'+de').
c2

, ( p )(p
2e &(Hve &)r+3(e &H~)o c'~ e—'~ Hx—

I ~

e'~H—x
po J Ep

+2—e'~ f )x~ = —kP, (11.3)
p, )

pr p(
e &Hr 3e &Hr+2e & +2c—'e'~

I
e'~ H—x ~—

p po ~ po i x

(
/3c'~ e'H Hx

~

= ——k(p+P') =—k(P —rc'), (11.4)
p,

That is,

ds' =g idP+ go@dW+ god W' ——(dy'+ ds'),
c2

where

and

expo ( p ) px PT
~

(e'~) r e o~ = (e—'"), —(e'~) x— , (1—1.5)
p E po )x p p

(11.6)8""——gI'"8= —kcaTI" v

where k is given by Eq. (1.1) and the prime denotes
the derivation of p with respect to p.

Equations (11.3) to (11.5) are derived from the
=e'~(zpw)' ———

~
[(I'Zy) y$', equations

c' &

g, =2zs e'4'Z ss——
~

—
~

I'(I'Z4)4, ,
c' E.

g, =e'&( Zs )s' ——
~

—
~

(I'Zq~)'.
c' &po&

The functions xQ, W) and t(Q, W) define a transfor-
mation of coordinates in the Minkowski space which

may be evaluated by solving equations of the form of
Eqs. (6.13).This is equivalent to solving the equations

xx ——po/(1 —44') l) xr cN e&/(1 ——I') ))—
which follow from the results of Sec. 6.

11. FIELD EQUATIONS IN CO-MOVING
COORDINATES

It has been shown' that in a space-time with plane-
symmetry in which the gravitational field is created by
a perfect Quid at constant entropy, we may introduce a
co-moving coordinate system in which the line element
has the form

I (pol '
d y& =e»d T'——

~

—
~

e 4iidX' e'~(dy—'+ds') —
)
—(11.1)

c' Ep) c'

wllere po may be taken to be a constant, )t) is related to
the pressure by Eq. (3.1) and hence p is a function of p,
and H is a function of X and T. The velocity vector

by using the line element (11.1) and Eq. (11.2).
The problem of determining the gravitational 6eld

and one-dimensional isentropic motion of a perfect gas
subject to certain boundary conditions, when formu-
lated in terms of the co-moving coordinate system, is
analogous to the problems formulated and discussed for
such motions in special relativity. Thus the line element
(11.1) and that given by (3.5) differ only in the presence
of the function H(X, T). This function is related to p
by the 6eld equations. The conservation equations,
Eqs. (4.1) and (4.2) are again automatically satisfied.
We shall show that an equation which reduces to (5.1)
in the limit k=0, H=O is a consequence of the field
equations, Eqs. (11.3) to (11.5).

The particle paths, Eqs. (4.3) with X fixed, provide
a mapping from the line element given by equation
(11.1) to another one for a c44rved space time. For
problems in which the boundary conditions may be
expressed in terms of co-moving coordinates, the deter-
mination of these curves is unnecessary. In some prob-
lems, stated in a coordinate system which diGers from
the co-moving one, it may be necessary to determine
these curves.

12. INTEGRABILITY CONDITIONS FOR THE
FIELD EQUATIONS

The system of field equations, Eqs. (11.3) -through

Eqs. (11.5) contain only the first derivations of the
function p and if 4t) is known, they presumably determine
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(12.1)U(X, T') =ce'&(p/po)a»

the function H. However, the function @ may not be entiate it with respect to T to obtain
chosen arbitrarily. To see how this comes about, we
recast these equations into another form. Let us define (, P»,

pc)p r c p

and

V(X,T)=e &Hr (12.2)
(,„»l (p—VI m»or+3"y»V I (» 9)

)E pc) r 0 p

Then since we must have

IIxr= &rx,
Subtracting Eq. (12.9) from (12.8), we obtain

(, p
it follows that the functions U and V must satisfy the U

I

«'~—eel»
I

——
I

e '"—
I e ~

equation po )x cE p)r
P P

e &Ur ce'~ —V» —e4' —U@r-
po P

P—ce'~~»V =2UV. (12.3)
po

In terms of the variables U and V the system of
equations (11.3) through (11.5) may be written as

po+e~'~ (-', kP'+—V' U') =—0. (12.10)
PC

Similarly the condition

Uxr= Urx,

may be shown to be equivalent to

P
2e 4'Vr=2cUe'~~» kP+—U' 3V',—

po
(124) V I

ce» e&@—x I

——
( e '~—

I
e &

( p ) 1 ( po

po )» c ( p)r
P p

2ce' U» 2 —Ve &——Pr—+—k(P+P') 3U' 3V'—(12.5—)
po P

po
+e& '~ ( ', kp'+V'—U-') =0.—(12.11)

PC

and

2e &Up ——2VI ce'~~» U I,
—

Since U and V cannot both be zero when p and p'&0
(12 6) we must have as a condition on p the equation

Po

respectively. Subtracting Eq. (12.6) from (12.3), one
p, )x c & p)r

2ce'~—Vx= —2UI ~re-e+3V I.)Po ~P
(12.7)

po
+ee '~ ( 'kP'+V' U—') -=0. (12—.12)

PC

Thus the system of Geld equations may be considered
as a system of Grst order equations consisting of Kqs.
(12.1) and (12.2) and (12.4) through (12.7) for the
quantities B, U, and V. In order that they admit a
solution it must be so that Vxr= Vrx and Uxr= Urx.
These integrability conditions imply conditions on the
function p, which we shall now obtain.

We may solve Eq. (12.4) for Vr and difFerentiate the
resulting expression with respect to X. After some
manipulation involving the use of Eqs. (12.4) to (12.7),
we obtain

(,Vr»=U
I

ce' —e~g» I
Ueepx+—e'Ux

p. )»

VI ~»@&+3Ve~@»+3e4'V» I. (12.8)
&p

Note that when k=O and II=0 the line element given
by Eq. (11.1) becomes the same as that given by Eq.
(3.5) and Eq. (12.12) is just Eq. (5.1), the condition
that the space-time be Rat.

13. EQUIVALENT FORM OF THE FIELD EQUATIONS

We have seen that the problem of solving the Geld
equations is equivalent to solving the system of Eqs.
(12.1), (12.2), (12.4) through (12.7) and for the func-
tions H, p, U, and V. In this section we show that.
Eqs. (12.4) through (12.7) may be written in another
equivalent form.

If we multiply Eq. (12.4) by Ve& and Eq. (12.6) by—Ue~ and add, we obtain

2 (VVr —UUr) = kp Ve&+3Ve& (U' —V'). —

On multiplying this equation by e'~, we may write it as

Similarly we may solve Eq. (12.7) for V» and differ- I:e' (V'—U'))r= —ekP(e'~)r. (13.1)
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(f+f ')'=f'p'/p (13.3)

Hence since p'&0, we may write the above expression as

H»T+3H»Hr $»Hz+ —(p /p)/AH»= 0, (13.4)

which is another form for Eq. (11.5); thus Eqs. (13.1)
and (13.2) together with Eqs. (12.1) and (12.2) imply
Eqs. (12.6) and (12.7).

If Eq. (12.6) is substituted into the equation pre-
ceding Eq. (13.1), we obtain

Vee(2e eVz 2ceorr(p—/po)p»U+kp Us+3—Vsj=O.

When VWO, this is Eq. (12.4). Similarly we may show
that when UQO Eq. (13.2) implies Eq. (12.5).

14. APPROXIMATION PROCEDURE

We shall use an approximating procedure for solving
the system of field equations, Eqs. (12.4) to (12.7),
together with the defining Eqs. (12.1) and (12.2) and
the integrability conditions, Eq. (12.12). The scheme
we shall use is similar to that of Einstein, Hoffmann,
and Infeld' and that of Einstein and Infeld~ in discussing
the motion of singularities in the gravitational Geld.
However, it differs from the latter methods in that we
use expansions of the gravitational field quantities in
terms of the constant k instead of some velocity. This
will free us of the necessity of assuming that time
variations of the field quantities are small compared to
spatial ones.

Expansions of the type used below have been used by
McVittie for determining integrals of the classical
equations of hydrodynamics from solutions of the
Einstein 6eld equations. Thus McVittie has used the
general formulation of relativistic hydrodynamics to
obtain solutions of classical problems. The approach
given below uses special relativistic solutions of hydro-
dynamical problems as the erst terms in series expan-
sions of general relativistic problems.

More precisely, our program is the following: we

Einstein, Hoffmann, and Infeld, Ann. Math. 39, 65 (1938).
r A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).' G. C. McVittie, Quart. Appl. Math. 11, 327 (1933).

Similarly, if we multiply Eq. (12.5) by —(1/c)e '~
X(po/p) U and multiply Eq. (12.7) by (1/c)e '~(po/p) V
and add, we obtain

dies~(V' U'—)j»= —'k-(p+ p') (e'~)» . (13.2)

Equations (13.1) and (13.2) together with (12.1)
and (12.2), the definitions of U and V, imply Eqs.
(12.4) through (12.7) when U&0 and VWO. To see
this, we note that it is a consequence of Eqs. (13.1)
and (13.2) that

e'~ r x= ' ~'~ x r.
That is,

P'(e'")» P'4»(~'—)~+(P+P')'4r(e' )»=0.
However, it is a consequence of the definition of p(p)
Lsee Eqs. (2.7) and (3.1)j that

write
jP k' ki

@()0++(1)+~(s)+~&8)+. . . p rl)(i) (14 1)
2! 3! iM Z!

k'
H =H&'&+ kH&'&+ H("—+

2! i!
(14.2)

and again

00

p=p —p(o
'=o j!

(14.5)

P(') = (d'P/dk') &=o. (14.6)

The right-hand side of the last equation may be evalu-
ated by using the rules for diGerentiating a function of
a function. It then follows that the various sets of
equations we must. consider may be obtained by
di8erentiating with respect to k both sides of Kqs.
(12.4) to (12.7) an appropriate number of times and
setting k=0. The equations resulting from diGerenti-

ating e times with respect to k will be called the nth
order equations.

15. ZERO-ORDER EQUATIONS

These equations are obtained by setting k=0 in the
field equations and the defining equations. We then
obtain

&'H»(o) = (g sirpo/p)(o) U(o) (15.1)
Hr(o) = (ee)(o) V(o) (15.2)

for Eqs. (12.1) and (12.2), respectively, where we use
the notational device of denoting the rth derivative of
a quantity with respect to k evaluated at k=0 by
putting parentheses around the quantity and using a
superscript '"'. The set of Eqs. (12.4) to (12.7) inclusive
becomes

2 Vr&o) 2c U&'& (estop/po) &o& (ee)»&o&

+ (ee) &o) (U&o&)o 3 (ee)"' (V"&)s, (15.3)

2o V (0) 2 (e 2EIp /p) (0) U(o)

&&L(u'/p)ere '+3Vj"' (15 4)

2 Up(o) —2V(~)Lo (e harp/po)y» U)( ) (ee)( ) (15 5)

2cU»&"= (e
—' po/p)(')$2(p'/p)e

—e4rV
—3U —3V'g&o). (15.6)

These expressions are substituted for p and H in the
equations listed in the above paragraph, and coefBcients
of like powers of k on both sides of each equation are
equated. We then discuss solutions of the resulting
system of equations.

It follows from Eqs. (14.1) and (14.2) that

y&"= (d'&))/dk') s=o (14.3)
and

H&'& = (d'H/dk') = (14.4)

respectively. That is, the superscript (i) on each of
these quantities represents the ith derivative of the
quantity with respect to k evaluated at k= 0.

If p is an analytic function of p, H, and their first
derivatives, we may write also:
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The integrability conditions of Eqs. (15.2) and (15.1)
are satisfied as a consequence of (15.4) and (15.5).

Equations (15.3) to (15.6) may be derived from the
equations

R~"=0 (15.7)

by using the coordinate system in which the line
element is given by Eq. (11.1) with &&&

=p(') and
H= H(o). This statement follows from the fact that the
equations we are concerned with are a consequence of
Eqs. (11.6) and the latter equations reduce to (15.7)
when we set k=o. In general the zero-order equations
are contained in the field equations for an empty
space-time.

It is known' that plane-symmetric space-times satis-
fying (15.7) are one of two sorts: (1) those in which
there exists a coordinate system in which the line
element may be reduced to

use of Eqs. (15.8) and (15.9), we obtain

po n—1 (ppe
cHx&"'= U&"&+ P C„,„~ ~

U&" "', (16.1)
p&'& n i ( p )

Hr(n) —(ee)(0) V'(n)+ p C„„(ee)(t)V&n—n)

r=l
(16.2)

p(o)
VT( ) =c[(e4')(')]x U"+Pi„,

po
(163)

po (p~ ) (0)

cV» ) = —U("
~
~re ~

~ +F2„, (16.4)
p&» & p )

where C, „denote the binomial coefFicients.
Similarly the system of Eqs. (12.4) to (12.7) lead

to the equations

1
ds'=(a+bx) Ii dt' dx' —i-

c' )
—(a+bx) (dy'+—&Es') (15.8)

C2

( p ) (0)

U && —V()( ce&~
) +P,

p, )
(pop'

cU»(n)= —V(n)~ e ~&tr
~

+~4nj

(16.5)

(16.6)

and (2) those which are flat—that is, those for which
the Riemann-ChristoBel curvature tensor vanishes.

We shall assume as the zero-order solution of Eqs.
(15.3) to (15.6), the solution of Eqs. (15.7) correspond-
ing to the fIat-space time. There seems to be no general
justification for this assumption. In its favor, it may be
said that the zero-order solution equivalent to the
metric given by Eq. (15.8) has a singularity in it that
makes it plausible that it corresponds to a gravitational
field outside of matter. In the present discussion we are
concerned with the gravitational field inside of matter
and therefore discard the possibility represented by
the metric given by Eq. (15.8).

It is evident from Eqs. (15.1) to (15.6) that

The functions Ii „(&)&=1,2, 3, 4) depend on P(") and
H(" with r=1, 2, , m —1, and the derivatives of
these functions with respect to X and T.

The explicit expressions for the F „are:

)pP,„= PC„„~ P +ey»
~

U& -) (eeP)(-u'

(po

(U2) (n—r)

+ 2 C-, .(e')(")
~

—
I&2)

p V2~ (n—n)

—3 Q C „(e~)&"&
~

—~, (16.7)(2)
H(o) 0 (15.9)

p(o) —y(o) —0 (15.10)

is a solution of these equations. The argument given
above shows that this is not the only solution. However,
from the discussion given of special relativistic hydro-
dynamics it is clear that Eq. (15.8) is consistent with
the assumption we are making, namely that the space-
time determined by H&" and (t

") is flat. The equation
satisfied by &&&( ' will be determined from the first order
equations.

It is a consequence of Eqs. (15.1), (15.2), and (15.9)
that

pI po
~,.= —P C. ,U& ) l'.-e—.-'"~,+3V

~

p p

n—1 ( p ) (n—r)

P,„=P C„,,V(")
~

c '~eel@» —U~—
p,

( PP
P PC ~e2H

p2 )

+-I (P+P')e '
2E p)

(16.8)

(16.9)

16. HIGHER ORDER EQUATIONS

By solving Eqs. (12.1) and (12.2) for Hx and H&,
di6'erentiating the resulting equation e times with
respect to k (where n&~1), setting k=0, and making

n-1 ( pp$ & "&

—-'P C, „~ e
—'~—

~
(U'+V')("—'& (1610)

pi

If f is any analytic function of H, &t and their deriva-
tives with respect to X and T, we assume that we may
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represent it by the convergent power series

f Q—f=(()
s-0 jt

earlier part of this paper. Thus the nonlinearity of the
field equations has been concentrated in the zero-order
equation for p, that is, in the special relativistic approxi-
mation to the problem.

Hence

and

pi

fx=g fx—'
s=oi ~

1'7. FIRST-ORDER EQUATIONS

On setting m=1 in the above equations, we obtain
for Eqs. (16.1) and (16.2) the equations

Similarly

dn

(fx)'"'=( fx I =(f'"')» and
cHX(1) P(1)po/p(0)

HT(1) —(ee) (0) p'(1)

(17.1)

(17.2)
(fT)'"'= (f'"') T

These observations may be used to study the inte-
grability conditions of the pairs of equations (16.1)
and (16.2), (16.3) and (16.4), and (16.5) and (16.6).
Since HxT("'= (HxT)'" and HTx("&= (HTx) ", we have

HXT HTX (HXT HTX)

Hence the integrability condition of Eqs. (16.1) and
(16.2) is satisfied if the eth derivative with respect to
k evaluated at k=0 of the integrability condition of
Eqs. (12.1) and (12.2) is satisfied, that is, if such an
nth derivative of Eq. (12.3) is satisfied. However, this
condition is satisfied for it is merely the difference of
Eqs. (16.4) and (16.5).

Similarly the integrability condition of Eqs. (16.3)
and (16.4) is given by

U'T(1) = y(1)c(e0) (0) (p(0)/p )y (0) (17.5)

«x =~ (po/. )T(e 0) +0(-P +p )po/po, (»6)
respectively.

It'may be verified directly that the integrability
conditions of Eqs. (17.1) and (17.2) are satisfied as a
consequence of Eqs. (17.4) and (17.5). The integrability
conditions of the pair of equations (17.3) and (17.4)
and the pair of equations (17.5) and (17.6) are satisfied
as a consequence of Eq. (16.13) which is the same as
Eq. (5.1), namely

c[(e4')xp/po5x"' [e &—(po/p) T5T" =0. (17.7)

respectively. Equations (16.3) to (16.6) become

p'T(1) —c[(e0)(0)5»(p(0)/po)U'(1) 1(e0)(0)p(0) (17 3)

coax(1)

—P(1) (e 0) (0) (po/p(0)) T (17.4)

P(r) Q(n —r) 0
r=o

(16.11) The function @(') may be determined by Eq. (16.14)
with m=1, that is, by the equation

and that of Eqs. (16.5) and (16.6) is given by

P'(r) fl (n r) 0—
rm

(16.12)

where 0 is defined by Eq. (12.12).
If e= 1, Eqs. (16.11) and (16.12) together with

(15.10) imply that
n«) =0. (16.13)

If Eqs. (16.11) and (16.12) are satisfied from m= 1, 2,
~ . . m, then we must have

n(-)=0, ~=0, ~, . m —~. (16.14)

When the functions 8")=0, II('), . H( —'), and the
functions (t(", p(", p( '& are known, we may deter-
mine p(m '& by solving Eq. (16.14) with N=m —1.Then
the quantities F in Eqs. (16.3) to (16.6) are known
as well as the coefficients of U&") and V~"' appearing in
these equations. These are nonhomogeneous linear first
order partial differential equations. The only nonlinear
equation we have to deal with is Eq. (16.13) which, as
was pointed out earlier, is Eq. (5.1), the equation which
holds in special relativity for the determination of the
function p and whose solution was discussed in the

q
(o)

c'~ —e0~
- &po

t' po 'l '"
+

~
e
—4'

~

y(1)

xx & p' &

- (p )(0)
+2c'

~

—e&(tx
~

H"& +2 (H"& (e
—&)(»

(PO & X-- -P T

If we write

( Po ) (0)

+~ e0—P'
(

=0. (17.8)
( 2p

( p q
(0) (e$) (0)

g&(1) —
( [ 4,(l)

(po& r
we may write Eq. (17.8) as

$FC ('&5»x—(@(')/F5TT+D(') =0, (17.9)

where D"& is given in terms of H(') and g(') by the sum
of the last three terms of Eq. (17.8) divided by c' and

(
—p)

-*'- (0)

F= ce0—
fpo(p'&-

(17.10)

and is the value obtained from Eq. (9.4) by setting
p=p(0) in that equation. The quantity F is therefore



APPROXIMATE SOLUTIONS OF THE EINSTEIN EQUATIONS

the special theory of relativity velocity of sound in
orthogonal Lagrangian coordinates.

Methods for dealing with Eq. (17.7) were described
earlier. In discussing the solution of Eqs. (17.3) to
(17.7) it is convenient to introduce the characteristic
curves in the X, T plane (see Sec. 8). We define the
curves of parameter n as the solutions of the ordinary
differential equation, Eq. (8.9). Thus

X —FT =0. (17.11)

Similarly we define the curves of parameter P as the
solutions of

Xp+r rp=O.

Then, for any function f(X,T), we have

fa= fry'~+fxX = 2'n(fr+r fx),

fp= fry"p+fxXp= 7'p(fr r fx)—

(17.12)

Equations (17.1) and (17.2) are then equivalent to
the equations

Q o)= (e4)(o)T f V(i)+L( p/p )I7(0)U(u} (17 13)

&p"'= (e') "'7'pP "' E( pl—p )'7—"'U'"7 (17 14)

Similarly Eqs. (17.3) to (17.6) become

V (i) — Uo))P (0) i(eep)(0)2' (17.15)

V 0) —U(i))P (0) L(eep)(0)Tp (17.16)

U-"'= V"'4-'"+kL(—pip')'e'(P+P—')7"'T'-) (17 17)

and

U '"= V"'6'"- l L( p/p')'e'(p+—p')7"'2', (17 18)

respectively, where )P is defined as a function of p by
Eq. (8.3). By adding and subtracting Eqs. (17.15) and
(17.17), we obtain

L(e4)(0) (V(i)+ U(i))7
= 22'-f L( pip')'(P+P') —P7e'+')'" (—17 19)

and

L(e
—)()(0) (VO) U(i&)7

27'-f L(—pl p )'—(P+P')+P7e '+') '" (17 2o)

respectively.
Similarly, by adding and subtracting Eqs. (17.16)

and (17.18),

L(e
—

) ' (V'+U" )7p
27'p{L( pip')—'(P+P')+—P7e '+'}"', (17 21)

and

L(ef)(0)(V0) U(i))7
= 22'pf L( pip )'(p+ p') p—7e'+') "', (17—.22)

respectively. Equations (17.19) to (17.22) are of course
equivalent to Eqs. (17.3) to (17.6). Hence the solutions
of the latter may be determined by quadratures when
the function g('& (X,T) or g('& (().,P) is determined by the
methods discussed in the earlier part of the paper.

Thus, for example, if (t('& is such that it describes a
progressive wave (see Sec. 9), then it follows from Eq.
(9.2) that

+r('& = (I'C "&)x+&ji(X,T),

+ "'=(c'"'/r) +~(x,T),

(18.1)

(18.2)

Thus p('& and hence II(', p(), and p() are functions of p
alone. Equations (17.19) and (17.20) may then be
integrated immediately to give

V(i)+ U(i)

T f 5( pip )*'(P+P') P7e'—)"'+A (P), (17 23)

t/'0) U (&)

2T(—L( pip'—)'(p+ p')+ P7e'}'"+&(P), (17.24)

where A (P) and B(P) are two functions of the variable
P which must be chosen so that Eqs. (17.21) and (17.22)
are satisfied. Substituting from Eqs. (17.23) and (17.24)
into the latter equations we obtain erst order ordinary
differential equations for A (P) and B(P). These are

(2'Ae ') = 2' {L( —p!p')'(P—+P')+P7e '+')"'
{2'L( p—lp')'(P—+P') P7e "'—}p'" (17 25)

and

P'&e') p= 2'pf L( pip') '(p+—P') p7e"') "—'

+fTD pip')'(P+—P')+P7 "') '" (17 26)

The solutions of these equations depend on a single
arbitrary constant.

It follows from Eqs. (17.23) and (17.24) that

«"= lTP"+lL-~(fI)+~V)7, (17.27)

U"'= '7'( pip') '-(P+—P') e'+ l [~ (fI) &(0)7 (—17 28)

When these quantities are substituted with Eqs. (17.13)
and (17.14), we obtain equations for the determination
of II 0) and IIpo), namely

&-'"= l "7'7'-LP (p/p') (P+P')—7
+2A(P) L1+( pip')'e'T-—

+2&(8)t I—( pip')'*7e'T-, —(17.29)
and

IIp(&=l" »pl p+(./p')(p+p')7
+,'A (P)L1—( p/-p')le Tp-

+ '&(0)r1+ ( -pip')'7e'T —
p (17.3o)

It is evident from the last two equations that even
if g is characterized as a progressive wave, that is, even
if (t =p(P), H('& is a compound wave, that is, a function
of n and P. Hence the determination of V("', U("), and
IP"& (n)~ 1) involves the solution of equations of the
form of (17.19) to (17.22) where the right hand sides
are known functions of both e and P.

18. DETERMINATION OF

Equation (17.9) is equivalent to the statement that
there exists a function 4&'& such that
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where the functions p, and v are given by

where

P x
t(=2H&» —(e~)x + X,

p 4'
2 ' (po) (o) E

)=——H"'
I
—Ie& — T,

c' «p) 2 4c'

If= L~'(polp)P'3'",

(183)

(18.4)

(18.5)

and it follows from Eqs. (2.7) and (3.1) that E is a
constant. For, the integrability condition of Eqs. (18.1)
and (18.2) is just Eq. (17.9).

If we multiply Eq. (18.2) by +r and —I', and add
the ensuing equations to (18.1), we obtain

these characteristics 6nd a point where 0'o) —4(» is
known. From this value and Eq. (18.6) compute the
value of 0'o) —C") at X, T. Similarly on the second
characteristic find a point where 4'(»+I "& is known,
and from this value and Eq. (18.7) compute @")+I"&

atX, T.
The methods employed for discussing the erst order

equations hold for the eth-order ones equally well. The
equations for U(") and V(") in terms of the characteristic
parameters are of the form of (17.19) to (17.22) with
the right-hand sides known as functions of (2 and P in
virtue of the determination of U™,V( ', H( ), and
p( ' for m=o, 1, . 22 1b—y methods similar to those
discussed above.

19. PARTICLE PATHS

The preceding discussion has treated the determi-
nation of the gravitational Q.eld, the pressure distri-
bution, and the density distribution, for the isentropic
motion of a perfect Quid in its own gravitational held
in a particular coordinate system —the co-moving one.
In such a coordinate system the world-line of any
particle of the Quid has as its tangent vector the
four-velocity vector

(+(» @(»)~+r (+(» g)(») x
c)(&)

= —(r,—rrx) + t +r v,r

or

@(I)
(e(»+C ('&) —r(+"'+C'"))x= (rr+rrx) +)i »—

r

I p T.
y(1)

F Tp

2Q(~)
pe(o)

c Tp

K
(x rT) T., (1—8.6)

4c'

I'p T
(@(» @(») — +(»+ ()i+r P) T

f Tp

*=x(X,T), t=t(X,T), (19.1)

once these functions are known. It is the purpose of
this section to discuss the determination of these
functions for the case where the x, t coordinates are
such that the line element is given by

N~=e '94~.

YVe may obtain the solution of the same problem in
any other coordinate system by using the tensor
transformation laws and the equations of transformation

I' Tp
y(I)

r T

2II(') Tp
(o)

2'
ds'=e2J'I dt' ——dx'

I

— (dy2+ds'). (19.2)
2 I c2

Every line element in a space-time with plane symmetry
may be reduced to this form.

Consider the function x(X,T) satisfying the equation

These equations determine the change in +("—4'("
along the characteristic curve (17.11) and the change
in @(»+C('& along the other characteristic. Hence the
value of +(»—@(» at a point (2, p in the characteristic
plane may be determined from its value at (2o, p.
Similarly the value of +('&+4 &'& at (a,p) may be deter-
mined from its value at (2, po. We may then determine
+(» and @» s,t a, p in terms of the values of 4(» —C &'&

at (2o, p and +(»+4&" at (2, po.
In the X, T plane we may determine C") and Co) at

a point X, T as follows. Through this point draw the
two characteristics, the characteristic of parameter 0.
and the characteristic of parameter P. On the first of

p
I

e '~ 4' xr I
c'I e&+'~—xx

I
=O. (19.3)

p )2 ( po ~x

Then there exists a function t(X,T) such that

P 1 po
tp =e@+'~—xx, t~ ———g

—'&—&—g~.
po c' p

(19.4)

It follows that t(X,T) also satisfies the differential
equation (19.3).

If we consider the functions x and t satisfying (19.3)
and (19.4) as defining the transformation (19.1), the
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g
—2P

2 ~-2E
)

C2

p2
g444 g44t 2+gilt 2 e4H x 2

po
(1+24) (ctT+xT't

I =2»i
Ei—I) EctT—xTi

(20.2)

p2
g114—g44x 2+gllx 2 c2e4H xg+e 24x —2 c2e 2J'—

(19.5)

Hence
Wx= (—cxTt»T+ctTx»T)/(c tT xT ).—

However, it follows from Eqs. (19.4) and (19.5) that

c2tT2 xT2 c2e24+4H (p2/p 2)x»2 x 2 C2e2e—2'

and that

p
g"*=g44x t +g"x t =i ce 24eo+2H

po

p' 1 po)—c'e+4H—e'H &-—ixTxx ——0.
po c p) cx2t»—T+ctTx»T

= —(1/c)xT)e ' &(po/p)xTiz+ce@+2H(p/po)xxx»T
=ceo-~ (e

—2H-J'po/p) T.Hence in the x, t coordinate system the line element of
space-time is given by Eq. (19.2), where the function
F is defined by the Grst of Eqs. (19.5).

By adding and subtracting Eq. (19.4), we obtain
po)

i

&
—2II—I

c & p),(tT+xT) cee+2H(p—/po) (tx+xx) =0,

(tT xT)+ce4—'+'"(p/po) (tx xx) =0.— (19.6)

poi po

i
e 'H—

)
e'H F—T . —(20.3}

c E P)T P
The Grst of these equations states that t+x is constant
along the curve in the X, T plane given by

metric tensor in the new coordinate system is given by as the three-dimensional velocity of the particle X at
time T. In terms of I, we define the function

dX/d T= —ce4'+'H p/po, (19 7) Similarly we may derive the equation,

and the second states that t—x is constant along the
curve in the X, T plane given by

dX/d T= ceo+2Hp/po. (19.8)

20. FUNCTION u(X, T} IN GENERAL RELATIVITY

Equations (19.7) and (19.8) describe the curves in
which the X, T plane intersect the light-cone of the
space-time.

If x(O, T) and t(O, T) are known as well as x(X,O),
t(X,O), then we may determine x(X,T) and t(X,T) at
any point of the X, T plane as follows. Through this
point of the plane there exists an integral curve of the
family defined by Eq. (19.7) which intersects the curve
T=0, say at the point Xo. Then

t(X,T)+x(X,T) = t(Xo,0)+x(Xo,O) (199)

Similarly through X, T there is a curve of the family
given by Eq. (19.9) which intersects the curve X=O
in the point (O, To). Then

t(X,T)—x(X,T)= t(O, To)+x(O, To). (19.10)

Hence x(X,T) and t(X,T) are determined by the values
of these functions along the curves T=O and X=O,
provided Eqs. (19.7) and (19.8) can be integrated and
the quantities Xo and To detemined as indicated above.

W'T ——c(e~ )xe++ p/po= ce~+2 (p/po) (px Fx) (20 4—)

Equations (20.3) and (20.4) are the general relativity
theory analogs of Eq. (5.3) of the special theory of
relativity. The former equations reduce to the latter
when B=F=O. The former equations may be inter-
preted as the equations of motion of the Quid in terms
of the orthogonal Lagrangian coordinates X, T. In this
interpretation, the terms involving H and Ii are attrib-
uted to the eGects of the gravitational field. It follows
from Eqs. (19.5) and (19.4) that

e 2~ =c'(1 I') e4H (p—'/po') x»' (2.0.5)

This equation reduces to Eq. (6.9) the special theory of
relativity form of the conservation of mass when B
=F=O

When the approximation method discussed in earlier
sections is used to obtain approximate functions to
represent p, H, and p, these approximations may be
used in Eqs. (19.3) and (19.4) to define approximate
values of the functions x(X,T) and T(X,T). In terms
of the latter (approximate) functions, we may define
an (approximate) three-dimensional velocity Geld
24(X,T) and even 24(x, t), where in the latter expression
we use the inverse transformation to that defined by
Eqs. (19.1) to determine X(x,t) and T(x,t).

21. BOUNDARY CONDITIONS
Just as in special relativity (see Sec. 6), we may

interpret N(X, T) defined by the equation

CN= XT/tT

As pointed out in Sec. 11, in general relativity, just
as in special relativity, the solution of a particular

(20.1) physical problem is determined by supplementing the
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field equations with speci6c boundary conditions. That
is, by specifying the values of various functions on
certain surfaces in space-time. It is the purpose of this
section to illustrate by means of an example the deter-
mination of the boundary data and in the next section
to describe their use in determining solutions of the
field equations for a speci6c problem.

The example we shall consider is the analog of the
isentropic motion of a gas in a tube set into motion by
moving a piston (see Sec. 7). The tube filled with gas
will be replaced by a region of space-time occupied by
a free surface on which the pressure vanishes; that is,

(21.1)

Outside of this surface the space-time is empty.
The condition requiring the tube and gas to be

initially at rest and at constant pressure, density, and
entropy is replaced by the condition that the gas be at
constant entropy and in equilibrium under the hydro-
dynamic and gravitational forces acting.

It has been shown in an earlier paper' that under
these conditions there exists a co-moving coordinate
system in which the line element is of the form given
by Eqs. (11.1) and in which the functions H and p are
independent of T. Methods for determining the func-
tions H and 0) as functions of X for different gases,
each of which is described by a speci6c caloric equation
of state, 0= 0(p,p) were described in that paper.

Thus, the assumption of equilibrium is equivalent
to assuming a knowledge of H (X,T)=H, (X) and
p(X, T) =4),(X) for T(T0, where T0 is a time at which
we shall assume that the equilibrium is disturbed in the
following way: We shall assume that p(X, T) departs
from its equilibrium value for X=Xp and all T&Tp.
Thus, we specify the function

y(X0, T).

n the special theory of relativity, this is equivalent to
prescribing a piston motion. For moving a piston into
a gas at rest sends a progressive wave into the gas and
hence is determined at the piston via Kq. (9.1). The
specification of the function (X0,T) is also equivalent
to giving the pressure at the "particle Xp" as a function
of time since, for isentropic motion,

P(X0,T) =P(4 (X0,T)).
Thus in the example we are considering we have

the following boundary data: On the surface T= T'p,

y(X,T)=y.(X), H(X,T)=H.(X), (21.2)

where p, (X) and H.(X) are the equilibrium solutions
obtained in the earlier paper. ' On the surfaces X=Xp,

(21.3)

and on the surface X=X»Xp, which is the boundary
between the Quid and empty space-time,

where g&0 is a constant such that

P(@0)=o (21.4)

We shall further assume, as is generally done in the
general theory of relativity, that across any surface
the metric tensor is continuous as are its derivatives.
This assumption together with Eqs. (21.2) implies that
on T= Tp

Pp=0 and Hr=0. (21.5)

Equation (21.5) will be consistent with Eq. (21.3) if
and only if

B(( (X0,T)/BT=0. (21.6)

We shall assume that Eq. (21.6) holds.
With the above sequence of assumptions, we have

specified the values of (t, H, U, and V on the surface
T=Tp. In particular, we have specified the values of
@('),H"', U&", and V(@ on this surface for X in the range

Xp&X&Xg, (21.7)

In addition, we have specified p') (X0,T) and p(') (X0,T).

22. METHOD OF SOLUTION

The function P(0) (X,T) is determined as is the
function p(X, T) in the special theory of relativity.
That is, in the region of the X, 7 plane between the
line T=O and the line X=FT, where j.' is de6ned by
Eq. (17.10), we have

(t «) (X,T)=y.(»(X). (22.1)
This region will be called region I.

We define region II as follows: It is bounded by the
lines

X=FT,

X=Xp,

and the characteristic defined by the equation

dx/aT= r—
which passes through the point

(X0,X0/I').

(22.2)

(22.3)

(22.4)

In the region I the functions y(» H(') and @o) are
given by

$(0)—P (0)(X) H(1) H (i) (X) P(i) ~ (i) (X)
since these functions satisfy the field equations and
the boundary conditions.

In region II, P(» is determined by Eq. (9.3) in which
p=p(0) and in which fQ) is chosen so that p(')(X0, T)
is the prescribed function. Thus, in region II, @(') is
constant along one family of characteristics which is
the family of straight lines (22.2), which have varying
slopes. The second family of characteristics, the curves
defined by Kqs. (22.4), can now be determined

In region III, the remainder of the X, T plane
between the lines X=X0 and X=X0, Q(" is given by a
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compound wave which may be determined by the
methods described in Sec. 10.

When p&P&(X,T) is determined, the characteristic
curves described by Eqs. (17.11) and (17.12) are deter-
mined. As is evident from the discussion in Secs. 17
and 18, these curves play an important role in the
determination of U"&, V"&, H&'&, and p&'&. We shall
illustrate how the characteristics may be used to
determine these quantities at a point X, T in region II.
Through this point, the characteristic of parameter n
is a straight line

X=I' T,

and the curve of parameter P is the solution of equation
(22.4). We shall assume that the data given on the
curve X=Xp are such that there is one characteristic
of each family through the point X, T. This assumption
will be examined in some detail in the next section.

A curve of parameter P through X, T will intersect
the curve T=0 at a point which we shall call X&&'& (X,T).
Along this curve the variation of Ua) and V"' may be
determined from Eqs. (17.21) and (17.22). Hence, we
may determine V(» and V(» by integrating these
equations along the (known) curve of parameter P and
by using as initial conditions the known values of U(»

and V~» at X=X(» and T=O.
Similarly, by integrating Eq. (17.14) along the

same curve of parameter P and using the (known) value
of Bat X=X&&and T=O, wemaydetermineH&" (X,T).

The value of &t&'& at X, T may be determined from
Eqs. (18.6) and (18.7) in a similar fashion. However,
in this case we must use both the curve of parameter P
and the curve of parameter a. The latter curve is a
straight line which intersects the curve X=Xp in a
point X', T& &(X,T). By integrating the two equations
(18.6) and (18.7) along the curves of parameter a and

P, respectively, we may determine C &'& (and hence &t&&'&)

and 4&" at X, T provided we know the values of these
quantities at (X&i'&,0) and (Xp, T& &).

However, %'&'& (X,O) may be determined by integrat-
ing equation (18.2) with respect to X along the curve
T=O. In this equation the right-hand side is a known
function of X (actually zero) specified by the boundary
conditions.

The values of 4&" (X&&'&,0) may be determined by
making use of Eq. (18.7). Since, in region II, P&P& is
given by a progressive wave for which p &p'=0, Eq.
(18.7) may be written as

(@&'&+C«)p
——(E/4c') (X+I'T)Tp.

However, throughout region II we have, from equation
(9.3),

X=I'(8)T+f(4 (P))

Hence by integrating this equation we have

E
+"&=—4 "&+ „' L~I'(P) T+f(-~(P))jTndI3

4c'~

The constant of integration in this equation is chosen
so that the value of 0 &» at X=X(), T=0 obtained from
this formula agrees with that obtained by use of Eq.
(18.2).

Similar methods enable one to determine p&'& and
8(') fori&1 in region II of the X, T plane.

23. SHOCKS

It is well known in classical theory and in the special
theory of relativity that when I'(g) is an, increasing
function of @, as it is for many gases, then the family of
straight-line characteristics in the X, T plane along
which @ is a constant and which are defined by Eq.
(9.3) is such that at least two of them intersect in a
point in region. II when the specified functions p" (Xp, T)
is an increasing function of T.

Thus, in classical theory when the motion of a piston
is such as to compress the gas contained in a tube, the
theory analogous to that described above breaks down
because two characteristics intersect. This failure in
mathematical description is known to be associated
with the physical phenomenon of the formation of
shock waves. Since the theory of a perfect Quid repre-
sents that idealization of a compressible Quid which
ignores viscosity and heat conductivity, the shock
waves are represented as mathematical discontinuities
instead of transition zones with large gradients in
velocity, pressure and density. However, it is known
that the results obtained in classical theory by treating
shocks as mathematical discontinuities give the same
relations between the hydrodynamical variables on
both sides of the continuous transition zone as the
theory which takes viscosity and heat conduction into
account. It is to be expected that a corresponding
relation between the general relativistic theory of
perfect fluids and that of physically realizable com-
pressible Quids will obtain.

When the prescribed boundary data, p(Xp, T) is such
that the family of straight lines in region II of the
X, T plane, on which p& &(X,T)=constant and which
are described by Eq. (9.3), has a real envelope in region
II, then the functions P&'& and H&'& (i=0, 1 )
determined in the manner described above will not be
single-valued throughout region II and hence will not
be physically acceptable. In this case, we must change
the theory described in the preceding sections.

The change that seems most plausible is to generalize
the theory of general relativity so as to allow for the
existence of surfaces across which the hydrodynamical
(and hence the gravitational) fields change discontinu-
ously and in such a manner that an isentropic Qow

becomes merely adiabatic. That is, the Einstein 6eld
equations will be said to hold in regions of space-time
but the possibility of having surfaces (shocks) across
which these equations are not dered will be allowed.
The relations that will hold across these surfaces will be
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a generalization of the Rankine-Hugoniot equations.
The derivation of these relations will be discussed
elsewhere.

This proposed change is suggested by classical hydro-
dynamics and special relativistic hydrodynamics. In
fact, if the general theory of relativity is going to admit
an approximation procedure in which either of these
theories are going to be obtained as low-order approxi-
mations to the general theory, we must modify the
general theory in the manner proposed, since this is
the manner in which those theories discuss the physi-
cally unacceptable solutions of the equations of motion.
Note that these unacceptable solutions appear in the
zero-order (special relativistic) approximation, and it
can be shown that if we have means of determining
physically acceptable zero-order solutions of the field

equations, then higher order approximations are deter-
mined by linear equations alone. Therefore, the resolu-
tion of the difFiculty for special relativity together with
an acceptance of the approximation procedure discussed
earlier gives a resolution of this difFiculty for general
relativity.

If shocks are allowed in general relativity, then we

must expect the Qow behind the shock to be non-

isentropic. However, if the Einstein field equations
(11.6), with T""given by Eqs. (2.4), are to hold in such
regions and if the conservation of mass is also required
to hold, then the flow will be such that entropy is
conserved along a world line of a particle. For the
plane-symmetric case, these assumptions imply the
existence of a co-moving coordinate system in terms of
which the 6eld equations may be shown to imply a
set of equations which involve only one set of dependent
variables. The approximation procedure described
above may be applied to this set of variables. Again,
the nonlinearity of the problem is concentrated in the
special relativistic approximation and this approxi-
mation determines linear equations for higher order
corrections.

Thus, the physical and geometrical interpretation of
shocks in general relativity may be based on their
interpretation in special relativity. Ke note that in
that theory a singularity in the function p(X,T) which

implies that the metric tensor in the co-moving La-
grangian coordinate system in which the line element
is given by Eq. (3.5) is not interpreted as a singularity
in space-time, which is always the Minkowski space-
time. Instead, we interpret the singularity as a singu-

larity in the transformation between the inertial coordi-
nates x, t and the coordinates X, T. In the inertial

coordinates the equations describing the world line of

a particular element of the Quid are given parametrically

SS

with X axed. These curves are allowed to have points
at which the tangent is discontinuous. The totality of
such points make up the shock.

Similarly in general relativity we may expect that
the shocks which represent surfaces on which the line
element is singular are not essential singularities in the
following sense: By making an appropriate (singular)
transformation we may introduce a coordinate system
in which the line element does not have singularities.
The coordinate transformation will determine the world
lines of elements of the Quid, and these world lines may
have points at which the tangents are discontinuous.

24. GRAVITATIONAL WAVES

In the plane-symmetric case, equations determining
these transformations in regions where the Qow is
isentropic are Eqs. (19.3) and (19.4). In regions where
the Qow is adiabatic, similar equations obtain. When
the metric tensor is determined in the co-moving
coordinate system, say by the approximation procedure,
these equations may be solved subject to appropriate
boundary conditions by the method described in Sec. 19.

That method involves the use of the characteristic
curves associated with Eq. (19.3), that is, the curves
given by Eqs. (19.7) and (19.8) which differ from the
characteristic curves which enter into the solution of
the equations determining the coefIicients of the metric
tensor. That is, changes in the variables p and H and
therefore in P and p are propagated along the "sound-
cone, " the surface which intersects the X, T plane in
the characteristics associated with the field equations,
whereas changes in the functions X(X,T) and T(X,T)
are propagated along the light-cone.

In a general coordinate system, say one in which the
line element is given by Eq. (19.2), changes in the
metric tensor, the function Ii in Eq (19.2)., will be
propagated along the light cone since F involves the
functions x(X,T) and t(X,T). The line element given
by Eq. (19.2) may be said to represent gravitational
waves. However, it must be pointed out that the light
cone enters the description of the variation of F in
space-time only through the choice of coordinate
system, and in the co-moving one the gravitational
waves (variations in the metric tensor) are propagated
along the hydrodynamical characteristics.

If shock waves occur, we may expect that, for very
strong shocks, the surface across which discontinuous
changes in various quantities may take place will
practically coincide with the light cone. In that case,
the hydrodynamic and gravitational phenomena even
in the co-moving coordinate system involve the light-
cone, and gravitational waves with a velocity of
propagation related to the velocity of light may be
said to exist.


