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nucleus. H the target is very 6ssionable it is to be
expected that hssion will compete more eGectively
against neutron emission during the early stages of
boil-oB and thus contributions from (p,scrtf) reactions
will disappear more quickly with increasing values of x
than is the case in less hssionable species. Glass et al."
have concluded that in the reaction of Pu"' with helium
ions (compound nucleus C m4 )sthe chain of successive
neutron emission is very quickly interrupted by com-
petition from hssion and that the excess neutrons must
therefore be emitted from the Gssion fragments.

Comparatively small changes in the nature of the
compound nucleus might well result in large changes in
the pattern of reactions. For example, in the simple
case of the competitive reactions (y,f) and (y, rt) with

y rays of 17—20 Mev, the probability of 6ssion is 6%

for Th" and 60% for Pu"'. ' Such differences would be
magnified in cases where a succession of competitive
reactions occurred. We are therefore extending our
measurements to other target nuclei.
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The Coulomb correction to the photon spectrum accompanying beta decay is calculated, treating the
Coulomb field as a perturbation. It is shown that for allowed and unique first forbidden transitions, the
result differs from that of Knipp-Uhlenbeck-Bloch only by the appearance of an extra factor, related to the
Sommerfeld factor in ordinary bremsstrahlen. Analytic formulas are presented for these two selection rules,
and a comparison made with recent experiments.

I. INTRODUCTION

HE original calculations' of the intensity of the
photon spectrum accompanying beta decay have

long been successful in explaining the observed data, ' in
spite of the expected inaccuracy due to the use of plane
wave functions rather than Coulomb wave functions for
the electrons. Recently, the erst deviations from these
predictions have been reported' in the spectrum of
photons emitted by P", S'5, and Y' . It is the purpose of
this note to report the result of a derivation of the
correction to the photon spectrum due to the Coulomb
Geld of the nucleus, and to compare this result with
these experiments. The Coulomb held is treated using
perturbation theory; that is, only these additional terms
proportional to Z are retained. Both allowed and for-
bidden transitions will be treated.

*This work supported in part by the U. S. Atomic Energy
Commission and in part by the Once of Naval Research.
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A few words in justification of this method of calcula-
tion are appropriate. It is not immediately obvious why
the original calculation is so successful, or why addi-
tional terms in the perturbation theory would be ex-
pected to adequately treat the eGect of the Coulomb
field. One might expect for example, that a hrst order
calculation would add terms of order Z/137, which is
not a small correction in moderately heavy nuclei. In
fact, our results indicate that the necessary corrections
to the RUB formula are generally smaller than this.
The fundamental reason for the accuracy of the KUB
formula is that it has been used to predict only the
photon intensity relative to the beta inteesity, and not the
absolute photon intensity. The number of photons per
beta decay is a quantity which is comparatively inde-
pendent of the atomic number, owing to a partial
cancellation of the Coulomb sects on the photon and
beta intensities. Thus, it is hoped that if we calculate
this quantity to first order in Z, a similar partial
cancellation of the higher ordered terms will con-
siderably extend the validity of the perturbation theory,
which would otherwise be expected to be valid only for
light nuclei and high-energy decays.

As an example of this cancellation, we can consider
the eGect of attempting to correct for the Coulomb Geld
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by inserting, without justification, a factor F(Z,W,)
into the KUB formula. [F(Z,W,) is the Fermi function,
which gives the Coulomb correction to the allowed beta
decay transition probability for emission of an electron
with energy W, .) This means of accounting for the
Coulomb effects has been used, for example, by Starfeld
and Svantesson, 4 and by Nilsson. ' Since the same factor
appears in the beta decay probability, the effect of
inserting such a factor is not large, even though the
factor itself becomes quite large for heavy nuclei or low
energies. Furthermore, the replacement of F(Z,W,) by
its first order approximation, (1+m.rrZW, /p, ) does not
significantly change the resultant correction to the KUB
formula, even when F(Z,W,) and (I+~nZW, /p, ) differ
considerably. This can be traced to the fact that
F(Z,W,) and (1+mnZW, /P, ) differ mainly by a multi-
plicative factor, which is independent of the electron
energy, and therefore has the same e8ect on the electron
and photon spectrum, cancelling out in the ratio of their
intensities.

In Sec. 2, we shall consider the first order Coulomb
correction to an allowed transition. It will be shown
that, to the desired order, the result differs from that of
KUB only by a factor which is independent of the
directions of the emitted particles. Thus the resultant
formulas are obtained by simple substitution from those
of KUB. In Sec. 3, we will prove a similar result to be
true for the unique 6rst forbidden transition as well.
For other forbidden transitions the appearance of
"extraordinary Coulomb effects, "proportional to aZ/E,
will be discussed. In Sec. 4, analytic formulas will be
quoted for the rather tedious integrals which arise in
Secs. 2 and 3. In Sec. 5, a discussion of these results is
presented, and a comparison made with several ex-
periments.

2. ALLOWED TRANSITIONS

Since the 6nal result diGers little in form from the
KUB result, we shall use a formalism and notation
similar to that of Knipp and Uhlenbeck, ' and later
papers. ' We are concerned with transitions which result
in the emission by a nucleus of an electron, a neutrino,
and a photon. These transitions are generated by the
beta interaction, Hp, the interaction with the electro-
magnetic field, H~, and will also involve the Coulomb
interaction between the electrons and nucleus, V. The
diagrams in Fig. 1 denote the various processes con-
sidered.

Let us consider the processes in the order of their
appearance in Fig. 1. The 6rst diagram describes ordi-
nary beta decay of the nucleus; the transition rate is
related to the matrix element 3f,

M = (fl

HAGIO)

=G,M.et(p)O, N(tI), (1)
where N(p) and N(q) are the plane-wave amplitudes of

4 N. Starfelt and N. L. Svantesson, reference 3, Sec. III(A).
~ S. B. Nilsson, Arkiv Fysik 10, 467 (1956).

C. S. Wang Chang and D. L. Falko6, Phys. Rev. 76, 365
(1949); Madansky, Lipps, Bolgiano, and Berlin, Phys. Rev. 84,
596', (1951);Bolgiano, Madansky, and Rasetti, Phys. Rev. 89, 679
(1953).

(a) (c)

FIG, 1. Diagrams for the various beta decay and inner
bremsstrahlen processes considered.

For V, we assume the pure Coulomb interaction be-
tween the electrons and the nucleus, neglecting the
effects of shielding by the atomic electrons and the finite
size of the nucleus. To avoid divergence difhculties due
to the long range of the Coulomb interaction, we shall
use the shielded Coulomb potential V(r) = rrZe ""/r, —
and then let the shielding constant approach zero at the
end of the calculation. The matrix elements of V for
plane-wave electrons are

(il l'I s) = —4~~«'(p )N(p;) [Ip —p'I'+) '1-',

and so (2) becomes'

I qs
Ms=4~«G M

I
—

IE2)
~'(p)N (pr) ~'(pt)0.~(e)

XP dpr (3)
(W+se —W,)[l p, —pl'+) sj

'We shall always denote the energy associated with a mo-
mentum po by IV~, i.e., IV~= (p~'+1) &.

the electron and neutrino respectively. We have written
the matrix element in the form appropriate for an
allowed transition generated by one of the five possible
beta interactions. Thus, G, is the coupling constant, M.
is the nuclear matrix element, and 0, the appropriate
operator for the particular interaction chosen. For
example, for an allowed scalar interaction, M, is J'P and
0, is P, while for an allowed tensor interaction, M, is
J'Ptr and 0, is Pe. The generalization of our results to an
arbitrary mixture of the five interactions is trivial if we
neglect the possibility of the Fierz interference terms,
and so, to avoid needless complication of the notation,
we will always assume a single pure beta interaction.

The second diagram denotes the first order Coulomb
correction to the beta decay. The matrix element
corresponding to this diagram, Mq, which must be
added to 3f, is

(fll'ls)(sl&slo)
Ms=+

+0
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If we carry out the sum over the four plane wave states
with momentum p~ in the usual manner, we lnd

t iq'
M, =4~n~G

I'(y) [3'.(pg)+ W)O,u(q)
X der (4)

{p '-p'-')
I (p.-pl'+~'j

Here e is a small positive parameter which is to vanish
at the end of the calculation, and K is the Dirac
Hamiltonian for momentum y~.

The third diagram denotes the inner bremstrahlung
process, generated by the matrix element M„

(2sn) & 1
— (4 mG, M, —,Idp,

~ k ) '
'(2s)~~

'(y)[x(y )+Wj '[X(p,)+W.)O, (a)

(p~' —p' —i~) (p4' —p' —i~)L( y~ —
y
I'+~'j

where p4 ——ps+k, and p,'= Wp —1.The above signs are
all chosen correctly for emission of negative electrons;
for positive electrons, one must change the sign of Z
everywhere.

The relations between these matrix elements and the
photon and electron intensities are as follows: deGning
S(k) as the number of photons per second per mc' energy
interval, and lV as the total number of electrons per
second, we Gnd

(fix Ii)(ilaslo)

~0—~;

H we call p2
——y+k, the matrix element of the interac-

tion with the electromagnetic Geld becomes

S(k) =
{2x)8g

&

dWpW(WO W k)2—~~ dQ—~

X dQ, dQA, (M,+Mg+M, (', (9a)

/'2+ng &

(~(a, (i)=
l ( ~&(p;)n eg(p, ),

and we have

r2~n~ & I'(p)n 8N{p2)N'(p2)O, N(q)
—

( G.M. P
Ep E;—

Inserting the correct energy denominators and carrying
out the sum over the spins of the intermediate state, we
obtain

(2sn) ~ Nt(p)n 8[X(p2)+W,jO,N(g)
l G,M, , (6)

WP —W.~

{f(& l')('(l'(J){J(&slo)
Mg=Q

~,i (Ep—E;)(Eo E,)—(7a)

(fl l'li)(il&. li) (Jl&sl o)
M, =Q

a, i (Eo—E;)(Ep—E )
(7b)

which can be written as

(2mn) & 1(4,ZG.M.
~ a &

'
*(2~)8~

I'(y)n c[~(p~)+W.X3'(p~)+W Ã &(0)
, (8a)

(W,~-W.2)(p m-p, m-ze)[l ys-y~(+x'3
'

where W, =W+k and W2'= pm'+1.
The last two graphs denote the Grst-order Coulomb

corrections to the inner bremsstrahlung process. Their
matrix elements Sf' and 3f„which must be added to
3f„are

p
W'0

dWpW(WO —W)'
(2')' "i

X dQ„dQ (M,+M&('. (9b)J

The integrals represent integration over directions and
summation over spins (polarizations) of the electron,
neutrino, and photon.

The most appropriate order for carrying out these
operations is to first discuss the integrals over inter-
mediate momenta. We intend to prove next that if we
discard those portions of the matrix elements which will
cancel out during the subsequent sums over spins, a
particularly simple result is obtained for these matrix
elements; namely, M~ is proportional to M, and
Mq+M, is proportional to M, . Having proved this
result, the remainder of the derivation need not be
repeated, since it is exactly the same as the calculations
in the absence of the Coulomb field.

To prove this result, notice Grst that, in keeping with
our stated program, we must discard the terms in {9)
which are quadratic in M &, cV&, and M„since these will
be quadratic in Z. Furthermore, if we could consider M,
and M, as real numbers, then in forming the square of
the absolute magnitude we would need only the real
pgrts of Mq, Mq, and M, ; that is, we could keep only the
principal ealges of the integrals over intermediate
momenta. Since M and N, involve complex matrices,
and are not in general real numbers, this result is not
immediately obvious. Nevertheless, it can be shown
that if we sum over the spins of the electron and
neutrino, the above situation results; only the principal
values of the integrals will appear in the result. This is
proved in Appendix A.

Thus in caIc'ulatlng the integrals which appear in (4)
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e (p) [X(Q+y)+WiO, e (q)
X (4')

(Q +& )[IQ+ pl o —p2 —z&j

(27m/ ' ( 1 ) o

I
4«ZGM

I

—
I

dQ
E k ) E2~&

e'(p) n e[X(po)+W.][X(Q+yo)+ W,JO,e(q)
X , (Sa')

(Wo' —w ')(Q'+l')[I Q+yol' —p
'—ioj

(2«l1 (1 lo
M.= —

I I 4«zG, M,
I

—
I

g
dQ

e'(y) [X(Q+p)+Wjn. e[X(Q+po)+ W.jo.e(q)
X . (Sb')

(Q'+li') L I Q+ p I'—p' —oo][I Q+ yo I'—p' —oo3

Using the results of Appendix 8, and the relation
X(y)e(y) = We(p) we find,

8'
M o +«Z G—,M.e—t (y)O,e (q),

2

M~-O,
W (2«) *

M,~—«z—
I I

GM,
2p& u)

e'(p) n e[X(yo)+W,)O,e(q)
X

S"2'—W,'

Therefore we have the result stated before,

M o~nz(w/2p)M. ,

My+ M.~nz(w/2p) M..

(10a)

(10b)

The only eGect of the additional terms 3f&, Md, M„ is
to add a factor 1+«Z(w/2p) to the matrix element,
therefore a factor 1+«Z(w/p) to the square of the
matrix element. (This factor is readily recognized as the
first order term in the expansion of the Sommerfeld-El-
wert factor, 2«Z(w/p)/(1 —exp f—2«ZW/p}), or its
relativistic analogue, the Fermi function. ) Our final
result' can be obtained without further derivation by

8 After completing this work, it came to our attention that this
result had been obtained previously by R. E. Cutkosky, Disserta-
tion, Carnegie Institute of Technology, 1953 {unpublished). By a
method different from ours, the same result was obtained.

and (S) we have the following prescription: keep only
the principal value of the integrals at the poles in the
denominator, and take the limit X—+0 and e—&0. In
Appendix 8 the various integrals which occur are
performed with this prescription. To facilitate compari-
son with the results of the Appendix, let us rewrite these
integrals, by translating the origin of our momentum
coordinates:

(1)' r

M o=4rnZG, M,
I

—
I dQ' 'L.2.~ J

inserting this factor in the KUB result:

A
s(a)=— IG,M, I'

km 2H

XJ
p

W'p —k Wq
dw(wo —k —w)'I 1+«z

)
X{(Wo+Weo) log(W+p) —2pW, }, (11a)

1 ~ 8'p

dWpW(W -W)'' J,
Wq

X
I

1+«Z—I. (11b)

We should emphasize that we have proved that the
factor (1+«Zw/P) will appear after the sum over
electron and neutrino spins is carried out but before the
angular integrals are performed. The angular correlation
between the electron and photon is therefore unchanged,
to first order in Z.

3. FORBIDDEN TRANSITIONS

Since several of the commonly studied inner brems-
strahlung sources (RaE,Yoo) undergo forbidden transi-
tions, there is some interest in extending this discussion
of Coulomb effects to include them. We will restrict
ourselves to first forbidden transitions, however, since at
present there appear to be no examples of more highly
forbidden transitions suitable for experiment.

We must carefully reconsider the validity of a per-
turbation calculation of forbidden transitions. One
readily sees that it will no longer be possible to neglect
the effect of the finite size of the nucleus, as in the first-
order corrections to allowed transitions. This is evident
from the fact that since the operators will, for forbidden
transitions, depend on the momenta of the particles
created (linearly for first forbidden transitions, quad-
ratically for second, etc.), the integrals over intermediate
momenta would diverge at large momenta for a pure
Coulomb field. This divergence is a consequence of the
singularity of the Coulomb field at small radii, and can
be removed by the introduction of a nuclear charge
distribution of radius E.. The resultant matrix elements
will then, in general, contain terms proportional to
nZ/R, which were absent in allowed transitions. These
"extraordinary" Coulomb terms are well known to be
present in the beta decay matrix elements. ' Moreover,
terms proportional to (nZ/R)' will also occur, and will

play a dominant role in most transitions. Since the nZ/R
terms appear in the radiative beta decay, there is no
reason to doubt that (nZ/R)' terms will also be present,
and provide a non-negligible contribution to the matrix
elements. Our first order calculation will not contain
these latter terms, since they are quadratic in Z, and

'E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941).
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therefore cannot be considered adequate to describe
most forbidden transitions. If, as in beta decay, we
assume that the (nZ/E)' terms are negligible only for
nZ/R«Wo then only in this rather restrictive limit can
we trust the perturbation result.

However, as in beta decay there are special selection
rules for which these "extraordinary" Coulomb terms
are absent; these are the so-called "unique" first
forbidden transitions with AJ=2 (yes). Since Y" is an
example of such a transition which has been studied
experimentally, we will consider only this selection rule
in detail.

The only changes necessary in our derivation in Sec. 1
are the modification of the potential by introduction of a
nuclear charge distribution, and the appropriate change
in M,O, . For simplicity the charge distribution is chosen
to be that of a Yukawa charge distribution p(r) = e ~"/r,
so that

~'(I )~(I')
(jl Vli) = —4~nZ . (12)

I I,—I 'I'+~'
I I,—I 'I'+) '

We will identify A. ' with E. The appropriate substitu-
tion for M,O, in the case of the tensor unique first
forbidden selection rule is

n IGrl'IB "I'
5(k)=-

~k 24m'
dW(WO —W —&)'

&& {[(W'yW.') (W.'+q' —1)/2kW. J

Xlog (W+p) —2p[W, (W,'+ q' —1)

( Wy
+k(W' —WW, +W,2)g} I

1+maZ—
I) (14a)

Now the derivation is very similar to the previous
one; the necessary integrals are discussed in Appendix C.
The most significant diGerence is, as we have men-
tioned, the appearance of the "extraordinary" Coulomb
terms. These occur only in 3f & and in 3f&, and there only
in the terms involving two (or more) factors, q, q;, in the
numerator. However, for the unique first forbidden
transition, this term is proportional to n;8;;o; which is
easily shown to vanish identically by virtue of the
symmetry and zero trace of 8;;.In this case, one readily
sees that the same result is obtained as for an al-
lowed transition: Mt~s (nZW/op)M~ and Me+M.~
~(nZ W/n p) M„ leading to the appearance of a Sommer-
feld factor. As before we can obtain the first order result
by simple substitution of a factor (1jsnZW/p) into the
Z=0 result. "Thus we obtain

with
M,O, +2iB;;(p—+-q),o;,

B;;=f(x;o,+x;o; 38;;e—r)-

(13)

dWpW(W& —W)2

Here p must be set equal to p, yi, . depending on
whether we are considering graphs (a), (b), . in Fig. 1.

Wy
&((p'+q')

I
1+mnZ —I. (14b)

p)
4. ANALYTIC FORMULAS

The final results of our derivations have been expressed in (11) and (14) as rather complicated single integrals.
The evaluation of these integrals is tedious but straightforward. For the sake of completeness we quote here the
results of the evaluation of four of the integrals which arise in our work.

dW(W —x)'{(W'+W ') log(W+ p) —2W,p}

J2=

(1 1 ) 1 ( 1) ( 7 3
W&'I -x'+—x I

—-W&I x'+x' ——I+I —x' ——x
I log(x+s)

(3 2 ) 2 E 8) &30 16 )
(11 2q (7 1 q (689 1021 4

~—w. l
—*+- I-w,

l
-~+—.Iyl

t 18 9) E8 16 ) &1800 3600 75)
S 8'

dW(W —x)'—{(W'+WP) log(W+p) —2W,p}

——xW yWoI —x'y —
I

—
I

x'+—x
I log (x+s)

2 (2 8) 0 8 )
59

WQ'I —x'+—
I
—WQI -x +—x I+ I

—x'+—x'+ —
I slog(x+s)

43 3) &2 4 ) &30 20 15)
11 7 7i (7 49 i ( 689

+ Wo'I ——++x'+-x——I+Wol -+—2x'+—x' —6*+1,I+ I
— x'++—

18 6 9) (8 8 ) E 1800
"L.Madansky ek al., Phys. Rev. 84, 596 (1951).

360

2059 67 61 388)sy —*——+
9 15 225)
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Is= t dw(W —x)'{L(w'+W ')(W '+q' —1)+2kW,]log(W+p) —2LW, (w '+q' —1)+k(W'—WW +W ')]p}

(43= Wo'I -++-x
I
—Wo'I ++x'——I+Wo'I ~'+-+——*

I(3 2) E 8) &30 3 16 )

(11 2l (7 1 l (4481 2 l
Wp I

—x+'—
I

—Wp
I

x+—x I+'Wp
I

x+ x+
(18 9) (4 8 ) 41800 1200 225)

97

32 4 1—w. I
—xoy-~+ —x'+—I+ I

*'+—*'+—*
I log(x+s)

430 6 16 24) (105 15 24 )

(363 1337 437 i ( 653—WoI x'+ x'+ x I+ I
x'—

(200 3600 1800 ) & 1225

769 7733 12
x'+ x'y

I s,
44 100 88 200 1225)

I4=
8"

dW(W —x)'—{Dw'+W,')(W,'+q' —1)+2kW.]log(W+p) —2t W, (w, '+q' —1)+k(W' —WW, +W,')]p}

1 ( 3l ( 49 ) (15 107 5l ( 19 19 )——Wox+Wo
I

3x+ I Wo
I
"*+ x I+WoI x+ x+ I I

3x+ x+—x
I

log'(x+')
2 4) ( 8 ) E2 8 4) ( 2 8

(1 2) ( 13 ) (43 1193 74)
+ Wp'I —x y-

I

—Wp'I x'+ —x I+Wp I

—x'y x'+ —
I

43 3) E 2 ) &30 60 15)

(31 1511 541 ) ( 32 2377 2431—WpI —x'+ x'+ x I+ I

— x'+ x'+
&30 60 30 ) E 105 210 140

(11 7 7q (7 49—Wo'I —x'—x'+—*——
I

—Wo'I —x'—4x'+—x' —12x+2
I

&18 6 9) &4 4

16~
x'+—

I
s log(x+s)

21)

4481 13 451
+Wp'I x' —7x4+

&1800 360

406 299 1727)
xs — xoy

9 15 225 )
(363 17 147—WpI x' —6x'+ x'—
&200

596 3107
xo+

9 60

55'
x' — x+—

I

225 18)

( 653 54 989 311 108 323
+ I

x"—2x'+ x' — x'+ x3-
i 1225 2520 9 2520

7703 419 2644'
x+

225 63 2205)

In the above expressions Wp is the end-point energy of the beta spectrum, x= Wp —k, and s= (x'—1)&.

S. CONCLUSIONS

The main contributions of this work are the formulas
(11) and (14) for the erst order Coulomb corrections in
allowed and unique first forbidden transitions. These
are of rather limited generality, since they include only
first-order terms, and only consider three diGerent
selection rules (61=0, 1, no and 61=2, yes). I"ortu-
nately, however, most of the commonly used sources of
inner bremsstrahlen spectra are satisfactorily described

by these formulas. We shall conclude this work with a
comparison of our results with experiments in P", S",
and Y".

The first significant deviations from the KUB results

were reported by Liden and Starfelt' in P", and by
Starfelt and Svantesson' in S",both of which are classed
as allowed transitions. "In both cases, the experiments
showed an increase in the photon spectrum above the
predictions of the KUB result, especially for high photon
energies. Their results are shown in Figs. 2 and 3, along
with the KUB and the 6rst order theoretical curves. In
P", the experiment and theory are in clear disagreement;
in S" the disagreement is not as unequivocal, yet still
unsatisfactory. Since S" has a low upper end point
energy (167 kev), the validity of the fn'st order correc-
tion is more uncertain than in P'2. As an attempt to
"Mayer, Moszkowski, and Nordheim, Revs. Modern Phys. 23,

315 (1951);L. Nordheim, Revs. Modern Phys. 23, 322 (1951).
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As discussed in the introduction, this replacement has
relatively little eGect on the photon spectrum; in this
case, the computation was carried out at two points in
the S'5 spectrum and at one point in P", marked with
circles in Figs. 2 and 3.The resultant deviation from the
first order theory was at most 10% in S'5, and 2% in P~.
Later experiments by Goodrich" seem to disagree with
this result for P", and show satisfactory agreement with
first order theory (see Fig. 2). However, Goodrich
obtains large deviations in Y", which is classed as a
unique erst forbidden transition. "See Fig. 4. .Although
V" is rather high Z for comparison with a 6rst order
theory, the disagreement is probably larger than can be
explained by a more accurate Coulomb correction.
Langevin-Joliot" reports large deviations in S", in ap-
proximate agreement with Starfelt and Svantesson.

0.4 0.8 l.2 l.6
PHOTON ENERGY IN MG

2.0 K 10

FIG. 2. The inner bremsstrahlen spectrum for P".The curves are
the theoretical results; the crosses are the experimental points of
Liden and Starfelt; the open circle is a theoretical result computed
with F(Z,W} replacing 1+anZW/p in the ZWO formula.

check the effect of higher order terms, one can replace
the factor (1+rrnZW/p) by the Fermi function F(Z,W).
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FIQ. 3. The inner bremsstrahlen spectrum for S".The curves
are the theoretical results; the crosses are the experimental points
of Starfelt and Svantesson; the open circles are theoretical results
computed with FfZ, W} replacing 1+~nZW/p in the Z&0
formula.
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FIG. 4. The theoretical inner bremsstrahlen spectrum for Y~.

It should be emphasized that there are other possible,
origins of deviations from the KUB result than correc-
tions for Coulomb eGects. One of these is the presence of
nuclear radiation accompanying beta decay. '4 The
present authors intend to publish a discussion of these
eGects as well.
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APPENDIX A

The fact that we need retain only the principal part of
the integrals over intermediate momenta, so long as we
average over the spin directions of the electron and
neutrino, can be proven by recourse to a theorem on the
reality of traces of Dirac matrices. '~ Let us erst prove
the following theorem:

Theorem'. —The trace of a product of Dirac matrices
e and e is real or imaginary, depending. on whether the
number (e) of times e appears is even or odd

Consider the most general matrix formed from the
matrices e and e real vectors a, b, c,

M=(e a)(e.b) (o 1)(e m)

Then we have

The operators 0, are the only terms which can contain a
e, but in this case they will always appear an even
number of times, since 0, appears twice in the above
trace. Therefore, by our theorem, the traces are real, and
only the contribution from the principal value of the
integral is nonvanishing in (AS). Note that had we
carried out the traces for specified directions of the
spins, the traces would have contained extra projection
operators for these spin directions, such as P= -', (1++ 8).
In this case the traces would in general be complex, and
the contributions from the pole could not be discarded.

The argument in the case of the radiative beta decay
is precisely the same; for an average over spins, the only
e matrices which appear will be contained in the beta
interaction, and will therefore appear an even number af
times. All the resulting traces will be real.

APPENDIX 3

f%l (1 '){II ) = dQ
(Qs+Zs)CIQ+P Is—ss—;,jAlthough the theorem is true independently of the

representation of the matrices e and e, we shall use for
simplicity the "standard" representation in which

(J,I;,I;;)= dQ
qo ~q p~ 0~

Ee Ol 40 e) (»Q' Q.Qs)
X %2)

(Q+X')CI Q+PI' s' ieHC —
I Q+pI' p' —iej

(0 1) (0 i) —(1 0)
0'i=

~
0'2=

p
0'3=

(1 Ol Li 0 J (0 —1) The prescriptions for computing these integrals are that
we keep only the real parts, and take the limits X~O and
e—+O. These integrals are all properly convergent, even
though it may appear at erst glance that I; diverges
logarithmically at large momenta. For large Q, the
integrand of I; approaches Q;/Q', which averages to
zero in the angular integration.

Our technique for computing these integrals follows
closely that of Dalitz, "who showed that the integrals
involving extra numerator factors Q;, Q;Q;, etc., could
be derived from I and J by differentiation and integra-
tion in the parameters P and s. For example, the formal
expression of J; in terms of J is

I;= ' ds' I', +s' J(P,s').
'as' aI',

Then
n, *=(rr„—tr, , as), e = (o„—os, os). (A3)

If we transform these matrices by a unitary trans-
formation generated by S=Po&, then

Se*St=e, Se*S~=—e.

However, the trace is invariant under a unitary trans-
formation and so we can write

T*=tr(SM*St)=tr((e a)(n b) (—o l)(—e m) )
=(-)-~, (A4)

and so the theorem is proven. Of course, many of these
traces vanish also: those matrices with an odd number
of terms containing e will all vanish.

Now to see that the contributions from the poles in
the energy denominators cancel in the average over

spins, we must simply write the first order correction
terms in the form appropriate for the average over
spins. For example, in the case of beta decay, the 6rst
order term is, when averaged over spins of the electron
and neutrino

The integrals I and J are presented in general form
elsewhere"; we shall simply quote the final results:

m'i -') —iS—iE
I(X,P,s) =—ln

P X is+iP. —

e+(~'- v)'I(X,P,p,s) = ln
Q'-~)i e (e' v)i---

r' R. H. Dalitz, Proc. Roy. Soc, (London) A206, 509 (1951).
~' R. R. Lewis, Jr., Phy's. Rev. 102, 557 (1956).

Tr( }
P(M.*M,+M~,*)=Rl "dp, . (AS)

"This result can also be seen to be a consequence of invariance
urider time inv'ersion.

The integrals required in Sec. 2 can be defined as
follows.

=tr{(e' a)(e* b). (e* 1)(e* m) }. (A2)



R. R. LEWIS, JR. , AND G. W. FORD

where

0=2p(s' p—') I—L(s+p)'
I
—&—p I')—+'(s+p),

~V= —~L(s+P)' —I
&—I I')

XLs2 —P +2isl( —1(2)$2ip —)).
It is clear that the operations (83) will commute with
taking the real part, and with the limit &~0. For s'& P',
we can also let 'h—&0 before performing (83), since the
expansion in powers of X is uniformly convergent in s in
this case. We find

Then we intend to consider the integrals

{I(n) I .(n) I . .(n) . .}
A2 -n

) P gl
(f C1

(Q2+)p)(~ o+p ~2—s2 —j2) Q2+A2

(J(~) I,(~) . . .}
(Ie' . }

(e'+~)Flu+I'I -"-')bio+pl -p —.)
I~X , J:

s' P' —2p(s' P')— (85) X, (C2)
Q2+A2

Notice that both of these results depend only on s' —P'~
so that the operations (83) will give zero Furth. ermore,
I vanishes as )—&0, and so we have the result that J is
the owly nonvanishing integral in this limit.

For s'=P2, we cannot carry out the limit )—&0 first,
but must evaluate I; by performing (83); the necessary
integrals are readily done however, and it is found that
I; vanishes as X~O, and I becomes

I~2/2P.

APPENDIX C

(86)

In Sec. 3, we need further integrals similar to those in
Appendix 8, but diGering in the important respect that
they do not converge for a pure Coulomb field. The
appearance of such terms can be seen quite generally, if
we remember that, before making the expansion into
diferent degrees of forbiddenness, the integrals of
Appendix 8 will contain an extra factor exp(iQ r).
They will all converge except I;, which will now diverge
at large momenta. As mentioned in the text, we will
correct this by introducing a nuclear charge distribution
of Yukawa shape, which produces an extra factor
(A'/Q2+&2) in each of the integrals. Most of the
integrals converge without this factor, and so we expect
these integrals to be independent of A for A~ ~.On the
other hand, I; will depend on A, and will in fact give
rise to the "extraordinary" terms proportional to
h.= I/E.

A further complication arises when we make the
forbiddenness expansion by replacing e'o'" by 1+iQ r+,since now the individual terms will again diverge
for large momenta. This is a much more trivial difhculty,
which clearly has its origin in an improper interchange
of orders of integration and expansion. As is customary,
we shall treat these divergences by introducing con-
vergence factors; for convenience we shall use algebraic
convergence factors, (A2/Q2+A2)", wherever necessary.
We should emphasize that the appearance of one factor
(A2/Q2+h2) is necessary and significant, while the extra
factors are essentially mathematical artifacts.

where in I(n) the number of indices is at the most 2n, and
in J(") at most 222+1. These integrals can be obtained
recursively as follows. We can express I'"' and J(") in
terms of I and J, utilizing the partial fractions expansion

~'(e'+1')-'(e'+A')-'=~L(e'+1')-'-(e'+A')-')

with A =A2/A. 2—1(2. This gives

I(')=2$I(1()—I(h.)),
I(') =ALE(X) —I(A))

(C3)

From these, we can form the additional integrals I('),
I(3), etc., by using the recursion formula

1 ()
I(n+i) I(n) A I(n)

2n BA,
(C4)

x'A
I("(1( A) =

P
arc tan

X'+s' P'—
2A.P—arc tan . (CS)

A2+s' P'—
Now for s'&P~ the arguments of both arctangents are
small N22iforr)2ty in s, as X~O and A~~, and so we can
interchange the expansions with the integration (83).

Keeping terms of order )', and A. ', we have

21(P
Io)

P l )P+s' PA'+s' P— —
2AP

8A.'P'+, (C6)
3 (X2+$2 P2)2 3 (+2+s'2 P2)2

The integrals with additional indexes can then be
obtained using (83).Of course we shall content ourselves
with carrying out this program in the limit X—&0 and
A—+00.

Let us consider the evaluation of I('), I;"), I;,(') in
detail, since the "extraordinary" terms appear in them.
We will take s'&P'; that is, we shall evaluate the
integrals necessary for radiative beta decay first.
Keeping only real parts, and with e—+0, we have
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and so

iQPsP,(
i

s +P, i—I&'&—+2'—
& 8P; Bs~ I 3(X2+s2—P2)2

16h2sP;.

3(~2+s2—P') 2

which gives on integration

4X'P; 4A.'P;
+ 1. (C7)

($2+$2 P2) 2 3(+2+$2 P2) 2

Continuing the process

( 8 8 ) 4X2I&,;
(

s +P (I &—'&-~2&2-
( aP; 'as) '

3P2ys2 —P')'

dinary" term. Note the interesting fact that had we

ignored the convergence dBBculty and performed the
operation (83) on I; to form I;;,we would have found a
6nite, but incorrect answer, namely zero.

For completeness, we must still discuss this procedure
for the integrals I with s'=P2, and the integrals J. In
the former case, we can not expand 6rst in X, although
we can expand in A.. The process can be carried out
however, with the results

I&I&~I +&r2/2—P, I;&'& &I~—0,
I; &1&~(22r /3)Al&;;. (C10)

In the case of the integrals J we can again expand 6rst
and then differentiate, etc., but the work becomes
rather tedious and will not be given in detail. The result
is, as we expected, that no "extraordinary" terms
appear:

and so

~~

3(h2+s2 —P2)
J(l)~J J;(')—+J~0,

2P (s' —P') (C11)

1,,0)
2'A38,; 2h.'8;;

3(g +s2—P ) 3(g +s —P )
(CS) J;,,() 0.

Although the integrals with n& 1 are not needed in 6rst
forbidden transitions, one can easily carry out the
recusion (C4) in 22, and show that the extraordinary
terms will also appear in more highly forbidden transi-
tions, but only in the integrals I.

Therefore we 6nd that

I&'&—+I~0, I &'&~I ~0, . I; &"—+(22r2/3)Al&g;. (C9)

This last term, proportional to h.= 1/I&!, is the "extraor-


