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The anomalously long lifetime of C* is interpreted as being due
to an accidental cancellation in the B-decay matrix element which
is complete to about one part in 160. In the shell model with oscil-
lator wave functions, general two-nucleon interactions are in-
troduced which are linear in the velocities and which satisfy
various invariance requirements. As many of the force parameters
are determined from low-energy experimental nuclear data as
possible. The strength of the spin-orbit force is fixed by the
p3— p3 splitting in N5, while the tensor force is taken from meson
theory. The conditions for cancellation are then shown to be
satisfied, although uncertainties in the central force prevent an
exact calculation of the wave functions. These uncertainties are
therefore eliminated by requiring cancellation, in addition to
fitting the three lowest energy levels of N*. The resulting N
ground state wave function is mainly D-state, containing only

139 P- and 3%, S-component, and checks satisfactorily against
various experimental properties of N*. In addition, the 8 decay
of O" is investigated and it is shown that the C*—Q difference
in ft-values is not adequately accounted for by the Coulomb
repulsion theory of Jancovici and Talmi. The discrepancy is
removed by including the slight difference in spin-orbit coupling
strength for protons and neutrons, due to electromagnetic inter-
action with their magnetic moments. It is also pointed out that a
nonlinearity of about 109, should be expected in the 0 Fermi-
Kurie plot. In the appendices are a treatment of nucleon hole
conjugation, an extension of a proof by Inglis on the impossibility
of cancellation without the tensor force, a calculation of the #n—a
spin-orbit splitting, and an approximate treatment of the binding
energy of the « particle.

I. INTRODUCTION

XPERIMENTAL evidence shows conclusively that
the B-decay of C" is allowed. The spins of both
the parent and daughter nuclei have been measured to
be zero and one, respectively. Thus the spin change is
one, which corresponds to an allowed Gamow-Teller
transition. The electron spectrum has also been in-
vestigated! and found to have an allowed shape. The
Gamow-Teller coupling constant is known to be non-
zero from various sources, e.g., the fast decay of HeS,
also a 0+—14 transition. A theoretical calculation,
using the presently establishing value of the coupling
constant, would lead one to expect the C* half-life to be
a few weeks instead of the observed 5580 years. Thus
the observed half-life is about 10° times longer than
expected, which can result only from an anomalously
small B-decay matrix element. Since the individual
terms in the matrix element cannot be expected to be
so small, such a small net value can only be accounted
for by an accidental cancellation. The conditions for
this cancellation, in which the two-nucleon tensor inter-
action plays an essential role, are studied in Sec. IIT.
Out of the large variety of possibilities, the one actually
fulfilled by the C* and N* ground-state wave functions
can be determined only by calculating these wave func-
tions from first principles. This requires numerical
values of the Hamiltonian matrix elements for the
s*p configurations. These are computed in Secs. IIT
and IV from a basic two-nucleon interaction containing
central, spin-orbit, and tensor parts. The energy-level
* Investigation supported by the Office of Naval Research and
the National Science Foundation.
1 Present address: Los Alamos Scientific Laboratory, Los
Alamos, New Mexico.
1 Pohm, Waddell, Powers, and Jensen, Phys. Rev. 97, 432
(1955). We have not made a systematic survey of the literature on
this point, but in addition see A. Moljk and S. C. Curran, Phys.

Rev. 96,395 (1954), and J. P. Mize and D. J. Zaffarano, Phys. Rev.
91, 210(A) (1953).

spectrum thus obtained for N*is in satisfactory qualita-
tive agreement with experiment, with the deviations
being attributed to uncertainties in the central-force
parameters. Since these uncertainties affect only the
diagonal elements, we adopt in Sec. V a semiempirical
approach which fixes the diagonal elements by fitting
the three lowest N energy levels, as well as requiring
cancellation in the p-decay matrix element. The re-
sulting N ground state wave function is mainly
D-state, and contains only 139, P- and 39, S-compo-
nent. From this wave function other properties of N
are calculated and shown to be consistent with
experiment.

In Sec. VI the 8 decay of O* is studied. It is shown
that the Coulomb interaction of the proton holes is too
weak a perturbation to explain the observed difference
in the ft-values of C* and O™. There is an additional
perturbation of the same order of magnitude due to the
slightly different spin-orbit splittings of a proton hole
and a neutron hole in the p-shell. The sum of the two
perturbations is sufficient to account for the observed
Ct—Q difference. Expected deviations from linearity
in the Fermi-Kurie plots are also discussed in Sec. VI.
A brief summary constitutes Sec. VII.

II. BETA DECAY IN THE SHELL MODEL

We shall use the shell model throughout, and assume
that C* and N* are pure s*p'° configurations. The wave
functions for the 14-nucleon systems are simpler to
write in the hole representation than in the particle
representation, since there are only two holes compared
to ten p-shell nucleons. The transformation to the hole
representation (hole-conjugation) can be performed
quite simply with the aid of second-quantization, and
is discussed in Appendix I. The results are, as far as the
forces between the two holes are concerned, that the
holes may be treated as if they were particles. In their
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energy of interaction with the rest of the nucleus,
however, holes and particles differ in sign, since a hole
is nothing but the absence of a particle and its
interactions.

The two holes in the p shell may combine in singlet or
triplet spin states, and in S, P, or D space states to give
wave functions with J=0, 1, 2, or 3, symmetric or
antisymmetric under interchange of space and spin
coordinates—corresponding to singlet and triplet iso-
topic spin states, respectively. Charge-independent
forces will be used throughout (we neglect the relatively
small Coulomb repulsions between protons), so that
isotopic spin will be a good quantum number.

The ground state wave functions are [we shall use
throughout the notation (J,7) for specifying the
quantum numbers ]

N#: ¥(1,0)=Cs¢(3S)+Cr¢(*P1)+Coy (D),
C4: ¥(0,1)=Cs¥(:S0)+CrY(Po),

where

1
¢( Dl) =E(D°X1 -

¢y

\[3D1xl0+ (6) %DZX],—I) T(]O, etc. (2)

The space and spin functions and the other LS-basis
wave functions are exhibited explicitly by Inglis.2 The
first, second, and third factors in each term of Eq. (2)
are the space, spin, and isotopic spin parts, respectively,
in the L2M 1S?M sT*T , representation.

In Appendix I it is proved that the §-decay operator
which acts on the holes is just minus that which acts on
the nucleons. The square of the Gamow-Teller operator,
summed over final states, is

CpCp'\?
). ®

V3

CsCs—

In general, for any allowed g8 decay,

i

The universal constant on the right hand side has been
determined by Gerhart? from the O* g decay. R is the
ratio of the squares of the Gamow-Teller and Fermi
coupling constants. From the neutron B decay,*
R=1.42+0.19. Since the experimental fi-value® for
C4is 1.12X 10° sec, and the Fermi term vanishes in this
case, we find

|CsCs'— (CpCr'/N3)| = (8.320.6)X 104 (5)

To account for this small experimental value it is neces-
sary either that the terms on the left-hand side are

2= (f)1X (6.55£0.15) X 10% sec.  (4)

—{-Rf(r

2 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
3 J. B. Gerhart, Phys. Rev. 95, 288 (1 954)
4]. M. Robson, Phys. Rev. 83 349 (1951), and private com-

munication.
5 A. M. Feingold, Revs. Modern Phys. 23, 10 (1951).
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individually very small, which cannot be the case
because of the strong spin-orbit force present, or that
they cancel one another. Inglis? considered this latter
possibility in some detail for a central interaction
between the holes, and single-hole spin-orbit force of

the form
Veo.=0 2 li-s; (6)

and proved that the two terms cannot cancel, but
always have the same sign.® From his work” the
numerical value of the left-hand member of Eq. (5) can
be estimated at 0.275.

There are other ways of accounting for the small
matrix element, namely, accidental cancellation induced
by different kinds of forces than those heretofore con-
sidered, and cancellation of the terms occurring in
Eq. (4) by others arising from higher configurations.
The latter possibility was considered by Inglis who
showed that in order for configuration mixing to be
solely responsible, the amplitude of the admixture would
have to be quite large (about 0.25 in both the initial and
final states). On experimental grounds such a large
admixture seems to be excluded. Standing,? in analyzing
the results of his measurement of the angular distribu-
tion of dueterons from the N*(p,d)N® reaction, has set
upper limits of 19, and 39, on the probabilities of the
higher configurations (1p)7%(2s)? and (1p)~*(2s)(1d),
respectively, in the ground state of N,

The former possibility is therefore more promising,
and it is clear that the tensor force should be considered,
since it is known to be strong from the two-body data.
Jancovici and Talmi® have, in fact, demonstrated that
the tensor force is capable of causing cancellation in
in Eq. (4), but, as they point out, they used a tensor
force so large that the energy level spectrum of N was
completely wrong.® They employed oscillator wave

6 R. Schulten and R. A. Ferrell [Phys. Rev. 94, 739 (1954)7,
making use of the shell-model wave functions obtained by R-
Schulten [Z. Naturforsch. 8a, 759 (1953)] in a calculation of the
energy-levels of p-shell nuclei, have calculated the g-decay life-

times of the radioactive ones, mcludmg C", Using an interparticle
spin-orbit force of the form

Vs.o.(1,2) =const X (riaX p1- @14121 X p2- 02)

they found that a partial cancellation in the g-decay matrix
element did occur, raising the fi-value by about a factor of one
hundred from that obtained with pure j-j coupling. Were it not
for the fact that this interparticle spin-orbit force does not have
exactly the same matrix elements as the one-nucleon force of
Eq. (6), this result would be directly contradictory to Inglis’
theorem. However, they must be still in error because Inglis’
theorem can be extended to include spin-orbit forces of quite a
general form. (See Appendix II.) Schulten worked in the j-j
representation and a relatively small error in his expansion coefhi-
cients for the N ground state, when transformed to L-S repre-
sentation, could have led to the wrong sign for the small 3S; or
1Py component

7 Reference 2, Fig. 20 (a/K= —5.6).

K. G. Sta.ndmg, Phys. Rev. 101, 152 (1956).

9 B. Jancovici and I. Talmi, Phys Rev. 95, 289 (1954).

1A, M. Lane and J. P. Elliott (unpubllshed manuscript) have
had some success in reducing the strength of the tensor force
necessary to produce cancellation. Their tensor force is still so
large, however, as to affect adversely the energy level spectrum.
This difficulty can be attributed to the Yukawa shape, which they
also used. The off-diagonal element Hgp which produces the
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functions and Yukawa interaction potentials with a
Serber (half-ordinary, half-Majorana) exchange char-
acter, and a spin-orbit force of the form of Eq. (6). We
have done the same calculation, in an attempt to find
how much variation in the relative force strengths is
permissible, using Gaussian rather than Yukawa poten-
tials (still with Serber exchange), and have found that
quite a variety of strengths is consistent with a zero
B-decay matrix element. Our results, which are not
inconsistent with those of Jancovici and Talmi (they
are not really comparable, because we used a different
well-shape, and did not consider tensor forces as strong
as theirs) are given in Fig. 1.1! Tt is evident from the
figure that, for a small spin-orbit force a small tensor
force suffices, while a large tensor force is necessary to
give cancellation with a large spin-orbit force. That this
relation between cancellation-giving forces should hold
can be made reasonable by the following argument.

Let us assume that the N ground state is to a large
extend 3D; (this is indicated by Standing’s® experi-
mental results and will be justified below), and use
first-order perturbation theory to get expressions for
the C’s of the left-hand side of Eq. (5) from the secular
equations

(Hss—E)Cs+HgpCp+HspCp=0,
(H'ss—E")Cs'+H'spCp'=0,
where H'ss, etc., are matrix elements of the Hamil-

tonian. Approximately, the left-hand member of Eq. (5)
is then

etc., 1)

etc.,

c /( Hgsp 1 Hpep H'sp )
=Cg - .
E—Hgss V3E—HppE—H'pp

cancellation, is sensitive to the shape and range of the tensor force.
The long-tailed Yukawa potential is less effective than the
Gaussian shape and there is no Yukawa tensor force of reasonable
strength which gives cancellation, [D. T. Goldman and R. A.
Ferrell, Bull. Am. Phys. Soc. Ser. II, 2, 27 (1957)]. There is no
a priori preference for the Yukawa over the Gaussian shape. The
meson theory tensor force, which is used in Secs. V and VI
below, has a more singular radial dependence, and approaches the
Yukawa shape only at large internucleon separations. While this
manuscript was in revision we received a preprint of a paper by
Elliott [J. P. Elliott, Phil. Mag. 1, 503 (1956) ], in which, by avoid-
ing the assumption of any specific tensor shape, he reaches the
same general conclusion as the one we had arrived at in reference
11, viz., that a moderate tensor force can give cancellation. The
present work is an effort to go beyond this stage and to give a
more detailed and specific picture of the cancellation, as well as to
relate it to other sources of information on the nuclear forces. Note
added in proof—R. Hueper [Z. Naturforsch. 12a, 295 (1957)], has
recently given a discussion of the shell model as applied to some of
the p-shell nuclei, including N'4. He remarks that the effective
central force necessary to account for the N ground state is
stronger than that which agrees with the scattering data, and
considers this a difficulty for the theory. But as discussed in
Sec. ITI, C below, this situation is just what one would expect in
the Brueckner theory, and we are inclined not to agree with
Hueper’s statement that the beta-decay of C** remains an “un-
solved problem.”

11 These results were reported at the 1955 Washington Meeting
of the American Physical Society [W. M. Visscher and R. A.
Ferrell, Phys. Rev. 99, 649(A) (1955)7].
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F16. 1. Values of the tensor-force strength parameters which
give zero (-decay matrix element as a function of spin-orbit
strength and the tensor-force range. (S.o. strength is in Mev.)
Cancellation does not occur for values of the parameters beyond
the dashed line. Gaussian shape and Serber exchange were used
for both tensor and central forces, and the central-force strength
was such that L=6K=—4.5 Mev. \ is the ratio of the tensor to
the central force strength. The naturally occurring case is given
by a=~4,A=1.

Here E is the lowest eigenvalue of the 3X3 (J,T)=(1,0)
Hamiltonian matrix and E’ the lowest eigenvalue of the
2X2 (J,T)=(0,1) matrix. Since the lowest eigenvalue
of a matrix is less than any diagonal element, all the
energy denominators are negative. Hpp and H'gp arise
from the spin-orbit force only, and are both negative.
Hence the second term within the parentheses is nega-
tive. For cancellation Hgp must therefore be negative,
which is true for an attractive force.”* The behavior of
the graph (Fig. 1) may be qualitatively understood from
Eq. (7), especially for high spin-orbit strengths, when
E'— H'pp is roughly proportional to H’gp. In that case
the tensor force required for cancellation increases in
proportion to the spin-orbit strength.

To enable more quantitative statements to be made,
we shall now turn to the calculation of the Hamiltonian
matrix elements for the s*p!° configurations in the
harmonic-oscillator shell model.

III. HAMILTONIAN MATRIX ELEMENTS

Harmonic-oscillator wave functions are generally
employed in shell-model calculations with two-body
forces because they make the integrals encountered
easy to evaluate and because they can be considered as
approximations to the true Hartree-Fock wave func-
tions for the system. Their use allows the integration
over relative coordinates to be simply separated from
that over the center-of-mass coordinates. This fact has
been pointed out and exploited by Talmi®® in his paper
on harmonic-oscillator nuclear spectroscopy. The one-
nucleon oscillator wave functions contain the Gaussian
factor exp(—3y7?), where y~* determines the size (i.e.,
root-mean-square radius) of the nucleus. From the
N15—0% Coulomb energy difference, Carlson and

Talmi* find y~*=1.68X 107" cm. The tacit assumption

12 This is the case only for a tensor force of not too long range.
13T, Talmi, Helv. Phys. Acta 25, 185 (1952).
14 B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
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TaBLE I. Hamiltonian matrix elements for the s*p!° configurations. L and K are the central-force direct and exchange integrals in the
p-shell, while I;” and I;” are the tensor and two-nucleon spin-orbit interaction Talmi integrals, respectively; a is the strength of the
one-nucleon spin-orbit force. Exchange coefficients are denoted by w, %/, etc.

V. 7) @S+)Ly
351 L+2K %) @I/ =51)/\/5
(1,0) 1p, (w—m—b+h) (L—3K) —(®)ia
3D1 e L—‘K '—‘12’—'%0—312"
(2,0) D, L—K+I/—ta—1I,"
(3,0) 3D, L—K— (/1) +a+21."
1So (w+m—b—h)(L+2K) —V2a
(0,1) 3P, (w—m~+-b—h) (L—3K)+2 (& —m") Iy’
—a—2 (wll —m”)I;”
1,1 1p, (w—m+b—1) (L—3K) — (& —m")Iy’
—lg—(w" —m"I"
3P,y (w—m~+b—h)(L—3K)+3(w' —m') I, a/V2
(2’1) +%a+ (wn_mu)ll//
1D, (w+m—b—h)(L—K)

that y~? differs only slightly for neighboring mass
numbers is borne out by the high-energy electron
scattering experiments on C%, which yield a value of
1.58X 1071 cm.!® That it is probably justified to use the
same Gaussian factor in both the s and p shells follows
from an investigation by Jancovici.!®

Subject to the restrictions of charge and velocity
independence and the simplifying assumption of ex-
change-independent shape, the most general form for
the two-body central and tensor potential is

Vet Vr=—Vo(wt+mPio+b0Q12+2P15Q12) Uc(r12)
=V (W +m' P13)S12Ur(r12), (8)

where P2 and Qs are the Majorana and Bartlett
exchange operators, Si2 is the usual tensor operator

(01' 1'12) (0‘2 . 1'12)
Sl2=3_—'_"‘__al'o'2’ (9)
719

and w+m—+b+h=w'+m'=1.

In the choice of the interparticle spin-orbit force we
follow Eisenbud and Wigner,'” and write the following
most general charge-independent expression linear in
the relative velocity which is invariant under rotation,

15 T, H. Fregeau, Phys. Rev. 104, 225 (1956) ; R. A. Ferrell and
W. M. Visscher, Bull. Am. Phys. Soc. Ser. II, 1, 17 (1956) and
Phys. Rev. 104, 475 (1956). Three corrections have been applied
to the published value of y7#=1.63)X107% cm. First of all, correc-
tion for the Born approximation brings in a reduction of 1.4%
according to Ravenhall (as reported by Fregeau). Allowing for the
proton root-mean-square radius of 0.72X 107 cm further reduces
vt by 4.5%, while correcting the theoretical C*2 rms radius ex-
pression for the lack of center-of-mass motion (see Appendix III)
increases v % by 2.8%,. Thus there is a net reduction of 3.1% in
the previous value of y7%.

16 B, Jancovici, Compt. rend. 240, 1608 (1955). (Jancovici’s
s-p interaction energy is in error. The correction is given in foot-
note 5 of a paper by the present authors [Phys. Rev. 102, 450

1956)7].)

( 17 L.]Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 27,
281 (1941); R. G. Sachs, Nuclear Theory (Addison-Wesley Press,
Cambridge, 1953), p. 215.

Galilean acceleration, space inversion, time reversal,
and exchange of the two nucleons:

Voo.=—Vo'h (w”'f‘m”Pm) (Sl+ Sz)

* (r12>< p12)Us_g(1’12), (10)

where
P12= P1— Pe.

Py, is actually a velocity-dependent operator, but in a
system obeying the generalized Pauli principle, it is
equivalent to minus the charge-exchange operator
because (s;+s2) is nonzero only between even spin
states, for which the Bartlett operator is equivalent to
unity. Summing this spin-orbit force over the closed
shell in the hole-representation is illustrated in Appen-
dix I, and leads to an effective one-body force of the
form used by Inglis and Jancovici and Talmi, and which
is expressible in the form of Eq. (6). We note that an
expression of this form describes the entire spin-orbit
energy of a single hole [Eq. (12) below gives the value
of a for N**], thus affording a way of determining one
of the spin-orbit parameters from experimental data. In
the 14-nucleon system, however, part of the contribu-
tion of the spin-orbit energy to the diagonal matrix
elements stems directly from the interaction between
two holes. This interaction, of course, cannot be ex-
pressed as a one-body force, but will be shown in Sec. IV
to be small.

The matrix elements of (Ve+Vr+Vs,.) in the
s*p'® configuration are given in Table I.1® L and K are
the central-force direct and exchange integrals and can
be expressed as

L=3T—3I+3I
4_14 0 i 1+: 2 (11)
K=3lv—511+31,,
18 T, P. Elliott, Proc. Roy. Soc. (London) A218, 345 (1953), and

T. Regge, Nuovo cimento 11, 285 (1954), have tabulated most of
these matrix elements.
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where

ILI=—V, f exp(—3vr) Uc(r)r*ttidr /
0
f exp(—iyr)r2H2dy  (12)
0

are the central-force Talmi integrals. The I, and I;’
which appear in Table I are the corresponding Talmi
integrals for the tensor and spin-orbit force, respec-
tively. They are obtained from Eq. (12) by replacing
Vo by Vi or Vi’ and by replacing U¢ by Uz or Us.,..
The parameter ¢ which also appears in Table I is just
the single-hole spin-orbit strength parameter of Eq. (6).
In terms of the basic two-nucleon spin-orbit force, it is
(see Appendix I)

a=—9(w' —m'")I/"—5I,". (13)

We would be in a position to determine from Table T
the ground-state wave functions as well as the properties
of the other stationary states of C* and N* which arise
by excitation within the p shell, if we knew the values
of the exchange parameters w, m, etc., and of the force
strengths Vo, V', and V. Approximate numbers will
now be attached to these.

IV. NUCLEAR FORCE DETERMINATION

A. Spin-Orbit Force

Hochberg et all® have analyzed the scattering of
neutrons by alpha-particles and have been able to fit
the experimental phase shifts with a two-nucleon spin-
orbit force of the form of Eq. (10), provided

(W' —=3m")Vo'=V'"—1.5m"Vy'=4.5 Mev. (14)

They chose the Gaussian shape Us., =exp(—8"712%)
with 8=0.266 X102 cm™2, (corresponding to a range of
B'3=194X10"2 cm). An alternative approximate
derivation of Eq. (14) is given in Appendix III, where,
instead of treating (as one should) the mass-five system
as in a scattering state, we calculate the p;— p; spin-
orbit splitting using bound-state oscillator wave func-
tions. The spin-orbit splitting in the mass-fifteen nuclei
can also be expressed in terms of the basic interaction
parameters. The Gaussian shape makes the Talmi
integrals especially easy to evaluate (they become
simply gamma functions of half-odd-integer argument),
and one obtains

I'= =V (1428" /7). (15)
Substituting into Eq. (13) and setting ¢=4.22 Mev
(the splitting in N® is 3¢/2=6.33 Mev) gives

111V —1.82m" V' =4.22 Mev. (16)
One can solve the simultaneous equations (14) and (16)
and obtain reasonable values for the quantities V¢’ and

19 Hochberg, Massey, Robertson, and Underhill, Proc. Phys.
Soc. (London) A68, 746 (1955).

AND NUCLEAR FORCES

785

m''V¢"’. It should be noted, however, that the corre-
sponding coefficients in the two equations have roughly
the same values. The relatively small differences cannot
be regarded as significant. We therefore prefer to regard
the two equations as redundant. We retain Eq. (16)
and drop Eq. (14), since it provides no additional
information.

It might be expected that the spin-orbit splitting in
the mass-seventeen nuclei would yield additional in-
formation on the spin-orbit interaction, but, designating
the one-nucleon coupling parameter in the d-shell by
aq, we find?0-#

(15/2)I1"+ (21/2)I5" —m" (151, — 31"+ 2115")

=—0.93Ve"+1.74m" V' =as. (17)

Thus once again we are disappointed by the practical
identity of the coefficients in the left hand member
with those of Eq. (16). More serious than a mere
redundancy, however, is a discrepancy in the values of
the right hand members. The d;—djs splitting in O is
—(5/2)a3=5.08 Mev. Thus aq=—2.03 Mev, putting
Eq. (17) into stark contradiction with Eq. (16). Accord-
ing to Eq. (16) the coupling in the d-shell should be of
about the same magnitude as in the p-shell. If this were
the case, the ds state in OY would lie at 10.6 Mev, or at
about twice the observed excitation energy.??? This
discrepancy can be removed by noting that in addition
to the spin-orbit splitting calculated here there are two
other effects which tend to compensate and shift the
ds level back down. First, there is the Ehrman-Thomas
shift.* The last neutron in O' is very weakly bound
(with a binding energy of only 4.14 Mev in the ground
state), and an excitation energy of 10.6 Mev would take
it far above the threshold for free-neutron emission. As
a consequence the wave function will accommodate to
more relaxed boundary conditions, thus lowering the
energy of the (virtual) ds-level. The second effect is
the “pushing-down” of the single-nucleon level by mix-
ing with other J=% levels which arise from 2+ core
excitation, coupled to the ds neutron orbital. Since
neither of these shifts has been calculated, we can only

20 According to the O —F17 Coulomb energy difference calcula-
tion of Carlson and Talmi (reference 14) the d-oscillator wave
function has exactly the same Gaussian factor as the p-orbitals.

2 Both Eq. (13) and Eq. (17) for the special case of m'’=0 can
be obtained from Talmi’s paper (reference 13, Sec. 10) after
correcting his results by a factor of two. His expressions for the
spin-orbit splitting are too small by this amount, an error which
seems to be due to his identifying the operator r1sX (p; —p2) with
the relative angular momentum. [r12X (p1—p2) is actually fwice
the relative angular momentum operator. ]

22 In first presenting this result [ Bull. Am. Phys. Soc. Ser. II, 1,
16 (1956)] we used a specific choice of strength and exchange
coefficients. It is clear, however, from the above discussion, that
the result is independent of such details, provided only that the
p-shell splitting be correctly accounted for.

2 This same result has also been obtained by C. A. Pearse,
[Phys. Rev. 106, 544 (1957)7]. See also J. P. Elliott and A. M.
Lane, Phys. Rev. 96, 1160 (1954) and references to earlier work
given there.

2¢J. B. Ehrman, Phys. Rev. 81, 412 (1951); R. G. Thomas,
Phys. Rev. 88, 1109 (1952).
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assume here that when the observed ds excitation energy
is corrected for them, the intrinsic d-shell spin-orbit
splitting will be found to be of the order of 10 Mev, and
thus consistent with the p-shell splitting.

Since the d-shell splitting provides no new informa-
tion, we have only the single Eq. (16) to determine the
two unknowns Vo'’ and m”' V. We are forced to make
an arbitrary assumption, and we choose as the simplest,
m'’=0. Thus we have only a Wigner-type spin-orbit
interaction with strength V,’=3.80 Mev. This is a
relatively weak interaction and the two-hole terms in
the matrix elements of Table I, which depend on the
Talmi integrals I’ = —0.38 Mev and I, = —0.15 Mev,
can be neglected compared to the cumulative contribu-
tions of the interaction, which depend on the much
larger quantity, a=4.22 Mev. The error introduced by
this approximation is of the order of a few tenths of an
Mev, and is well within the accuracy which can be
expected from the present rather rough shell-model
calculations.

B. Tensor Force

According to the meson theory of nuclear forces? the
tensor interaction between nucleons is given, to lowest
order in the coupling constant f, by

V= —lew2 (%‘I‘%Pm)smUT(f’m),
X Ryexp(—r/X)
o) =( ) s
r r/A

Here A=1.41X1072 cm and uc?*= 140 Mev are the pion
Compton wavelength and rest energy, respectively.
Thus the tensor force is two-thirds Majorana and only
one-third Wigner. Its strength is fixed by the recent
determination of the coupling constant from dispersion
theory and experimental scattering data. Haber-
Schaim? finds f2=0.082, which gives Vo= fiuc?
=11.4 Mev.

It has recently been noted that this tensor force gives
a good account of the quadrupole moment of the
deuteron.?” This may seem surprising in view of the fact
that Eq. (18b) cannot be expected to be valid for inter-
nucleon separations less than X. At these smaller
distances there will also be appreciable contributions
from terms in the interaction which are of higher order
in f2 exp(—7/X), corresponding to the exchange of more
than one meson. The operator S, however, is only
effective for nucleon-nucleon encounters involving some
relative angular momentum. In such cases the relative
wave function vanishes at small distances, so that

(18a)
where-

(18b)

25 H. A. Bethe and P. Morrison, Elementary Nuclear Theory
(John Wiley and Sons, Inc., New York, 1956), second edition,
154

p- 154.
26 U. Haber-Schaim, Phys. Rev. 104, 1113 (1956). The roughly
209, uncertainty in the value of f2 does not greatly affect the
present calculations.
27 Twadare, Otsuki, Tamagaki, and Watari, Progr. Theoret.
Phys. Japan 15, 86 (1956).
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Ur(r) is actually not “sampled” in the region where it
is not correctly represented by Eq. (18b). Also for this
reason the singular behavior of Ur(r) causes no diffi-
culty. Hence we feel that it is justified to use Egs.
(18a,b) to calculate the Hamiltonian matrix elements
for the mass fourteen system. The Talmi integrals can
be expressed in terms of error functions. Their numerical
values are® I,'=—3.86 Mev, Iy’=—1.16 Mev. The
critical S-D off-diagonal element in the (J,7)= (1,0)
matrix has consequently the value Hgp=—2.58 Mev.
As will be seen below, this is quite sufficient to change
the sign of the S-component in the N* ground state and
bring about cancellation in the g-decay matrix element.

C. Central Force

The central potential which is deduced from meson
theory in lowest order is of Yukawa shape but with an
additional repulsive hard core. The latter is difficult to
take into account properly in the shell model, which is
essentially the Hartree-Fock method of handling the
many-nucleon problem by approximating the wave
function by a single Slater determinant or at most only
a few Slater determinants. This is because the hard core
establishes nucleon-nucleon correlations in the many-
nucleon wave function which the Hartree-Fock method
can describe only by configuration mixing, involving in
the wave function a sum of a large number of Slater
determinants. An alternative method of dealing with
the correlations is to apply the “model operator” of
Brueckner.”® In this approach the correlations in the
wave function are transformed away, restoring the
simple shell-model picture, and at the same time the
interaction is replaced by an effective interaction. The
latter is defined such that its matrix elements for
nucleon-nucleon scattering in Born approximation are
equal to the corresponding matrix elements of the so-
called reaction matrix. Thus the effective nucleon-
nucleon interaction in the shell model bears no a priori
simple relationship to the basic meson-theoretic inter-
action potential.

Because of the difficulty of systematically following
the Brueckner approach at the present time, we shall
make the following arbitrary but nevertheless reason-
able assumptions concerning the effective interaction:

1. The spin-orbit and tensor forces are unaltered by
the model operator except for additional contributions
which they make to the effective central force. These
latter contributions occur only for triplet nucleon-
nucleon interactions and vanish for singlet encounters.

2. The hard core of the central interaction is removed
by the model operator so that the resulting effective
interaction is satisfactorily described by the Gaussian

Uc(r)=exp(—pr?).

28 We wish to thank Mr. D. T. Goldman for carrying out this
computation for us.

2 For a recent discussion of this theory see H. A. Bethe, Phys.
Rev. 103, 1353 (1956).
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3. The Serber condition applies to the effective
potential. These assumptions ride rough-shod over
many important points, such as the fact that some, but
probably not all, of the effective spin-orbit interaction
arises from the tensor force.*® In addition we now do
further violence to the Brueckner method in that we
determine the effective central strength for singlet
interactions by simply using the results of the low-
energy scattering calculations of Blatt and Jackson,®
instead of working with the Born approximation. From
their graphs we find that a scattering length and an
effective range for singlet proton-proton scattering of
—16X 108 c¢cm and 2.66X 10~ cm, respectively, are
accounted for by a Gaussian potential of strength

(w+m—b—h)Ve=32.9 Mev,

and range 8~#=1.73X107%,

The effective strength for triplet interactions could be
determined from the binding energy of the deuteron.
We prefer, however, to get this information from a case

(19)

in which the nuclear matter is more nearly saturated’

and thus more closely approximates the situation in
the mass-fourteen nuclei. He* is the simplest such
nucleus and is studied by an approximate method in
Appendix IV. There it is shown that the binding energy
is accounted for provided

(w-+m)Vo=42.4 Mev. (20)

From Egs. (19) and (20) we find Vo=151.9 Mev, which
is actually about the correct strength to reproduce the
deuteron binding energy. Further we have w+m=0.817
and b+%=0.183, so with assumption 3 above we obtain
w=m=0.408 and b=%/=0.092. The Talmi integrals
can be calculated from Eq. (15) above, simply by
dropping the primes. We find Io=-—10.58 Mev,
I,=—3.67 Mev, and I,=1.27 Mev. Substituted into
Eq. (11) these yield L=—7.05 Mev and K=—1.12
Mev, with a ratio of direct integral to exchange integral
of L/K=6.29.

D. Energy Levels

With the above nuclear force parameters the matrix
elements of Table I have been evaluated and are
exhibited in Table II. (All entries are again measured in
units of Mev.) The (1,0) 3)X 3 matrix has the eigenvalues
—13.14, —10.00, and 2.50. The lowest of these corre-
sponds to the N* ground-state energy, and agrees
quite well with the experimental value of —13.21 Mev.
(Such close agreement was not expected and can only
be regarded as fortuitous.) This value is arrived at by
noting that the preparation of the ground state of N
by removal of a neutron and a proton from the O core

% A, Feingold, Phys. Rev. 105, 944 (1957). For another ap-
proach to the correlation problem see E. Feenberg and P. Gold-
hammer, Phys. Rev. 105, 750 (1957), and references to earlier
work given there.

31J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949). See
also R. G. Sachs, reference 17, pp. 84-85.
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TasLe II. Calculated values (in Mev) of the Hamiltonian matrix
elements for the s*p!® configurations.

(J’T) @S+1)[ 5
%S, —9.23 345 ~2.58
1,0 1P, . 0 —3.86
3D, —11.16
2,0) 3D, —9.26
3,0) 3D, —1.44
15, —5.85 —597
.1 {3Po o ~1.65
(1,1 1Py —3.40
3P, 2.37 2.99
(2)1) {1D2 .o __3.80

requires 22.94 Mev.?? But the energy required to create
a proton or neutron hole individually is 16.33 Mev and
19.82 Mev, respectively. (Here we have averaged over
spin orientation, so as to eliminate the spin-orbit
interaction with the core.) Thus the total energy of the
two holes interacting with the core via the central
forces (the tensor forces contribute nothing) with the
core is 36.15 Mev. Since this energy has been omitted
from the diagonal matrix elements of Tables I and II,
one must also subtract it from the experimental energy,
thus obtaining the above value.? It might be mentioned
in this connection that a simple j-j coupling theory
involving no interaction between the holes would put
the ground state at —8.44 Mev, owing simply to the
spin-orbit interaction of each hole with the core. The
additional lowering of 4.77 Mev can therefore be as-
signed to interaction and correlation of the two holes
within the p-shell.

All the other energy eigenvalues are readily obtained
from Table II, and their numerical values need not be
listed here. They are exhibited, however, in Fig. 2,
which shows the 7'=0 levels on the right and the 7'=1
levels on the left. For comparison, the experimental
levels appear in the center and are labeled by their
excitation energies (again in Mev). N has a multitude
of excited states, most of which are no doubt due to
excitation of the O core. Only those have been shown
which can reasonably be selected and identified as
s*p!0 configurations. This is clearly limited to the low-
lying levels, and only the ground state and the first two
excited states can be considered identified with a high
degree of confidence. The other two identifications are
quite tentative. It should be explained that the excita-
tion energy of 9.03 Mev, which is identified as the lower
of the two (2,1) levels, has been calculated by adding
the 2.31-Mev excitation energy of the lowest N* T'=0
level to the 6.72-Mev excitation energy of C". (The

2 T, Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1956).

3 We wish to thank Dr. C. Levinson for valuable discussion on
this point.
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(2,1)
—©) 0
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(3,0)
(i,1)
9.03 14
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-8L1 8.10
398 | T~ (20
o _ I -~ 19
=~]2.31
1-12
(10)
T=1 T=0

F1c. 2. Energy levels of N, Experimentally observed levels are
shown in the center and are labeled by their excitation energy (in
Mev) above the ground state. The ground state lies at —13.21
Mev (see text for normalization of the energy scale). Calculated
T=0 and T=1 levels are exhibited on the right and left, respec-
tively. Although five identifications are made, only the three
lowest are certain. The agreement is regarded as satisfactory for
the “first principles” calculation (see text).

other levels of C** at 6.09 Mev and 6.89 Mev seem to
have odd parity and do not come into consideration.)
It will be noted that all of the calculated levels fall
within about a Mev of the experimental values, which
isas good agreement as can be expected from the present
rather crude ‘“first principles” approach. The only
apparent discrepancy is with the (1,1) level, which falls
at —3.40 Mev and seems to have no experimental
analog in C'. The threshold for free neutron emission lies
just above, however, at —2.73 Mev. The level might
actually exist, but happen to be sufficiently above
threshold as to be broadened and thus elude direction.
The other four calculated levels of the s configura-
tions can similarly be explained away, or alternatively
be considered as lost in the confusion which the dense
N* spectrum exhibits at these high excitation energies.

V. WAVE FUNCTIONS

The N and C* ground state wave functions cal-
culated from the Hamiltonian matrix elements of
Table II are (Cs, Cp, Cp)=(0.460,0.137, 0.877) and
(Cs’, Cp')=1(0.816,0.577). The terms appearing in the
left-hand member of Eq. (5) are consequently CsCs’
=0.375 and CpCp’/V3=0.046. Their difference is 0.329,
or about four hundred times larger than the experi-
mental value. But the discrepancy is not serious. The
important point to note is that the relative sign of the
two terms is now correct for cancellation. The tensor
force has, via the off-diagonal element Hgp, not only
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been able to reduce the S-component to zero and change
its sign; in addition it has been strong enough to build
the S-wave back up to a quite large amplitude, but now
with the desired sign relative to the P-component. Our
theory is only confronted with the quantitative diffi-
culty of providing larger values for the P-components,
rather than with any serious qualitative discrepancy. A
serious discrepancy might have occurred, for example, if
the tensor force had been too weak to change the sign
of Cg. The situation here, however, is just the opposite
—we are in the comfortable position of having a tensor
force somewhat more effective than required.

The agreement between the calculated and experi-
mental level schemes shown in Fig. 2 can be considered
satisfactory for such a “first principles” calculation. By
this phrase we mean only that all of the experimental
data used in the calculation have come from other
sources than the mass-fourteen system itself. No data
pertaining to the latter have been used in obtaining its
theoretical energy-level spectrum. The purpose of this

-approach has been to give confidence that the properties

of all the nuclei, and of the mass-fourteen system in
particular, can be understood in terms of the basic
two-nucleon interactions. But because of many un-
certainties, the accuracy of such an approach is defi-
nitely limited at the present time. Assumption 3 of Sec.
IV C above contains perhaps the greatest of these un-
certainties. It is by no means definitely established that
the Serber condition holds for low-energy central-force
interactions. But even if the basic interaction satisfied
this condition, it does not necessarily follow that the
effective central force also does. Therefore, we drop this
assumption, with the result that no @ priori values can
be assigned to the P-diagonal Hamiltonian matrix
elements, Hpp and H'pp. [Throughout this paper we
use a prime to distinguish the (0,1) matrix elements and
wave function coefficients from the corresponding(1,0)
quantities. | Abandoning the “first principles’” approach
which we have followed up to now, we adopt an empiri-
cal procedure, using information from the mass-fourteen
system itself for determining these additional unknowns.
H' ppis immediately fixed by E'=—10.90 Mev, the C*
ground-state energy (corrected, of course, for the
C4—N* Coulomb energy difference). The resulting
diagonal element is H' pp=—3.83 Mev, or about 2 Mev
lower than the “first principles” value. The correspond-
ing eigenfunction has consequently a larger P-compo-
nent than before. The empirical C* ground state
coefficients are given by

(C&',Cp')=(0.764, 0.646). (21)
Cancellation in the beta-decay matrix element is now

guaranteed provided the N ground-state coefficients
satisfy the condition

Cs/Cp=Cp'/(V3Cs')=0.488. (22)

If the components of the matrix form of Schrédinger’s
equation for the (1,0) case are written out separately,
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one obtains three equations for the three unknowns:
E (the eigenvalue), Cp/Cp (the only remaining un-
determined ratio in the wave function), and Hpp.
Consequently it is an easy matter to solve for Hpp.
When this is done, one has a 3)X3 matrix which is not
only adjusted to yield beta-decay cancellation, but
whose lowest eigenvalue still agrees well with the N*
ground-state energy. The next eigenvalue will be found,
however, to lie about 2 Mev too low to correspond to
the 3.95-Mev N excited level. This somewhat un-
satisfactory result can be alleviated by further departing
from the ‘“first principles” calaculation. The exact
value of Hgs cannot be considered to be known a prior,
because of correlation effects in the triplet state. There-
fore we now take this as an additional unknown which
is to be empirically determined by requiring the
calculated and the 3.95-Mev experimental levels to
agree. [Note that, according to Assumption 1 of Sec.
IV C above, we are not free to treat the singlet diagonal
element H’gs in this way.] This procedure not only fits
the cancellation and the first excited (1,0) level, but
surprisingly enough still leaves the lowest (1,0) eigen-
value within a few hundredths of an Mev of the experi-
mental ground state energy. The effects on the ground
state of lowering H pp and raising Hggs cancel out and
leave a negligible net shift. Replacing Hpp by a slightly
lower value fits the ground-state energy exactly. The
resulting empirical (1,0) and (0,1) matrices are ex-
hibited in Table III. It should be pointed out that the
off-diagonal elements as well as the H'gs (singlet)
diagonal element are still derived from “first principles.”
Only the remaining four diagonal elements have been
empirically fitted to the four pieces of data on the mass-
fourteen system (i.e., cancellation and the three lowest
energy levels).

From Eq. (22) and Table III, the ratio Cp/Cp can
immediately be calculated. The resulting ground-state

components are given by
(Cs, Cp, Cp)=1(0.173, 0.355, 0.920). (23)

The ground-state properties of N are the magnetic
moment (measured in units of the nuclear magneton),

u=0.879C s*4-0.500C p*+-0.310Cp?, (24)

and the electric quadrupole moment,

S5/ 4 1 7
Q=—( cscD-—cP2+4:Dz). (25)
2y \5¢/5 5 50
Substitution from Eq. (23) yields ©=0.351 and Q=1.06
X 1026 cm?, which compare satisfactorily with the
experimental values® of pexp=0.404 and Qexp=1X107%
cm?. The small deviation in the magnetic moment can
be ascribed to meson exchange and configuration
mixing. A further test of the wave functions is the half-
life of the first excited state of N'. An upper limit has

3# J. E. Mack, Revs. Modern Phys. 22, 64 (1950).
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TaBie III. Empirical values (in Mev) of the Hamiltonian
matrix elements for the s*p1 configurations having the same
symmetry as the N and C* ground states.

., T) @S+ 5
1S, —6.60 345 —2.58
10 {p c —491 —3.86
3D, e —11.23
1S —5.85 —5.97
O Aap, - -3.83

been set by Sherr et al.3® at 3.5X 107 sec. From their
Eq. (3) we calculate 73=2.0X10"* sec, which is an
order of magnitude smaller than and clearly consistent
with their upper limit.

A more positive test is the cross-over to cascade ratio
for the decay of the N second excited state.’® The
cross-over transition gives a mixture of magnetic dipole
and electric quadrupole radiation. The contribution of
the magnetic transition rate is relatively small, however,
since its matrix element contains only diagonal terms in
the LS representation. The excited state is predomi-
nantly S just as the ground state is predominantly
D, so that the square of the overlap of the wave func-
tions is only about 19, as contrasted with good overlap
for the cascade transition. The remaining energy and
magnetic moment factors in the ratio of the cross-over
to cascade magnetic transitions are (3.95/1.64)*=14.0
and [ (uptun)/ (up—pn) = (0.88/4.70)2=0.037, where
up and p, denote the proton and neutron magnetic
moments, respectively. These factors tend to compen-
sate one another, so that the ratio of the magnetic
transition rates is of the order of the ratio of the over-
laps, or less than 19%,. This can be neglected compared
to the contribution of the electric transition. In evalu-
ating the latter we make the approximation of neg-
lecting the small components in the wave functions and
take the ground and excited states to be pure 3D, and
pure 355, respectively. (This can be expected to produce
about a 109, error in the results.) On the basis of this
approximation we find a cross-over rate of 1.9X10%
sec”L, Equation (3) of Sherr et al.,*® can be used, with
due allowance for a spin-degeneracy factor of three, to
calculate the cascade rate and yields 2.0X 10* sec1. The
cross-over to cascade ratio is therefore predicted to be
0.99%,, which is much smaller than the experimental
value of (3.720.6)9, determined by Bromley et al
due presumably, as suggested by Elliott* to core
deformation.

There are in addition other experimental methods of
investigating the N wave functions, and we shall
briefly mention those which have come to our attention.

3 Sherr, Gerhart, Horie, and Hornyak, Phys. Rev. 100, 945

955).

36 J, P. Elliott (see reference 10) seems to be the first to have
studied this matter.

37 Bromley, Almqvist, Gove, Litherland, Paul, and Ferguson,
Phys. Rev. 105, 957 (1957).
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It has been noted by Banerjee et al.3® that the inelastic
low-energy proton cross section is abnormally small for
the first excited state of N** (the 7',=0 member of the
same isotopic spin triplet as the ground state of C).
This they attribute to the same cancellation as in the
CH" B-decay, since the matrix element for direct-inter-
action S-wave scattering is identical up to a factor with
the B-decay matrix element. The same explanation
applies to the abnormally small inelastic neutron cross
section for this state, as measured by Day.* For the
same reason the charge exchange reactions C**(p,n)N%,
N¥(p,n)0", and N¥(n,p)C" can be expected to have
very small low-energy cross sections. In addition to the
inelastic nucleon scattering experiments, there has been
considerable interest in the extent to which the N
ground-state wave function can be determined from
stripping and pickup reactions. French’s® theoretical
analysis has been applied by Warburton and McGruer
to their experimental results on the N(d,p)N15
stripping reaction. It is found that agreement cannot be
obtained for any wave function even approximately
given by Eq. (23). Considerably more P- and S-compo-
nent is required. The reason for the discrepancy is not
clear at the present time. It is possibly due to an energy
dependence of the single-particle reduced widths,2which
would prevent a direct comparison of the stripping
cross sections to the ground state and 6.33-Mev excited
state of N5, The single-particle reduced width might
be expected to be greater for the excited state, since the
last neutron is more weakly bound and its wave function
extends farther from the nuclear surface. This effect is
in the right direction to decrease the discrepancy.

Note added in proof—The second excited state wave
function coefficients have been found to be

(Cs", C", Cp')=(0.813, —0.580, 0.073).

If %’ is the wave number of the 1.64-Mev radiation, the
cascade rate is given by the dimensional factor

enk's
3M3c?

=1.86XX10" sec™!

times the square of the dimensionless quantity obtained
by replacing the ground state by the second excited
state coefficients in the expression appearing between
braces in Eq. (3) of Sherr et al. The cascade rate is
accordingly 2.11X10* sec™. The M1 cross-over rate
contains the same dimensional factor, in which, how-
ever, k' is replaced by %, the wave number for the
3.95-Mev radiation. The associated dimensionless factor

3 Banerjee, Levinson, Albright, and Tobocman, Bull Am. Phys.
Soc. Ser. II, 1, 194 (1956).

3 R. B. Day, Phys. Rev. 102, 767 (1956).

4 J. B. French, Phys. Rev. 103, 1391 (1956).
( 4a I;T) K. Warburton and J. N. McGruer, Phys. Rev. 105, 369

1957).

2 A. M. Lane, Atomic Energy Research Establishment, Harwell

Report T/R 1289 (unpublished).
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is twice the square of
(uptua—%) (CsCs”—3CpCp").

The M1 cross-over rate amounts thus to 0.86)X1012
sec™), or 0.419, of the cascade rate. The E2 cross-over

rate is
e2kb

P =9.28X10% sec™!
24

times the square of
1 1 7
—(CsCp"+CpCs")——CpCp"”"+—CpCp",
\/5 2 20

which is closely related to the diagonal E2 matrix ele-
ment appearing in the right hand member of Eq. (25).
The E2 rate equals 2.03X10% sec™, or 0.96%, of the
stop-over rate. The total cross-over rate amounts to
1.379%, of the stop-over rate. The remaining 2.39, found
experimentally is about what would be expected for the
collective participation of the O core, judging from
the already familiar enhanced E2 decays of the first
excited states of C'2, N'¢ and OY.

VI. BETA DECAY OF O%

The N** and C* wave functions have been determined
in the preceding section so that the left hand member of
Eq. (5) vanishes. The individual terms in this quantity
are, according to Egs. (21) and (23), individually equal
to CsCs'=CpCp'/V3=0.132. A very slight change in
the coefficients will change the difference from zero to
the experimental value of 8.3X 10~ Thus, the cancella-
tion of the two terms is complete up to one part in 160.
Jancovici and Talmi® have noted that this delicate
cancellation will be perturbed by the Coulomb inter-
action of the two holes, and that it will therefore not be
as complete in O as in C*. The Coulomb repulsion of
the two negatively charged proton holes in C'*is slightly
greater in the 1S, than in the 3P, state by the amount

E¢=1e(y/2w)=0.172 Mev. (26)

The diagonal Hamiltonian matrix elements for O
relative to C" therefore contain a perturbation of this
amount in the H'pp element. If we denote the excited
(0,1) eigenvalue and eigenfunction by E'+AE and
Cp'(1S0)—Cs'(®Py), respectively, it follows from a
simple application of perturbation theory that in pass-
ing from C“ to O“ the wave-function coefficients
undergo the fractional changes

ACs' Eg¢ ACPH E¢
=—(Cp’)? and =——/(Cs)% (27)
Csd AE Cr' AE

Consequently the quantity inside the absolute value
signs in Eq. (5) is increased by
A=A (CS/CS—CPCP//Vg) =CsCg (EC/AE)

=2.27X10~2 Mev/AE. (28)
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This equation is equivalent to Eq. (6) of Jancovici and
Talmi. AE has been regarded by Jancovici and Talmi
and by Sherr ef al. as an undetermined parameter which
might be identified with any 04 excited state of C%,
with no a priori restriction on its excitation energy. This
is clearly not permitted, since it follows immediately
from Table III that AE=12.12 Mev, giving A=1.88
X 1073, This can be compared with the experimental
value of A which follows from the measured O" fi-
value.®® From the latter we find

(CS,CS—CPCPI/\G—)0“= (6.3:!:0.5))(10"‘3, (29)

S0 Aexp= (5.540.5)X 1073 or (7.14-0.5)X 107, depend-
ing on whether the B-decay matrix element for C"
happens to be positive or negative. If, since it is easier
to explain, we adopt the first possibility, we are still left
with a discrepancy by a factor of about three between
the theoretical and experimental values of A.

Thus we see that the cancellation is by no means as
delicate as might have been supposed. The Coulomb
effect pointed out by Jancovici and Talmi is too weak
to perturb the wave function sufficiently and produce
the observed difference between O* and C. There is
evidently an additional perturbation present of amount
0.33 Mev, or about twice the Coulomb shift. One does
not have to look far for the origin of such an additional
shift. A proton moving in the Coulomb field of the O'®
core experiences an electromagnetic spin-orbit splitting
which is much smaller than but of the same sign as the
nuclear spin-orbit splitting. Since the electromagnetic
interaction depends on the magnetic moment of the
nucleon, it differs both in sign and magnitude for a
proton and a neutron. A comparison of the 6.33-Mev
splitting in N8 with the 6.14-Mev splitting in O'® seems
to reveal this effect. Thus the value of the one-nucleon
spin-orbit strength decreases by Ae=—0.13 Mev*® in
passing from C™ to O™. According to Table I this not
only shifts H'pp upwards by 0.13 Mev, but also de-
creases the off-diagonal elements by 3.1%,. Since only
the relative magnitudes of the matrix elements deter-
mine the eigenfunctions, this change in the off-diagonal
elementsisequivalenttoa 3.19%, increase in H' pp—H' 5.
Thus there is an additional upward shift of H'pp by
0.06 Mev, giving a total magnetic shift of 0.19 Mev. The
magnetic effect is hence of about the same order of
magnitude as the Coulomb effect. The sum of the two is
4.0X10-% and is nearly sufficient to account for the
experimental value of Aexp= (5.540.5)X 1072,

In connection with the O“ B decay, it should be
mentioned that, barring experimental difficulties, its
spectrum may be more apt to reveal slight deviations
from a straight Fermi-Kurie plot than that of C. This
is because the “second-forbidden’ terms in the g-decay

41t is planned to calculate this difference directly, since the
N15—015 comparison may be subject to error due to the Ehrman-
Thomas shift (reference 24). A similar calculation of the electro-
magnetic spin-orbit splitting in the mass seven nuclei has been
made by Inglis, [D. R. Inglis, Phys. Rev. 82, 181 (1951)].
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matrix element (the “first-forbidden” terms are opposite
in parity and do not contribute) are proportional to the
square of the electron momentum which, at the end of
the spectrum, is one hundred and twenty times as great
for O* asit is for C'. The allowed term tends, of course,
to mask the nonlinearity. It is seven times larger for O
than C¥, but this still leaves O™ favored by a factor of
seventeen, as far as the nonlinearity is concerned. The
ratio of the nuclear radius to the reduced De Broglie
wavelength, (i.e., A=7%/momentum), for electrons at
the end of the O* spectrum is 3.9X 1072, The “second-
forbidden” terms are of the order of the square of this,
or 1.56X 1073, which is about one-fourth of the allowed
term. Other numerical factors enter, of course, but an
appreciable nonlinearity, perhaps of the order of 109,
ought to be expected in the O" Fermi-Kurie plot. It
might even amount to a few percent in C* and eventu-
ally be detectable.* This would be of considerable
interest, since it would probably be possible to deter-
mine the sign of the allowed matrix element from the
interference term. This would provide a check on our
work in Sec. VI, where we were forced to assume the
sign to be positive.

VII. SUMMARY AND ACKNOWLEDGMENTS

In the preceding work we have shown how the
accidental cancellation in the C“ p-decay matrix
element is brought about by the tensor force which
follows from meson theory. By adopting this “first
principles” approach to the problem we hope to have
given plausibility to what might otherwise be considered
an ad hoc explanation. Because of the uncertainties in
the central-force parameters, we have been forced to
determine empirically the diagonal elements of the
Hamiltonian matrix. Perhaps nuclear theory will have
eventually advanced to a point where this is no longer
necessary. In any case, we think it likely that the result
of such a more basic calculation would be close to the
matrix elements exhibited in Table ITI, which we feel
must provide about as accurate a fit to the true Hamil-
tonian as can be obtained, at least within the framework
of the shell model. The same applies to the correspond-
ing N* ground-state wave function [Eq. (23)], which
has been checked against various experimental prop-
erties in Sec. V. The only serious discrepancy is with
the stripping experiment of Warburton and McGruer,*
and may possibly be attributed to stripping theory in its
present somewhat rudimentary form. To clear up this
question it will be necessary for someone to attack
the difficult theoretical problem of calculating absolute
values of single-particle reduced widths.

In Sec. VI it has been shown that the mechanism of
Jancovici and Talmi inadequately explains the C*— Q%
difference in ft-values. In addition to the Coulomb
repulsion of the proton holes in C¥, it is necessary to

4 A theoretical investigation into these nonlinearities is being
carried out by David T. Goldman of this university.
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take into account the slight difference in spin-orbit
coupling strength for protons and neutrons. The O
B-decay has further interest because of the expected
nonlinearity in the Fermi-Kurie plot due to interference
with the higher-order “forbidden” terms in the g-decay
operator. This can only happen when the lowest-order
““allowed” term is drastically reduced by an accidental
cancellation. Thus O" may be one of the rare cases where
such an interference between different orders is detect-
able. (The cancellation in O" is not, however, exces-
sively unlikely from an e priori point of view, being
complete only to about one part in twenty.)

One of us (RAF) is grateful to Professor W. Heisen-
berg for suggesting this problem to him, to the Max-
Planck Institut fiir Physik for its generous hospitality,
and to the U. S. Atomic Energy Commission for a
postdoctoral fellowship during the tenure of which
initial investigations were carried out. We also wish to
thank Professor I. Talmi for helpful discussions.

APPENDIX I. HOLE CONJUGATION®

States of nuclei having nearly filled shells are most
conveniently labeled by specifying the one-nucleon
states which are vacant. In the formalism of second-
quantization the annihilation and creation operators for
the states k and A, @, and a,1, satisfy the anticommuta-
tion relations?®

{a,ant} =0, (30)

and a nuclear closed-shell state is represented by
Wo=IIxaa'®o. The product is over the set of one-nucleon
basis states in the shell, and ®, represents the vacuum
state. The state of the nucleus in which all the one-
nucleon states are filled except x is thus IIy..a\®,,
which may be shown by using Eq. (30) to be %a,¥,.
Therefore a, and @, are hole creation and annihilation
operators, respectively. Let ¥ be the one-nucleon wave
function with the same quantum numbers (i.e., z com-
ponent of angular momentum, etc.) as the hole produced
by the vacancy in the state ¢,. The one-to-one corre-
spondence between such pairs of wave functions is
expressed by

(31)

and permits us to introduce explicitly the hole operators
bit=a, and br=a,!. The complex conjugation changes
the sign of the z component of orbital angular momen-
tum, while the ¢, and r, factors flip the spin and isotopic
spin, respectively. Thus, as required for quantum
numbers which add algebraically, the holes are opposite
in sign to the one-nucleon states which are vacant.
That the correspondence must be antiunitary can be
seen by considering a transition involving as initial
state hole %. This can also be looked upon as a nucleon
transition into final state . A phase factor of exp (ie) in

= *
=Ty,

45 Part of this presentation follows closely that given by W.
Heisenberg, Ann. Physik 10, 888 (1931).
4 P. Jordan and E. Wigner, Z. Physik 47, 631 (1928).
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¥, must appear as exp(—ia) in ¢, for the transition
matrix element to be given correctly. A completely
rigorous derivation of Eq. (31) requires considerations
similar to those employed by Wigner?” to reduce ray
representations to group representations, but for the
sake of brevity we prefer here not to enter further into
this question.

We now express the operators of interest in terms of
the hole operators. First, a general one-body operator,

®= Z B)\,a{fa,‘, (32)
K\

with Bye= (on,Beoy), can be rewritten, by using Eq. (30),

as
®=Y_ Bu—2 Bunamt. (33)
K 2

But with the one-to-one correspondence of the preceding
paragraph, we have a,a,\t=20;0; and

Brne= (ryo 0¥, Bryoi*)
= (oymyBiryo p* "),
= (‘pk;"'uTﬂBT*Tyo'y‘h);
where a dagger denotes Hermitian conjugation and an

asterisk complex conjugation. Thus the one-body
operator becomes

®=32_ Bu+2 B'rbitdy, (34)
K ki
where B
B'=—7,Br, (35)
and B
B=g,Bt*g,. (36)

B is the time-inverted operator's corresponding to B.
Thus, aside from the constant 3 . B,,, the effect of the
one-nucleon operator B acting on the nucleons is ex-
pressed by the action of the one-hole operator B! acting
on the holes. In the case of operators which do not
depend explicitly on isotopic spin, the one-hole operator
1S the negative of the time inveried operator.

The angular momenta and the one-nucleon Hamil-
tonian illustrate the above result. The orbital and spin
angular momenta are so-called “imaginary” operators
and reverse sign under time inversion. Therefore the
one-hole operators are identical to the one-nucleon
operators (the constant }-.By. even vanishes in these
cases), so that holes couple their angular momenta in
exactly the same way as do nucleons. The same holds
true for isotopic spin, since — 7,Br,= B, when B=r,, r,,
or 7,. The one-nucleon Hamiltonian, however, behaves

YT E. Wigner, Gruppentheorie und ihre Anwendung auf die
Quantenmechanik der Atomspekiren (Friedrich Vieweg und Sohn,
Braunschweig, 1931), pp. 251-254.

# E. P. Wigner, Nachr. Ges. Wiss. Gottingen 32, 35 (1932),
and R. G. Sachs, reference 17, p. 353. Note the Hermitian conju-
gation which is to be included when the operator is not itself
Hermitian. This combination of Hermitian and complex conju-
gation is, of course, simply the transpose operation.
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differently. If it is invariant with respect to time
inversion and is independent of isotopic spin, we have
—7yBry=—7,Br,= — B. Thus, for example, in the case
of the one-nucleon spin-orbit force, the hole operator is
simply the negative of the nucleon operator. Inter-
actions of nucleons with electromagnetic fields fall into
a separate category. The interaction of the protons in
an almost closed shell with an electric field set up either
externally or by the protons in another completely
closed shell contains the isotopic spin factor (1+47,)/2.
The hole operator is then simply

— L (1+7.)/2]Pry= =7, (147.)/2]ry=— (1—17.)/2,

which has sign opposite to that for nucleons, and is
nonzero only for 7,=—1, corresponding to a proton
hole. On the other hand, the coupling of an external
magnetic field, H, with the intrinsic nucleonic magnetic
moments is described by the interaction —[u,(147.)/2
+pn(1—7,)/2]o-H, where p, and p, are the proton
and the neutron magnetic moments, respectively. The
corresponding hole operator is easily found from Egs.
(35) and (36) to be —[u,(1—7.)/24u(147.)/2]o-H.
Thus the magnetic moment of a proton or a neutron
hole is the same as that of a proton or a neutron,
respectively. Similarly, the orbital magnetic moment is
the same for a proton hole as for a proton. The beta-
decay interactions can also be expressed as one-hole
operators. We illustrate with the Gamow-Teller opera-
tor (o,+i0y)(7,+1r,), which describes the C* beta-
decay. The hole operator is

T TyOy (0':+ iay) L (Tx+7:7'y) T*‘7247'y
= —1y0,(0s—10y) (To—17y)0y7y
. . . . ¢
=—(—0g,—10y)(—1,—1i7,)=— (0+i0y) (To417y)

or, aside from a trivial sign factor, simply the one-
nucleon operator itself. This result, which was used in
deriving Eq. (3), has also been obtained by Inglis,® in
a different way.

We proceed now to deal with two-nucleon operators,
and take specifically an interaction Hamiltonian of the
form

3C=% Z HM,‘,‘aﬂa,.Ta,,aK, (37)
KApy
where
Hyw=(r(1),(2),H(1,2) @u(z)ﬁ"x(l)), (38)

and H(1,2) is the interaction between nucleons 1 and 2
in configuration space. Clearly

H)\v;ux = Hv)\; Kite (39)

Again making use of Eq. (30) to put the hole-annihila-
tion operators to the right of the hole-creation operators,
we find that
ata,ta,a.= aca,0,tant—dra,a,t
ECNUNE gl W N AL o RN
- OxeBu— OnOr.
9 D. R. Inglis, reference 2, pp. 447-449.

(40)
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The last two terms, when substituted into Eq. (37),
contribute 33 (Huuc— Huxue) to the total energy of
the filled shell. When the first term of Eq. (40) is
substituted into Eq. (37) and use is made of Eq. (31),
there results the two-hole operator

% Z Hlkm,nlbkfbmfbnbl,

klmn

where the matrix element is taken, in the notation of
Eq. (38), of the configuration space operator H’(1,2)
=7,07,®H(1,2)7,®7,0. Since the two-nucleon inter-
action is invariant under time inversion, we can replace
H(1,2) by H(1,2). If the interaction is also charge-
independent it contains the isotopic spin operators, if at
all, in the form £@.-x®  a combination which is left
unchanged by hole conjugation. Thus, the charge-
independent fwo-khole interaction is identical to the two-
nucleon interaction. The Coulomb interaction, on the
other hand, contains the factors (1+7,®)(147,®).
These become replaced, under hole conjugation, by
(1=7.W)(1—7,®), corresponding to the Coulomb
interaction of proton holes.

When the remaining terms in Eq. (40) are substituted
into Eq. (37) and use is made of Egs. (39) and (31),
there results the operator

-2 (H)\#:HK_Huk;ux)axd)j
K\
== (H tm;mi— H' mi;m) b1

klm

(41

The direct and exchange matrix elements are of the
operator H'(1,2), which has already been defined above.
Thus, there is present an additional one-hole energy
which results from the interaction of the hole with the
filled shell. To summarize, the interaction operator
written in terms of its effect on the holes is, after some
trivial changes in subscript notation,

=% 2 H'jpbit0it0sbi—2 (H'jk;ki— H'kji 10)biTb:

ikl ik

+3> (Hipi—Hisrs).  (41a)
ik

We illustrate by calculating the second term on the
right-hand side of Eq. (41) for the case of the p shell.
Omitting the Coulomb force, which can be treated
separately, we replace H by H. The sum over spins
eliminates the tensor force since

Tr,(1)512='1‘r,(2>512=0.

The central part of H gives a contribution to the coeffi-
cient of b;t; which is proportional to §;. Since this
amounts to the addition of a multiple of the unit matrix
to the Hamiltonian, it does not interest us here. We
therefore concentrate our attention on the spin-orbit
force.

The hole in the p shell may have j=% or j=3. The
energy in the j=3 state can be found if the =% energy
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is known, so it suffices to determine only the latter. [In
other words, the spin-orbit one-hole operator of Eq. (41)
is describable by the single-particle form, Eq. (6).]
Therefore, upon inserting Eq. (10) (the spin-orbit
potential) into the second term of the right hand side
of Eq. (41), we find

E,(3/2)=V "2k (p3(1)er(2), 1—P1o) (w'+m" P12)

X (Sl+ Sg) - (l‘12>< P12)Uso. (7'12) Pk (2) €0%(1)):
where the sum is to be carried out over the filled p shell,
and Pjy=Pi;(1+01-05) (1471 72)/4 interchanges the
coordinates of nucleons 1 and 2. The spin and isotopic
spin sums may be evaluated as traces, yielding

Eo )= @' W' S [ ¥ e (1) (i X o).
X Us.o. (712)um (1'2)%1 (rl)d*"’rld“rg
- (‘w”'—‘ 27””) Vo” Z f%m* (l‘l)ul* (1‘2) (1‘12X pm)z

X Us.o.(7'12)um(r2)u1 (rl)d“‘r;d3r2, (42)

where #u,, is the p-shell orbital with z component of
angular momentum equal to #. The methods of Talmi'®
greatly facilitate the evaluation of the integrals appear-
ing in Eq. (42). One finds

E,(3/2)=—5(@"— (43)

This represents only the energy shift due to interaction
with all the nucleons in the p shell. The interaction with
the s shell nucleons produces an additional spin-orbit
shift, which is found in Appendix IIT to be

E (3/2)=—=3w"—m")I,". (44)

(Here we have included a minus sign, in accordance
with Eq. (35), since we want the shift in energy of a
hole in the p shell.) The total determines the spin-orbit
strength parameter of Eq. (6):

a=2E;(3/2)+2E,(3/2)
—_— 9(71}”—7%”)]1/,—512”.

m”)11l’—%]2”.

(45)

APPENDIX II. IMPOSSIBILITY OF CANCELLATION
IN THE BETA-DECAY MATRIX ELEMENT
WITH AN ARBITRARY SPIN-ORBIT
FORCE, BUT NO TENSOR FORCE

We present here a generalization of Inglis’ theorem
already referred to in Sec. II, and prove that it still
holds if a general two-body spin-orbit force is assumed.
For the latter we take

Vs.o.=V1‘ 01+V2' g2,

which is the most general form linear in the nucleon
spins for the two particle or two hole case. Vi and V, are
arbitrary vector functions of the positions and momenta
of the two holes.

W. M. VISSCHER AND R. A. FERRELL

For this interaction plus arbitrary central forces, the
secular Eqs. (7) are simplified because Hsp=0. Hgp is
a matrix element between states which differ by two
units of orbital angular momentum, and V; is capable
of inducing a change of not more than one unit. Inglis
solved Egs. (7) for the ratios of coefficients, and showed
that the 8-decay matrix element is proportional to

CrCy'

CsC '(1 tE-Hss Hse ) (46)
=CLsLg I .
V3 Hsp E—H'pp

He then proceeded to show that Hgp and H'gp are
always opposite in sign for a one-body spin-orbit force,
rendering cancellation impossible.

Using Inglis’ notation [see Eq. (2)], we find that the
critical matrix elements are given by

Hsp=Hps=2(1P1,V:-61351)

=2(x"0x1") - (PLV189), (47a)
H' sp=H'ps=2(%Po,V1-011S0)
=2X 3" (xhomxo?) - (P1,V189)
- (Xlo,ﬂ'lxoo) . (P O,Vlso)
+ (Lo - (PLVSY)].  (47b)

The factor of two arises from the equal contribution of
V.- @, to the matrix elements. (The wave functions are
eigenfunctions of the hole-interchange operator, with
eigenvalues (—1)/%.) If one evaluates the spin matrix
elements, introduces V°=V, and V*=2"}(FV,—iV)),
the above equations become

Hgsp=2(P,V 59,

H/Sp-‘—“ - ZXS_%[(PI,Vf"SO)
+ (PO, OST)+ (P1, V5],

(48a)

(48Db)

Simple group-theoretic considerations suffice to show
that the three terms in H' gp are all equal, from which it
follows

H'sp=—V3Hsp. (49)

Thus the coefficient in the right hand member of Eq.
(46) reduces to

1+(E—Hgs)/(E'—H'pp),

and is always positive. Consequently the C* B-decay
matrix element cannot vanish if the two-nucleon force
is restricted to be linear in the spins.

APPENDIX III. SPIN-ORBIT SPLITTING IN
THE MASS FIVE SYSTEM

By the methods illustrated in the last paragraph of
Appendix I, it is a straightforward calculation to verify
that a j=% p-nucleon interacting via the two-nucleon
spin-orbit force with the four nucleons in a filled s shell
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has its energy shifted by

E,(3/2)= (20" —m" ) a;"— (0" —2m") "', (50)
where
Lail'= =V " (1+B"/vs+B"/vs) 4 (51)
I =V Tvevs(vstro) Hystv,H48) 715 (52)

Here the oscillator wave functions have different
Gaussian factors for the s and p shells.® In the special
case when y,=vy,=v Eqgs. (51) and (52) reduce to
Isi'=1¢" and I"'=—1,", from which Eq. (44) of
Appendix I follows.

To apply the above equations to the mass five
system it is necessary to obtain estimates of vy, and
v». The elastic electron scattering measurements on
He* provide a determination of y,. According to Mc-
Allister and Hofstadter® and Blankenbecler and Hof-
stadter,® the experimental form factor implies an rms
radius of 1.61X 107 cm. Subtracting from the square of
this the square of the proton rms radius (0.72X 10~ cm
—see reference 15) yields an intrinsic rms radius for
He* of 1.44X 108 cm. (The neutron is known from
independent experiments® to couple electrically with
electrons only very weakly. That this poses a con-
siderable difficulty for meson theory need not concern
us here.) The theoretical root-mean-square radius with
which this is to be identified must be calculated with
respect to the center of mass of the He* nucleus. In
general, in a nucleus of mass A, where the center-of-
mass coordinate is R=4"13;r; and the individual
nucleon coordinates measured from the center of mass
are r{/ =r;— R, the mean square radius is the expectation
value of the operator

A1 21 ri’2=A‘1 Zt fig—R2. (53)

This operator is invariant with respect to displacements
of the center of mass, as should also be the case with the
nuclear wave function over which the expectation value
is calculated. This is not, however, the case in the
ordinary shell model, where the nucleons are assumed to
move independently and without the required correla-
tion. For the special case of oscillator wave functions
and normal shell filling, the necessary correction in the
shell model is easily made, as pointed out by Elliott and
Skyrme.® This is because the wave function then factors

% Tn this respect our treatment differs from that of Elliott and
Lane (see reference 23).

%1 R. W. McAllister and R. Hofstadter, Phys. Rev. 102, 851

1956).

( 52 R. Blankenbecler and R. Hofstadter, Bull. Am. Phys. Soc.
Ser. II, 1, 10 (1956). See also R. Hofstadter, Revs. Modern Phys.
28, 214 (1956).

8 Melkonian, Rustad, and Havens, Bull. Am. Phys. Soc. II,
1, 62 (1956).

58 G. Salzman, Phys. Rev. 99, 973 (1955). S. B. Treiman and
R. G. Sachs, Phys. Rev. 103, 435 (1956). See also Yennie, Levy,
and Ravenhall, Revs. Modern Phys. 29, 144 (1957).

55 J. P. Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London)
232, 561 (1955).
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into the Gaussian exp(—AyR?/2) times a function of
the relative variables only. Thus multiplication of the
shell model wave function by exp(4yR2/2) introduces
the required nucleon-nucleon correlations and yields a
new wave function with the requisite displacement
invariance. It is clear that it is not actually necessary
to carry out this multiplication provided, as will always
be the case, expectation values are computed only for
displacement-invariant operators. For example, the
expectation value of the first terms of the right hand
member of Eq. (53) can be computed as a conventional
shell-model calculation, while the expectation value of
the second term is readily obtained by virtue of the
factorization of the wave function into center of mass
and relative variable parts. Only the center-of-mass
Gaussian factor contributes, and gives 4! times the
mean square radius of an s nucleon, or 3/(2y). Thus
this correction is practically negligible except for the
lightest of the nuclei. For the deuteron it amounts to
509, while in the present case of A=4 it is a 259
correction. Taking the square root of the expectation
value of Eq. (53) and equating it to the above experi-
mental value yields

v =(8/9)1X1.44X 107 cm=1.35X 1078 cm. (54)
The p-shell size can be determined from the Li®*— He®

Coulomb energy difference,

YsX

8e? 5
EC=—[ ] [1
3 lr(1+4=x)

where x=1,/v,. Equating to the experimental value of
0.85 Mev and solving for x by iteration gives vy, *=2.38
X107 cm. The dame procedure applied to the Li®— He$
Coulomb energy difference of 0.80 Mev yields v, *(Li¢)
=2.55X1071 cm, and a radius value of

Pems (Li%) = (v, 74-5/6y,1)#=2.69X 102 cm.

_Lx(l—i-xz)
' 2(1+x)3]’

(56)

This agrees very well with Streib’s value of 2.78 101
cm,% which, when corrected for proton size, becomes
just 2.69X1073 cm. The agreement is better than
should be expected, particularly since the center-of-mass
corrections discussed in the preceding paragraph cannot
be applied to Eq. (56), due to the difference in shell
sizes. It should also be pointed out that the same pro-
cedure applied to Li’ leads to a discrepancy. The
Be’™—Li" Coulomb energy difference is significantly
larger than for the mass six nuclei, and leads to the
smaller rms charge radius of about 2.3X107® cm.
Streib, on the other hand, finds a value not much
smaller than that for LiS. Corrected for proton size, it
amounts to 2.61X 107 cm. The cause of this discrep-
ancy is not known but is perhaps to be attributed to a
closer correlation in the positions of the protons in Be”

5 J, F. Streib, Phys. Rev. 100, 1797(A) (1955). See also R.
Hofstadter, reference 52.
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than can be accounted for with s*p® configurations. Such
intensified correlation might be brought about by the
attractive nucleon-nucleon interaction, and might be
described in the shell model by the admixture of higher
configurations.

Although the mass-five system can only be treated
rigorously as a scattering problem, a rough picture
seems to be that there are two virtual states split by
about 3 Mev. This requires E;(3/2)~—1 Mev. Sub-
stitution of this and the numerical values of v, and v,
determined above into Eq. (50) gives

Vo' —1.89m"' V' ~5.71 Mev, (57)

in rough agreement with Eq. (14) of Sec. IV.

APPENDIX IV. ALPHA-PARTICLE
BINDING ENERGY

The spin-independent central force strength quoted
in Sec. IV as Eq. (20) is derived in this appendix. A
simple variational treatment similar to that of Wigner,5
Feenberg,%® and Heisenberg,® is followed. The shell
model is used, with all four s orbitals filled and approxi-
mated by oscillator wave functions of the form
exp(—v7%/2). The expectation value of the total poten-
tial energy is easily found to be 6(w-+m)I,, while the
total kinetic energy is given by 9%y/4M. (Here we have
corrected for center-of-mass motion, as explained in
Appendix III. The uncorrected value has been reduced
by a factor of three-fourths.) The variational calculation

57 E. Wigner, Phys. Rev. 43, 252 (1933).

58 E. Feenberg, Phys. Rev. 47, 850 (1935). See also E. Feenberg
and E. Wigner, Phys. Rev. 51, 95 (1937).

% W. Heisenberg, Theorie des Atomkerns (Dokumentationsstelle
der Max-Planck-Ges., Gottingen, 1951), p. 67.
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is facilitated by introducing the quantities
B
Ey=—=6.90 Mev,
M
B= (w+m)V/E,,
b=v/8.

The expectation value of the total Hamiltonian is then

(H)=6Eo[%b—B(b+L2)§].

Differentiating Eq. (58) with respect to b and equating
to zero yields

(58)

B=4"1"%(p+42)%, (59)
which when substituted back into Eq. (58) gives
(H)min=—5b(b—1)Eo=—28.11 Mev. (60)

By equating the minimum expectation value of the
Hamiltonian to the negative of the a-particle binding
energy, we have arrived at a quadratic equation for 8,
which may be solved to give §=2.22, or y,#=1.16
X108 cm. Although this value is 199, smaller than
that deduced in Appendix IIT from electron scattering
data, we do not regard the disagreement as serious—at
least for the present purposes. The discrepancy does not
seem to be quite as bad as that discussed by Hofstadter®
in relation to the wave functions of Clark.® Returning
to Eq. (59) we find B=6.14, or (w+m)V,=42.4 Mev.

% Reference 52, p. 238.
& A. C. Clark, Proc. Phys. Soc. (London) A67, 323 (1954).



