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A method is presented for treating high-energy potential scattering in which the zero-order result is
essentially the WKB approximation. The correction terms which appear involve the rate of change of the
local wave number and the curvature of the classical trajectory. Unlike the usual WKB procedure which
is only asymptotically correct, the formulation remains exact, but not necessarily convenient, even if the
corrections are large. The improvement over the WKB approximation is demonstrated explicitly for one-
dimensional scattering and for the calculation of phase shifts for scattering from a central potential. It
is also shown that this prescription reduces to the Born approximation when the conditions for the validity
of that approximation are satisfied. Thus the proposed formulation contains both the WKB and Born

approximations as simple limiting cases.

N the following a new method is briefly discussed for
treating high-energy potential scattering. The essen-
tial idea is to construct a Green’s function in which the
customary free-space propagation is replaced by
propagation with nearly correct local wave number.
The resulting formulation is such that the zero-order
result is essentially the WKB approximation.! The
correction terms which appear involve the rate of
change of wave number and the curvature of the
classical trajectory. Unlike the usual WKB procedure
which is only asymptotically correct, the formulation
remains exact, but not necessarily convenient, even
if the corrections are large. The motivation for the
development of the method lies, on the one hand, with
the need for analyzing the rapidly accumulating experi-
mental data on elastic scattering of high-energy par-
ticles from nuclei and, on the other, with the hope of
generalizing the recent approximation method of Schiff 2
We begin by treating one-dimensional scattering. In
addition to whatever intrinsic interest this may have
(e.g., propagation in a stratified medium), it serves as
a suitable introduction because of its simplicity.

I. ONE-DIMENSIONAL SCATTERING
We write Schrodinger’s equation in the form
Y/ dx*+* (x)y =0, 1
where the local wave number «(x) is given by
k*(x)= (2m/M)[ E—V (x)]=F+U (). 2

For simplicity, we assume that U(x) is real and that
it approaches zero faster than 1/x as|x|approaches
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1See H. J. Groenewold, Kgl. Danske Videnskab. Selskab, Mat.-
fys. Medd. 30, No. 19 (1956), in which the general problem of
expansions with semiclassical zero-order terms is discussed by
methods quite different from ours.

2 L. I. Schiff, Phys. Rev. 103, 443 (1956). I would like to thank
Professor Schiff for a prepublication copy of his paper and for
some illuminating discussions on the topic.

infinity. We seek solutions of (1) subject to the bound-
ary conditions
x—— 0, PY(x)~e**+ Re~ik=,
x—w, Y(x)~Te=,
The usual integral-equation formulation of this
problem is obtained by using the free-space Green’s

function,
G(x,x") = (3/2k)e ==l

However, instead we introduce the Green’s function
F(xx)=F (' x)=%i exp{i Z(2>)—Z(x) ]}, (3)
where
Z(x)=f k(x)dx;
0
. @)
>
2(a)=2@I=He—af|+ [ (c—R)is,
X<

and where x> is the greater of x and &/, x< the lesser.
F, which is just the one-dimensional Green’s function
in the variables Z=Z(x) and Z'=Z(%'), is easily seen
to satisfy the differential equation

dk dF

il «2(x)F ) /
AROF =i (9

To derive an integral equation for ¢, we begin with the
identity

d s dF dy @#F dy

— (¢ F—) =y F—.

dx\ dx dx dx*  dx?

Using (1) and (5) to eliminate the second derivatives
on the right hand side and then integrating the result
from x equal minus infinity to plus infinity, we obtain
the integral equation

Y (x) =;(k;) exp[ikx—{—ij;:’ (K—k)dx]

. 1 f“’ dx(z") dF (Z,Z')

IK(oc) dx’ az' V@a. (6)
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Letting x approach ==, respectively, we then find
for the amplitudes of the transmitted and reflected
waves

[ ® (B |- 1 p*de
T=ex zf K— x] — —
P —o0 2k —c0 dx

Xexp[i f i (x—k)dx—ikx]xp(x)dx ;o (D

1 ped ®
Re=—— o exp[ikw—}-'if (x—k)dx]ap (%)dx.
2k J_,dx o

So far these expressions are exact. If dx/dx varies
sufficiently slowly however, the integral in (6) is small
and ¥(x) can be found to any desired order in dk/dx by
iteration. If we denote by 7™ and R the resulting
approximations to 7" and R valid up to terms of order
(dx/dx)™, we then find

T("):exp[i f (x-—k)dx], RO =0;

1 p°1dk
RO =—— f -— (8)

TO=TO,
2J_ ok dx

Xexp[Zikx-l—Zi f (x—k)dx]dx;
)
in agreement with the asymptotic result of Gol’dman
and Migdal.? If one calculates 7™ and R®, it is easily
verified that the unitary character of the scattering is
correctly preserved up to and including terms of order
(dx/dx)>.

The resemblance of these results to those obtained
by the WKB method? is quite apparent. It should be
noted that even though the zero-order result for the
transmission and reflection coefficients are exactly
those obtained in the usual WKB approach, the zero-
order wave function does not have the usual WKB
amplitude dependence.* It should also be noted that
in no sense is this formulation an asymptotic one. It
remains valid even if « is small or if it changes suddenly.
As a matter of fact, the integral equation is trivially
soluble in the extreme case of a square well. To outline
the procedure in this case, let U(x)=0, |x|>3%e and
U(x)="U,, |%| <3a. Then,

dk/dx= Axd (x+3a)— Axd (x— 3a),

31, I. Gol’dman and A. B. Migdal, J. Exptl. Theoret. Phys.
U.S.S.R. 28, 463 (1955); translation: Soviet Phys. JETP 1, 304
(1955).

4 This is a matter of choice; a corresponding treatment which
incorporates the WKB amplitude dependence can easily be
developed. It leads to a more complicated integral equation than
here but converges more rapidly in the WKB limit. The question
of amplitude dependence, among others, will be treated in a
forthcoming paper by J. Nodvik. In this connection, see also
reference 1..

DAVID S.

SAXON

where Ax= (k24 Uo)}—k. The integral in (6) can thus
be evaluated exactly and ¢(x) is then expressed in
terms of ¥(3a) and ¥(—3a). Setting x=2%a¢ and —3a,
respectively, leads to a pair of algebraic equations for
the unknown fields at these points. Solution of these
equations then determines the wave function every-
where and the result obtained is exact. This suggests
that whenever x changes suddenly in a distance small
compared to a wavelength, the integral in (6) should
be approximately evaluated by treating all other
factors in the integral as slowly varying over each such
region. This leads to a kind of equivalent step-well
result which can be iterated to find the relatively small
corrections associated with any regions in which «
changes slowly. An example of a problem which could
be treated this way would be a square well with a
sloping or curved bottom.

A more interesting example is a potential which is
flat over an extended region and which then decreases
smoothly to zero, like the nuclear optical-model poten-
tial. At energies low enough that this decrease occurs
in a fraction of a wavelength, the procedure above
could be followed. On the other hand, at energies high
enough that x changes little in a wavelength, the
problem is again easily treated by straight iteration,
Eq. (8). Thus, the integral equation (6) has the re-
markable property that it leads in this case to simple
results in both the high- and low-energy limits.

The integral equation also has the interesting prop-
erty that it reduces to the Born approximation when
the conditions for the validity of that approximation are
satisfied. The proof is not difficult but we omit it here
since we shall shortly give an equivalent proof in the
similar treatment of partial waves which follows.

II. PARTIAL WAVES

We next consider scattering in three dimensions. We
begin by treating expansions in partial waves for
spherically symmetrical potentials. Writing

¥=2 (1/r)ui(r) P1(cosh),

we obtain (in the same notation as before) the radial
equations

@uy/drr+[k2(r)—1(0+1) /P Ju,=0;
Again we introduce a modified Green’s function,
Fi(rg")=F(r'r)=Z(n)Z (") ji Z(r) [ Z(r>)]. (10)

For the moment, we leave the precise definition of Z
open except for the assumption that it is a single-valued
function of  which vanishes at the origin and which
has the asymptotic behavior

, Z(r)~kr+e.

u(0)=0. (9)

¥—> 0

(11)
It is not difficult to show that F; satisfies the differential
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equation

a?F, sdZ \? 10+1) az d*Z , dF,
SOVEAY RGP}
dr? dr VA d ar*' \dZ

Applying Green’s theorem to F; and %;, we then obtain

w\r)—=\mr ) ——1—
! dr ' ld?’ 77=0

,d2Z(r’) o ,
_f W) —f w(r)F,

10+1)  gdZ'\? 10+1)
[ 2(r")— (—) (1— )]dr’.
12 dr' Z/z
Recalling our assumption that Z(r)=0 for r=0, the
first term is seen to vanish at the lower limit. Recalling
also that Z(r)~kr+¢ for large », the upper limit is

most easily treated by taking the asymptotic form of
#; to be

usz[jz(Z)—tan'y;yz (Z)]ﬁA lk?’[:jz(kr)—‘ tanﬂlyl(kr)],

so that the true phase shift §, is given by

§i=vite, (12)
with ¢; defined by Eq. (11). We then find
() RZju2) - f <')d2Z’ iy
uy(r)—= u(r 7’
A J l 2 dZ'
» 1(i+1)
- f ul(r’)Fl[x2(r')— -
0
2 I(l+1
-G (%)
AL

If Z is taken to be % the first integral on the right
vanishes, and this reduces to the usual free-space
Green’s function formulation. Instead we choose Z by
requiring that the last integral vanish identically; i.e.,
we write

@z/dn)[1—1(0+1)/2¥]=r2(r)—I1+1) /7, (13)
and hence our integral equation is finally
kZ§:(Z) 1 *® d*Z' dF,
= — f w(r)y———dr'. (14)
azZ/dr dZ/dr Y dr’? dz’

Z(r) is determined up to a constant by (13) and it is
easily verified that it has the required behavior at the
origin and at infinity. Assuming for simplicity that
k() is such that there is only one classical turning point
r1, we now choose this constant in the definition of Z
by requiring that Z(r;) be the turning point for Z, i.e.,
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that Z(r;)=[Il(l+1)]¥=Z,. Hence we have

nrl(41) }
r<r; f drl ——x“’(r)]
r 7’
Zi+(Zp—27%}%
= ;ln[————J— (Z2—72),
Z

(15)

r 4107
r>r; fdr[xZ(r)— J
71 r?
Zy
=(Z2—Z12)%'—Z1COS-I(—).
Z

Letting 7 approach c in this last equation (after sub-
tracting and adding /"7 z, /. dr[ F2—1(I+1)/72]%), we then
find that ¢ is just the familiar Jeffries WKB phase
shift,

@ 0L WD) et r D)
ez—j:l dr[x2— 72 }—le/kdr[k— r? } (16

Finally, letting 7 and therefore Z(r) approach infinity
in the integral equation (14), we find

[ ()2Z d[Z (Z)Ja (17)
taml=—f w(r)——[Z7 7, 1
=y dy 0 i)

with the actual phase shift §; given according to (12)
by 8;=e++:. Thus once again we have arrived at a
formulation, more complicated to be sure, in which
the scattering is determined in zero approximation by
its WKB value and to higher approximation is corrected
by terms involving the rate of change of the local wave
number. Assuming these corrections to be small, u;(7)
will be given adequately by the first term in the integral
equation, and to this approximation we thus obtain

(Y zioya as)
tany; ~— f (——)——— j r. (18
=2 ), azjar\ar )iz

In the past there have been two difficulties associated
with the use of WKB phase shifts even for potentials
which are properly slowly varying. First, because a large
number of phase shifts is generally required, each must
be very precisely determined if the cross section is to
be given with any accuracy. It is hoped that the cor-
rection represented by (18) will effectively correct the
WKB values to the required precision. Secondly, it is
well known® that as / increases, the WKB phase shifts
eventually become somewhat inaccurate and indeed
become a poorer approximation than the Born to the
actual phase shifts. In connection with this latter point,
we now show that our approximation reduces to the
Born approximation for large enough /, or more gener-

5 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press, Oxford, 1950).
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ally, whenever the conditions for the validity of the
Born approximation are satisfied. To show this, we
first integrate Eq. (18) by parts, obtaining,

W A Y d2|: o
tan7=———f (——- ——[Z5.(2) Pdr.
P A VR B

Next we use the identity

1% s Z) =1 2[1 I P
Ed_Z;[ JuZ) = p J[ 7u(Z2)]

“10+1)
—2 f i@z,

zZ

which is easily verified by differentiating once with
respect to Z and then using the differential equation
satisfied by Zj1(Z) to replace the higher order deriva-
tives on the left. In any case, we thus have

tanw:_fwf{ln(; ‘Z) l 1_2[1_1(1+1)J

Z2
X[Zj(Z) - 2(+1) f iz

itz )}

Thus far, no additional approximations have been
made. We now assume however that [ is sufficiently
large, or U sufficiently small that Z deviates only
slightly from %7. In this case, writing

1dZ 1dZ
——=1+(————-1),
k dr k dr
we obtain, neglecting second-order terms,
az 1dZN\ dZ
— ln(— ——)2———/@.
ar kadr dr

Hence, to this order,

tan'yf\'—-f (———k)dr—l—Zkzj;w(g?——k)
52
<[ G

The first term is easily evaluated and gives —'e;.
Turning now to the second term, we find a more explicit
expression for dZ/dr—k using the defining Eq. (13).

] G2 (kr)Pdr+ (20(141)
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We thus write, to the same order as above

az 11 /dZ\?
£ 2] (%)-
dr 2kLN\ dr

1 (U(r)—k2l(l+1)[(1/k272)— (1/Z2)])

ok 1—[(+1)/ k]
or,
1(+1)7 7dZ U (Z—kr)
1= (G 4) e
Hence

tany ~— eﬁ—kf U(r) 72 (kr)rtdr—21(I+1)
0

w0 jl2 iz © j12
Xf [(Z——kr ——(——k)[ dr—{dr
0 r dr S r

The integrand in the last term is now recognized as a
perfect differential which integrates to zero. Since v;
is small, we thus have

Yie~—eatk f U(r) 7.2 (kr)ridr,
0

and hence finally that
5l=71+€lﬁk [ U(f)jl2(k1’)1’2d1’,
]

which is indeed the Born approximation. We regard
this as a rather illuminating illustration of how the
WKB phase shifts can be effectively corrected in this
formulation.

As a test of our method, we have calculated the
S-wave phase shift for a triangular well,

Ulr)=Uo(1—7r/a), r<a;
U(r)=0, r>a.

Admittedly, this test is quite incomplete, since for
higher / values the entire procedure is more complicated
and to some extent, more uncertain. In any case, the
S-wave phase shift for such a potential can be found
exactly and is given by

T1(ya) T —1(y0) — T 1 (90) T —3 (e
tan (ko) = 1(0a) T3 (y0) = T3 (30) T4 (y ), (19)
J-1(ya)T -3 (y0) — T3 (y0)J1(3a)

where the upper sign applies for repulsive, the lower
for attractive potentials, and where

yo=3(Uo+k)a/|Uol, y.=

The corresponding result derived from our integral
equation approximation, Egs. (12), (16), and (18) with

st(l/l Uol
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1=0, is easily found to be

8= |y0—ya| — katan™ E{sin2yo[ Ci(2ys)— Ci(2y.)]
—cos2yo[ Si(2y0) —Si(2y4) ]}, (20)

where the same sign convention holds as in Eq. (19)
and where

= COSK z sinx
Ci(x)= f —dx, Si(x)= f —dx.
© X 0 X

The inverse tangent term in (20) is the correction to the
WKB result,

21

In Table I, the exact phase shifts computed from
(19), our approximate values (20) and the WKB values
(21) are given for a wide range of the parameters y,
and y.. As seen from this table, the WKB phase shifts
are effectively corrected even in the limit of small
values of 9o and/or y, when the WKB approximation
is not valid. The explicit behavior of the results in the
opposite limit, in which y, and y, are both large, is
easily exhibited. In this case the exact result can be
asymptotically expanded to yield

b - [5 1 1
s (1)
2\y, 9y,

dwxs=|Yo—7a| —ka.

1
— —— sin®(yo—¥a) ]+ oo,
6

The corresponding asymptotic expansion of the ap-
proximate Eq. (20), is found to be identical except that
the coefficient 5/72 is replaced by 6/72. The error in
this approximation is thus about one order of magnitude
less than the error in the WKB approximation.
Detailed comparison of the results obtained using
the formulation outlined above with exact results are
planned for a variety of potentials, both real and
complex, for many different energies and for many
partial waves. Potentials containing a Coulomb part
will also be studied. Until such comparisons are made,
it is difficult to assess the precise range of validity of
this treatment. It is hoped that the method will suf-
ficiently extend the range of validity of the usual WKB
approximation that it can be applied for example to
the optical-model analysis of nuclear scattering at
energies which are quite moderate by present standards.

III. THREE-DIMENSIONAL FORMULATION

We conclude with a few remarks on the corresponding
formulation in three dimensions. Here we want to solve

[V+ () W (r)=0,
subject to
r=nr—ow,

Y (nr)=~exp (tkno- n7)+ f(no,n)e®"/r. (22)
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TasLE I. Comparison of exact and approximate S-wave phase
shifts for a triangular potential.

¥o Ya ka Uoa? WKB Exact Approx,
1 0.5700 0.49 0.18 0.0237 0.0134
3 0.4406 0.11 0.0594 0.0041 0.0008
1 1 e 0 0 0 0
2 1.1102 —046 —0.1102 —0.0345 —0.0355
4 3.6189 —7.9 —0.61890 —0.5797 —0.5715
8 9.0000 —60.8 —2.000 —1.9438 —1.9356
1 20061 21.5 1.7440 1.6569 1.6685
3 2.2500 15.2 1.2500 1.2543 1.2702
4 1 22797 79 0.7203 0.7604 0.7706
2 17621 1.8 0.2379 0.1933 0.1989
4 oo 0 0 0 0
8  4.406 —-1.3 —0.4406 —0.4207 —0.4196
+  5.6250 475 10.1250 10.2101 10.2526
3 6.8097 421 8.6903 8.7808 8.8025
16 1 .8.0244 344 6.9756 6.9926 7.0046
2 9.0000 243 5.0000 4.9504 4.9560
4 91191 126 2.8809 2.8840 2.8869
8  7.0483 30 0.9512 0.9354 0.9362

As before, we introduce a modified Green’s function

F(r,y)=F(',1)=¢8®") /Ax|r—7'|. (23)
For the moment we leave the precise definition of
S(r,1’) open except to assume that it represents some
approximation to the ‘“correct” propagator between r
and r’. Thus we shall assume that S(r,r)=0, or more
precisely, that

S(r,r")

lim =¢(r)

o1 | r—7v|
We further assume that as r=nr—c with t’ finite, the
propagation proceeds along n with the free-space
propagation constant, i.e., that
vS=kn+0(1/7). (24)

r=nr—w,

It is easily verified that F satisfies the differential
equation
vS
V2F+ (VS F=—8(r—1')+iF |[r—1'|2v- | T
r—r

Applying Green’s theorem to ¥ and F, we then find

lim 72d0n-[Fv'y () —y¢ (') V'F]

v =nr'—®

¥(n)=

’

v’'S
—I-f{ﬂ(r’)—(V’S)2+i|r—-r'|2V'-|————— Y(xFd¥'.

r—r'|?

When we utilize the known asymptotic form of ¢, given
in Eq. (22), and the assumed properties of S, given in
Eq. (24), the surface integral is easily evaluated and
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we find

¥ (r) =exp[ikng- r418(no,r) ]

v'S

— lyFd,
[r—1'|2

+f '“2"<V'S)2+ilr—r’|2v’-

where 3(no,r) is defined by

lim S(r, —ng’)—k|r+n¢’'| =8(no,r).

7' — o

Thus 6 represents the change in the phase of a ray
incident along no and arriving at r compared to its
value for free propagation.

For the customary choice of S as the free-space
propagator k|r—r’|, this formulation reduces to the
familiar one in terms of the free-space Green’s function.
However, we shall choose S to be the classical action
function (in units of %#) which means, of course, that

(v8)2=4(r),

with the orthogonal trajectories to the surfaces of
constant S giving the classical-mechanical trajectories
or geometrical-optical ray paths. Hence if these are
known, S can be regarded as known.® With this choice
the integral equation becomes finally

¥ (r) =exp[ikno- r+148(no,r) ]

v'S
+if l r—r’ I v’ -—————1//(1")F(r,r')d3r’,

|r—r'|?

where § now represents the WKB phase shift along a
classical trajectory which is incident from infinity along
ny. Again we observe the WKB character of the for-
mulation, with the corrections depending on the rate
of change of wave number along the trajectory and the
curvature of the trajectory. And again we emphasize

6 We assume high enough energies or weak enough potentials
that the question of multiple paths and caustics can be ignored.

See references 1 and 3 for a discussion of the complication asso-
ciated with multiple rays.
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that the formulation is not asymptotic. It remains exact
even if k changes discontinuously ; surface integrals then
appear corresponding to the reflections generated by
such a discontinuity.

In the high-energy limit for potentials which are
slowly varying, which is also the limit considered by
Schiff,? 6 is different from zero only in the classically
accessible scattering region which forms a small cone
about the forward direction. Hence the large-angle
scattering is determined by the second term and to
first approximation is given by the asymptotic behavior
of this term with ¢(r’) replaced by

exp[ikno- r'+145(no,r’) .

It is easily seen that the result resembles Schiff’s, but
here we follow the particle in along its actual classical
trajectory and out along its actual classical trajectory
(in each case with the correct propagation contant)
rather than along straight-line approximations to these
trajectories. On the other hand, the forward scattering
seems to be most easily computed from the expression,
exact if ¢ is exact,

f(no,n) ———i f exp(—ikn- 1)U (r)¢(r)d%.

We expect that in this high-energy limit, the first term
in the integral equation for ¢ is an adequate represen-
tation, as far as the small-angle scattering is concerned,
to the actual field in the neighborhood of the scattering
potential.? Hence, again we are led to an expression
which is closely related to Schiff’s. These remarks are
rather sketchy but we hope to present a more detailed
analysis in the near future.

We add one final remark. The discussion in the
present note has been limited to scalar fields. It seems
clear that the extension to fields with other tensor
character should be straightforward. Each component
of such a field propagates with the same propagator and
it is expected, therefore, that an appropriate Green’s
function can be constructed without much difficulty.



