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A boundary condition method is used to correlate the level shifts in m-mesonic atoms with the scattering
of slow pions by light nuclei; carbon is 'chosen as an example. Up to 5-Mev kinetic energy, the s-phase shifts
are dominant and a calculation of the scattering cross section is possible without much ambiguity. In the
absence of sufFicient experimental data on the p-level shifts, a best estimate is attempted in order to include
p-wave scattering and to extend the predictions up to 10-Mev kinetic energy.

we are able to predict low-energy pion-nucleus scat-
tering cross sections.

A treatment of the type we employ always involves
the nuclear radius as a parameter. We defIne the
nuclear radius to be the minimum separation distance at
which the nuclear interaction can be neglected. The
relation between the level shift and the scattering phase
shift which we obtain is then insensitive to the precise
value of R. We assume that the nuclear radius as delned
here is approximately the same as that which is
obtained from experiments such as high-energy neutron-
nucleus scattering, and take its value as R= rpA &, where
rs is the pion Compton wavelength, ttt/tttc.

%e have calculated the angular distributions for the
elastic scattering of negative pions of energy 5 and 10
Mev from carbon. The results of these calculations are
presented in Sec. III.The numerical predictions for the
s-state scattering were obtained using m.-mesonic x-ray
data. The deviation of the angular distribution from
pure Coulomb scattering at 5 Mev is primarily due to
the s-phase shift for angles less than 120'. For the larger
angles and at 10 Mev, the effect of the p-state inter-
action is important. We can only roughly estimate these
eGects in the absence of precise data on the 2I' level
shift. Such estimates are included in order to indicate
what might be expected at 10 Mev. Our estimates for
the nuclear p-phase shift correspond to a 2P level shift
in carbon of —4.3 ev.

In Sec. IV, we discuss the origin of the 15 level shift
according to the theories of Deser, Goldberger, Baumann,
and Thirring, ' Brueckner, ' and Karplus and Halpern. 4

%e compare the scattering predictions of our phe-
nomenological treatment with results obtained from
these theories.

I. INTRODUCTION

~ 'HE short-range character of the interaction of
pions with nuclear matter makes it possible to

relate the energy level shifts of m-mesonic atoms to
scattering phase shifts for the pion-nucleus system. We
shall derive this relation by using a method similar to
that of signer and Kisenbud. ' Taking the nucleus to
be a sphere of radius R, we assume that when the pion
is at a distance greater than R from its center only
Coulombic interaction is present. Then, in this region
of con6guration space, the pion can be described by a
wave function whose form is known. Pion absorption
and inelastic scattering are taken into account by
allowing the phase shifts of the continuum wave
functions and the energies of the bound-state wave
functions to be complex numbers. %e treat each
angular momentum state / individually, and represent
the nuclear interaction by a phenomenological param-
eter x~, which is the deviation of the logarithmic
derivative of the pion wave function at the nuclear
surface from the value it would have if only Coulombic
interaction with a point source were present. This
parameter is convenient for our purpose because it can
be expected to be nearly constant, i.e., energy-inde-
pendent, near zero kinetic energy. In this region, x~
can be evaluated from mesonic x-ray data and used to
obtain scattering phase shifts.

The energy dependence of g in the low-energy region
is discussed in some detail in Sec. II. Our analysis there
is based upon the assumption that the interaction in
each angular momentum state can be eGectively de-
scribed by a spherically symmetric potential. We And

that for s states, if the potential is energy-independent,

g remains nearly constant up to energies of the order
of 10 Mev. This is a consequence of the relatively weak
s-state interaction. For strong interactions, as the
p-state interaction may be expected to be, the energy
dependence of x can be taken into account. Therefore,

II. RELATION OF THE LEVEL SHIFTS TO THE
SCATTERING AMPLITUDES

For simplicity, we restrict our considerations to the
interaction of pions with zero-spin nuclei, and allowing
the interaction to be l-dependent, treat each angular
momentum state individually. The relative motion of
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' S. Deser et al. , Phys. Rev 96, 774 (1954.). This paper will be
e referred to as DGBT.

s K. A. Brueckner, Phys. Rev. 98, 769 (1955).
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p 1 dF& 1 du&a
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t.F, er n, dr i „=,
(2)

We should like first to discuss the energy dependence
of g. In order to do this, we write

x(E)=x(m) —O'R'a(E) E'=k'+nF (3)

The quantity x(et) depends only on the strength of the
nuclear interaction at zero kinetic energy; we assume
that this is appreciable. Then there will be an energy
range about zero kinetic energy in which O'R'a(E) is
small compared to x(nz). If the effective potential
inside the nucleus and, the value of the Coulomb poten-
tial on its surface are both large compared to k'/2m,
both (1/u)(du/dr) and (1/F)(dF/dr) near r=R will
be insensitive to changes in kinetic energy. Therefore,
the error made in assuming

x(E)=x(~)
will be small. The energy levels of ~-mesonic atoms
corresponding to the observed spectral lines lie in this
energy range. If the nuclear interaction energy is very
much larger than the Coulomb potential at the surface,
there will be a range of energies for which k'/2m is
small in comparison with the nuclear interaction energy
but not small in comparison with the Coulomb potential
on the nuclear surface. In this energy range, the second
term in (2) will be much less energy-sensitive than the
Coulombic term, and the variation with energy of the

' Subscripts n oz k will be, appended only when it is necessary
to distinguish between bound states and continuum states, and
hereafter the subscript l is to be understood when it does not
appear.

the pion and the nucleus for separation distances, r,
greater than the range of the nuclear interaction is
described by wave functions

g„g——m'I„ t(r) Yt (8,y),
for the bound states (E=E„); (1)

P~, i= ~'Na, i(t) Yi, o(8),
for continuum states (E=EI).

If the nuclear interaction is switched o6 adiabatically,
N„~ becomes F„,~, a radial wave function (principal
quantum number e) for the pion bound in the Coulomb
field of a point source of strength Ze. We denote by Ii I,, &

the corresponding continuum Coulomb wave function
which has the same energy as N~, ~. All deviations of the
pion-nucleus interaction from that which would, be
present if the nucleus were a mere point charge are
included in what we call the nuclear interaction. There-
fore, if the nuclear interaction can be represented by a
potential it would have the form U+5P, where U is the
potential in the absence of charge and 5p is the change
in the electrostatic potential due to the extended charge
distribution and radiative corrections. For our purposes,
the nuclear interaction is described by the quantity, '

(If k is taken imaginary, this equation holds also for
bound states. )

More generally, assume that the nuclear interaction
can be replaced by an effective potential U+8P. Then
the wave functions N(r) can be continued' into the
region r&E., and since they will be solutions of equa-
tions of the same form as are satisfied by the F(r), the
energy dependence of the second term in (2) will be
given by the quantity n„(E) which can be obtained
from Eq. (5) by replacing F by N. Then the energy
dependence of x will be given by'

a(E)=nz(E) —n„(E). (6)

Note that, in a power series expansion, both P and u
have the leading term r'+'. Therefore, it is evident from
(5) that in (6) the terms np and n„ tend to can.cel,
unless the nuclear interaction energy U is extremely
large. As a result, the energy dependence of x will be
weakened. As an example, consider the 15 state in car-
bon where the assumption of a repulsive potential (for
r (R) of magnitude 3 Mev roughly corresponds to the
observed line shift [Fig. 1(a); see also Sec. IIIj. For
this case, ep and n„were calculated numerically as func-
tions of k', and are plotted in Fig. 1(b). Generally, a
repulsive nuclear potential implies that n„&o,p, a&0,
as can be seen from Eq. (5). In this example, where x
is negative, ~x ~

increases by about 17% as the kinetic
energy increases from zero to 10 Mev.

We have thus far tacitly assumed that the nuclear
interaction, U, is energy-independent. This restriction
is not necessary. An energy dependence for U may be
taken into account by modification of Eq. (5). For
instance, if the nuclear potential is of the form
V+ (bk'/2m), a(E) becomes

a(E) =np(E) —(1—b)a„(E). (7)

We shall now show how y may be obtained from the
level shifts and used to compute the scattering phase
shifts. By relating the level shifts directly to the phase
shifts, we shall display the eBect of a nonvanishing
a(E). To obtain the x(E„)=x(m) from the energy level
shifts, we need assume only that the wave functions

6 H. A. Bethe, Phys. Rev. 76, 38 (1949).
7 Units are chosen such that A =c= 1.

In order to obtain the relativistic correction to (5), we used
the Klein-Gordon equation instead of the Schrodinger equation
and followed the same steps as lead to (5). The result then is, for
an arbitrary potential U,

latter alone will provide a good. estimate of the correc-
tion term O'R'a(E) in (3). The variation with energy
of the Coulombic term is, nonrelativistically, '

( 1 dFO 1 dFq) t" Fo(r)Fq(r) dr
Ri — —

)
=OR

&F0 dr Fq dr ), g 0 Fo(R)FI,(R) R

—=O'R'np(Ep). (5)



LOW —ENERGY NEGAT IVE PIONS

N(r) are valid descriptions of our system for r)R. In
this region they are solutions of the Klein-Gordon
equation, with a Coulomb potential, Ze'/r. (Requiring
that the bound-state solutions vanish as r goes to
infinity and satisfy (2) at r=R de6nes an eigenvalue
problem. ) The energy eigenvalue E (obtained from
line-shift data) determines the function N„(r), and x
may be evaluated directly from D1/u)(du/dr)7„rt.
The functions which satisfy the radial Klein-Gordon
equations with the Coulomb potential and an arbitrary
energy parameter E, and vanish as r goes to inhnity,
are known as Whittaker functions. ' The following
formal expression of this relation between x and the
level shift, bE„, which is useful for small level shifts,
may be obtained in a manner similar to the derivation
of Eq. (5): t" ss„(r)F„(r)

g (E„)= 2rNR5E„—' dr.
~it u. (R)F (R)

In the above, the level shift refers to the shift in
the total energy, i.e., 8E„=E —E ', where E„'=m
X (1—Z'e'/e )s. Equation (8) is nonrelativistic so terms
of order Zes/mR and (1—E/m) are neglected. A relati-
vistic generalization is easily obtained with the use of
the Klein.-Gordon equation. For the work presented in
this paper, relativistic corrections are not significant.
It will be convenient to define the quantity N„(R) by
rewriting Eq. (g) in the form

t x(&-) y~Z„=-
i iN„(R).
L 2~R)

tts 0-

0 R
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~2

—.2

~4

5R
r
(a)

IOMev

.8
k2 R2

(b)

I

5R

The scattering amplitude in a given angular-mo-
menturn state is related to z (E) in a particularly simple
way. The deviation of this amplitude from the well-
known Coulomb scattering amplitude is of interest
here. It is given by quantities called "nuclear phase
shifts, "

7g, which are related to the total phase shift,
8&, for the lth partial wave by the relation r&+o&=o&,
0~ is the phase shift for pure Coulomb scattering. The
radial wave function for the pion with E&m has the
form

Ns, i(r) =Fi(kr)+tanriGi(kr), (10)

where F~(kr) and Gi(kr) are the Coulomb functions that,
for large r, have the asymptotic behavior sin(kr ——',ls.

+t) ln2kr+o i) and cos(kr ——',ls+il 1n2kr+o. i), respec-
tively. $Fi(kr)—=F& i(r).7 Inserting (10) into (2), and
using the Wronskian relation

Gi(kr)BFi(kr)/Br Fi(kr)aGi(kr)/r)r= —k,

one 6nds that

sinri y(Es) Fss(R) sinLr+ ir (kR) 7 y(Es)
Ns(R),

k R sing (kR) R

~ See, for instance, H. Je6reys and B. S. JeGreys, 2UIethods of
Mathematical Physics (Cambridge University Press, Cambridge,
1950), second edition, pp. 607—620.

FIG. 1. (a) A potential which yields a 1S level shift in carbon
approximately equal to that observed. (b) Illustration of cancella-
tion in the energy-dependent contributions to xp. Lxp(E) =xp(m)—ksR'(ar —n ).j These curves are based on the potential of Fig.
l(a).

where we have used the usual notation

q i(kR) =—tan '$Fi(kR)/Gi(kR)7

and suppressed the subscript l again. The quantity
Ns(R) is defined above in analogy with the N (R) of
Eq (9)

In accordance with our previous discussion, we now
take

x(&-)=x(m), x(&.) =x(~)—k'R'~(&.).
The elimination of y(m) between Eqs. (11) and (9)
yields

1 (sinr) (N„(R)) 1
~E„=—

l Ii i

— k'R' (E,)N.(R).
2ns E k ) ENs(R)) 2ns

(12)

As k—+0, this expression becomes particularly simple
for interactions which are not strong. If we takeI=F in N „(R) and ignore terms of order R/az
Laz= Bohr radius= 1/(Ze'm)7, N„(R) is just the square
of the normalized radial wave function for the Bohr



846 NlNA 8 YERS

orbit e, l evaluated at R;

f
2R est+'f 2

~-(R)=i I i
~ ssuz) (rtttz(2l+2) li

In this same approximation,

and
Ft(R) =Ct(kR) '+'/(2l+1)!!

tVJ, (R) =k 'Fg'(R) =Ct'(kR)"+'/k'p(2l+ 1)!!yy

tV„(R) 4(2l+1)!!

tVh(R) (Naz)st+'l!Ctskst
(12')

(Actually, the first-order corrections to (12') due to the
difference of I and F vanish, and the cancellation of the
first-order R/az correction is nearly complete. ) In the
approximation which leads to (12'), Ctsk &st+') sinrt
may be replaced by k &"+') sinb&, where 8& is the phase
shift that would apply in the absence of Coulomb
effects. With the use of this replacement and (12'),
Eq. (12) yields the result given. by Deser, Goldberger,
Baumann, and Thirring' for s states.

It might be remarked here that nuclear absorption
eGects are included in the foregoing treatment. The
fact that pions are absorbed by the nucleus can be
formally expressed by writing the level shift as a
complex number, 8E= 8—i~y, where y is the reciprocal
mean life of the state, the level width. In our treatment,
complex values for the level shifts imply complex-valued
"nuclear phase shifts. " If rt=ott+iPt, the absorption
cross section is given by"

o =srk 'gt(2l+1)(1 —e h'~). (13)

In principle, inelastic scattering. processes which involve
nuclear excitations are included in what we have called
nuclear absorption effects. However, these may be
ignored safely at our energies because they are much
less probable than processes in which the pion actually
disappears. It will be shown in the next section that,
in the low-energy region, the imaginary part of x can
be taken to be energy-independent.

III. PREDICTIONS FOR THE SCATTERIN OF
MESONS FROM CARBON

A prediction of the scattering cross section on the
basis of the level shifts is possible at present only for
nuclei for which R/az(1. Shifts of the E (21'~1S)
line have been observed in mesonic spectra from Li to

' See, for instance, J. M. Blatt and V. F. Weisskopf, Theoretical
E'uclear I'hysics (John Wiley and Sons, Inc. , New York, 1952)&
p. 321.

where

2srrt t ( sP $ Ze
Cts= g ~

1+—
~, st=, (v=pion velocity),

e—2~% & t g P2) e

and (2l+1)!!=—1X3XSX X (2l+1). Therefore,

F." To the accuracy of these measurements, it is
reasonable to attribute the line shifts entirely to a shift
in the energy of the iS state. This assumption is
usually made because the centrifugal barrier electively
prevents the pion in a p state from interacting with the
nucleus. Such an interpretation is supported by meas-
urements of the L (3D—&2J') energies. ~ Taking the
observed line shifts to be the iS level shifts, we found
that for s-states the effective nuclear potential is not
very strong. Stearns' value of 6.7 kev for the level shift
in carbon corresponds to xp= —0.20. Assuming a
potential of the form

V (r) = U—(Ze'/2R) (3—r'/R') r &R,
Ze'/r, r—)R,

(14)

and O.,j is a pion-nucleon phase shift with the conven-
tional notation to denote angular momentum and
isotopic spin states (etre=phase shift for isospin state —,

and angular momentum —',). The expression (15) is at
best a rough approximation to the scattering amplitude,

"M. B. Stearns and Martin Stearns, Phys. Rev. 103, 1534
(1956). See also I'roceediwgs of the Sixth Annmal Rochester Con-

ference on High Energy Physics, 195-6 (Interscience Publishers,
Inc. , New York, 1956), Sec. IX, pp. 37—41.

"D.West and E. F. Bradley report on upper bound of 0.1 kev
for the L shift in fluorine [Proceedings of the Sixth Annual
Rochester Conference on High-Energy I'hysics, ZP56 (Interscience
Publishers, Inc. , New York, 1956), Sec. IX, pp. 40-43(. This is
to be contrasted with the E shift for F of 25.3 kev reported by
Stearns, reference 11.

we solved the Schrodinger equation in the region r &R
and found that the value of U which yields xp= —0.20
is 7.2 Mev. Therefore, the total effective potential at
the origin is 3.2 Mev. (The harmonic part of the
potential was treated as a perturbation and found to
produce small corrections. )

On the basis of this result and the considerations of
Sec. II )see Fig. 1(b)j, we have assumed that the real
part of xp is energy-independent in the range from the
bound states to kinetic energies of the order of 10 Mev.

It is interesting to note that if the actual level shifts.
depend on Z like Z4, U' has approximately the same
value (7.2 Mev) for the various atoms. This is sug-
gested by the Born approximation and con6rmed by a
more exact calculation.

In lieu of data on the 2I' level shift, we attempt an
estimate of xr(srt) using the known pion-nucleon inter-
actions in p states. Following the method used in
DGBT' for s states (see Sec. IV), we assume that near
zero kinetic energy the effects of the individual nucleons
are simply additive in the scattering amplitude and
that, neglecting Coulomb effects, the l= 1 phase shift
is given by

k ' tan!it= sZ(2'A33+4ltls+ltsl+2&11)
+-', (A —Z) (2!tss+4t), (15)

where
~ij l&m k tano, 'i jp

k~p



LOW —ENERGY NEGATI VE P IONS

A value 2=2 corresponds to the familiar behavior
I(r) =r' (for p states) near the origin. The actual value
of Z as calculated from the observed pion-nucleon
p-phase shifts (see below) turns out to be appreciably
smaller than 2 (1.26 for carbon). One sees easily that a
very large attractive potential (U= —50 Mev) would
be needed to produce this eGect, and that the addition
of the electric 6eld cannot possibly alter the effect, so
that Eq. (16) may be used even in the presence of. the
electric potential. Also, raising the kinetic energy,
E—ns, up to 10 Mev will presumably not affect the
value of the wave function's logarithmic derivative near
the nuclear surface. Therefore, we shall, in Eqs. (3) and
(6), neglect the term n„ for p states.

On account of the resonance in the (ss, ss) state of the
pion-nucleon system, all );; are small compared to X».
We have taken X33=0.248,"and the other X;;=0. The
value for xt (m) thus obtained gives for carbon a 2I' level
shift of —4.3 ev L2t&(nz) =0.69]. If West and Bradley's
upper limit" is extrapolated to carbon assuming
8Es~ Z', a value of 9 ev is obtained for j5Ess ~. This
guarantees that we have not underestimated the p-phase
shift by more than a factor of about 2. The Z' depen-
dence for 6E2I is analogous to the Z4 dependence of
the 1S level shifts, one factor Z arises from the number
of nucleons in the nucleus and. Z' from the fact that the
p-state interaction energy will be proportional to the
square of the gradient of the normalized Bohr orbit
wave function evaluated at the origin.

It remains now to take into account the absorptive
eBects. As can be seen from Eq. (11), if the imaginary
part of x~ is large it will make a significant contribution
to the real part, n~, of the "nuclear phase shift. "How-
ever, the widths of the E. lines are certainly not larger
than the shifts"; therefore, the imaginary part of xo
will contribute appreciably to eo only if it has a strong
energy dependence. To investigate this, we compare the
level widths with the absorption cross sections of nuclei
for free pions. Writing Eq. (13) as

rr =4sk '(Pp+3Pt+ .), (17)

we compare it with the relation proposed by Brueckner

"H. L. Anderson and N. Metropolis, Proceedings of the Sixth
Annua/ Rochester Conference on High-Energy Physics, 1956
(Interscience Publishers, Inc. , New York, 1956), Sec. I, pp. 20—23.
In this and the following section, units are chosen such that
k=c=mpip~ —1~

and we shall only assume that it holds in the limit of
zero kinetic energy. Corrections to (15) should arise
from binding effects and a form factor for the spatial
distribution of the nucleons. Taking (15) in the limit
k—+0, we can obtain a corresponding logarithmic deriv-
ative L(1/Nr) (d/dr)Nt7, z. To do this we use Eq. (10);
neglecting all Coulomb effects, direct evaluation yields

r dgt) (2—3(kR)-' tan8tq
g=lim~ —

~
=lim~ (16)' l. gt dr ) „~ ~ &1+3(kR) ' tan8t)

where I' is a factor depending mainly on the nuclear
wave functions. The idea underlying this equation is
that the absorption of pions is effected primarily by
deuteron-like structures in nuclear matter. Analysis of
stars initiated by pions has led many authors" to
conclude that such a mechanism can account for a
majority of the events they have observed. Therefore,
for the sake of comparison, we shall identify (18) with
(17). As Brueckner and co-authors showed, '4 o (pr +d
—+2m) can be evaluated from the inverse (and. charge-
conjugate) reaction. Using the cross section for this
process given by Rosenfeld, "for k'«1, we write

Pp ——(I'Z/127r) M (0.014)kCp',

Pt = (I'Z/36s) M (0.10)k'Cts,
(19)

where rN;,„=1, 3II=nucleon mass. LWe have included
Coulomb attraction factors Cp' and Cts in (19). These
factors are. appreciably different from one only near
zero kinetic energy. 7 The above energy dependence of
pp and pt at low energies is the same as is given by our
formalism if the imaginary part of x is taken to be
independent of energy. Equation (12) in the approxi-
mation (12') yields a 1S level width given by

vp=4~z '(Pp/kCp')s p. (20)

Measured pion absorption cross sections" indicate that
I"=6 is a reasonable value to use near zero energy.
With this value, (19) and (20) predict a 15 level width
for beryllium of 0.8 kev. West and Bradley" have meas-
ured the line width in Be' as (1.15 p.4+") kev. In view
of this agreement, we have assumed that Pp and Pt are
given by (19) with I'=6. The imaginary parts of 7tp

and x& are then both roughly energy-independent, and
their numerical values are sufficiently small so that
their contribution to the real part of the "nuclear phase
shifts, " ro and r&, may be neglected.

We have, therefore, calculated the real and imaginary
parts of ro and r& separately. Their values at 5 and 10
Mev are given in Table I. The angular distributions to
be expected on the basis of these phase shifts are plotted
in Figs. 2(a) and 2(b). We have included for comparison
the pure Coulomb cross sections (curves marked II)
and have also plotted the angular distributions to be
expected at these energies if only ro were different from
zero (curves III). The additional effect of the p-phase
shift, which is somewhat uncertain on account of the

"Brueckner, Serber, and Watson, Phys. Rev. 81, 575 (1951)
and 84, 258 (1951)."G. Bernardini and F. Levy, Phys. Rev. 84, 610 {1951);
Byfield, Kessler, and Lederman, Phys. Rev. 86, 17 (1952); P.
Ammiraju, thesis, Columbia University, 1956 (unpublished);
A. Tomasini, Nuovo cimento 3, 160 (1956).

"A. H. Rosenfeld, Phys. Rev. 96, 139 (1954).
rr F. H. Tenney and J. Tinlot /Phys. Rev. 92, 974 (1953)]6nd

that F= (3.2 0.8+") and (5.6 1.1~') for positive pions of 39 and
20 Mev, respectively, absorbed by beryllium.

Serber, and Watson":

o,=I'Zo(s- +d—+2m)=I'Zk '(ak+bk'), (18)
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assumptions we had to make, tends to obscure the
depression due to the repulsive s-state interaction at
10Mev. Regarding the s scattering, it should be recalled
that in the calculations xo was taken strictly energy-
independent. If, instead, we had assumed an inside
potential like (14) or Fig. 1(a), xp would have a slight
energy dependence as can be seen in Fig. 1(b). This
would raise the values of LnpL by about 5% at 5 Mev
and about 15% at 10 Mev, and correspondingly causes

26-
K
4J 22-

18-
e

~ 14

the curves III to deviate more strongly from the
Coulomb curves II."

IV. COMPARISON WITH MODELS BASED ON
MESON FIELD THEORY

DGBT' have suggested that the 1S level shift may
be understood in terms of the pion-nucleon s-wave scat-
tering phase shifts nr and ns (isotopic spin s and —', ).
Assuming that the contributions to the level shift from
the various nucleons are additive, they predicted that
"oE~s should be given by 6Zrs = —X/2mazl, where
X= —',Z(2'Ar+3Xp)+(A —Z)Xp and X,=lirnh p(k ' tann;).
For A =2Z, X reduces to sZ(Xr+2Xs). rs Taking nr=Xrk
and n3=X3k, Orear" obtained the values )~=0.167
&0.012, ) 3———0.105~0.010 from an analysis of all the
data on low-energy pion-nucleon interactions available
at that time. These values give, according to the theory
of DGBT, a 1S level shift in carbon of 4.0 kev. Hence,
with allowance for the rather large error, it seems
probable that the major contribution to this level shift
stems from the same interaction as gives rise to pion-
nucleon s-state scattering. Additional contributions may

10-

2-
0
30'

I

60'
I I

90' 120'

(a)

I

150' 180'

TABLE I. "Nuclear phase shifts" and the scattering cross section
for angles greater than 30' corresponding to curves I, II, and III
of Figs. 2(a) and 2(b). The last column contains the absorption
cross sections (p ) corresponding to curves I.

B—tn TO T1 4'I &II &II I &a
(Mev) (radians) (radians) (mb) (mb) (mb) (mb)

5 —0.122+0.039i 0.0285+0.0067i 297 356 244 202
10 —0.139+0.049i 0.0564+0.017i 106 91.6 55 165
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be due to effects of the type discussed by Brueckner,
and Karplus and Halpern (see below).

DBGT discussed the bound states only, but it may
be of interest to generalize their theory to apply to
energies E&m for the sake of comparison with our
more phenomenological approach. The crucial point
will be the energy dependence of the generalized scat-
tering length, X(k) = k ' tan(8p), ff. Unfortunately, there
is no unique way to generalize (for k AO) the DGBT
additivity hypothesis, but it appears most natural to
assume that X, or the tangent of the phase shift, is
additive. This automatically preserves the unitarity of

0 I

30 60'
I

90
e
(b)

I

120'
I

150' 180'

Fzo. 2. Differential cross sections for the elastic scattering of
negative pions from carbon. (I) Predicted cross section (nuclear
interaction in both s and p states taken into account, see Sec.
III); (II) pure Coulomb scattering; (III) the effect on the
Coulomb scattering due to 7 p alone. {a) E—m=5 Mev, (b) E—m
=10 Mev.

I8 If v&~0, then, nonrelativistically,

4L
i —A (sin%)s+B (sin-', s)4$.

da ZVfs !
' .

dQ 4 Asm-', 04

(The angular dependence of the phase of the Coulomb scattering
amplitude gives A a weak angular dependence. ) At 5 Mev, the
term containing 8 contributes substantially less than the inter-
ference term and the cross section is roughly a linear function of
np and po. At 10 Mev, however, the term containing 8 becomes
appreciable for angles greater than 90'. Therefore, if Lop

L
is

underestimated at 10 Mev, one can expect the actual cross
section to be further depressed for angles less than 90', but
increased somewhat for angles greater than 90'.

' Note that the two terms will tend to cancel, resulting in the
rather "weak" s-state interaction we have emphasized.

20 J. Orear, Nuovo cimento 4, 856 (1956).
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the 5 matrix, whose diagonal form is

1+i tanb 1+i' (k)
~28

1 i—tanb 1—ikX (k)

Therefore, we choose (for A =2Z)

X(k) =-,'ZP, (k)+2K (k)j—=k 'tan(8 s). rt .(21)

The k dependence of ) ~ and X3 was derived by Gold-
berger" from dispersion relations for pion-nucleon
reactions. His estimates give, for k'«1,

0'

-.02

—.04

—.06
0

z-.OB
p

—.IO

-.t2

.2

)tr(k) =)tr —-'sk'P. s+0.8hr),

Xs(k) =Xs+ tsk'(0. 17Xs—0.50)tt). (22)

u (v —v~) (23)

"M. L. Goldberger, Proceedings of the Sixth Annual Rochester
Conference on High Energy Physics, 1956 (I-nterscience Publishers,
Inc. , New York, 1956), Sec. I, p. 10.

(Incidentally, it can be surmised from the weak energy
dependence of these expressions that corrections to the
DGBT theory' due to the momentum distribution of
the nucleons in the nucleus will be small. Form factors,
however, may not be quite negligible. ) Using the values
)tt ——0.16 and Xs ———0.11 in (22) and substituting the
resulting expressions into (21), we calculated the vari-
ation with k of tan(8s), rt. It is shown in Fig. 3. For
comparison, we have included in this figure the energy
variation of the l=o phase shifts obtained under the
assumption that an energy-independent go describes
the nuclear interaction, and that an energy-independent
potential U describes the interaction. All curves cor-
respond to the same zero-energy scattering length and
do not include Coulomb effects.

As can be seen from the figure, in all three cases the
deviation from linearity becomes appreciable only for
kinetic energies greater than 5 Mev. The curvature in
the cases of a potential or constant yo is proportional
to A:. Therefore, for nuclei lighter than carbon, the
linearity will persist to higher energies. The curvature
for the effective phase shift derived from the DGBT
theory, on the other hand, is independent of A and
corresponds to an energy-dependent potential. Referring
to Kq. (7) and Fig. 1(b), it can be seen that if b is
suKciently positive, a curvature of this type will result.
An effective nuclear potential of the form V+-', bk' with
V=S Mev and b=0.1 will give rise to the (bs).ff of
Fig. 3.

Brueckner' has shown that there should be a con-
tribution to the 15 level shift resulting from the
reaction rr +A~star, the nuclear absorption of pions.
Karplus and Halpern' extended the work of Brueckner
by observing that the nonrelativistic coupling of
pseudoscalar pions to nucleons should be taken of the
form

FIG. 3. The s-phase shift, neglecting Coulombic e8ects, for ',the
scattering of pions from carbon as a function of pion momentum
(in units mo;, =c=1). (I) Derived from DGBT theory (see Sec.
IV); (II) derived from an energy-independent potential; (III)
derived from an energy-independent xp.

in order to be invariant under Galilean transformations.
The first term stems from the usual form of the inter-
action, namely (f/rn)rr Vio. To this must be added a
term r)y/c)1, which gives, in nonrelativistic approxi-
mation, the correction term v~ in (23), where v~
stands for the average velocity of the nucleon before
and after the Yukawa absorption (emission) of the
pion. Karplus and Halpern used the interaction (23)
to study the 15 level shift. Preliminary results" indicate
that this "virtual absorption" interaction does not
contribute much to the observed line shifts. An accurate
estimate of this contribution, however, must await
better knowledge of the momentum distribution of the
nucleons in the nucleus. We have calculated the l=0
pion-deuteron scattering amplitude from (23), using
second-order perturbation theory, and found that it is
very sensitive to the wave function chosen for the
nucleus. Because of the at present unavoidable uncer-
tainties in such calculations, we should like to leave
open the question of whether our phenomenological
approach is still valid if the interaction represented by
(23) contributes substantially to the 1S level shift. In
such a case, a k dependence quite different from those
described in Fig. 3 might arise.
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