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The nonconservation of parity in P decay implies that electrons emitted from unoriented nuclei are
polarized along their line of fiight. Also, if the P process is followed by a y radiation, the angular distribution
of the p quantum with respect to the electron direction depends on its circular polarization. Formulas
relevant for such experiments as well as for the angular distribution of electrons from oriented nuclei are
presented. The results, which include Coulomb corrections, are given for scalar, tensor, and pseudoscalar
interactions in the cases of allowed and first-forbidden transitions. The formulas show that an experimental
determination of the relative sign of the scalar and tensor coupling constants should be possible.

I. INTRODUCTION of the coupling constants than those appearing in the
above-mentioned processes. Therefore a comparison of
the results of the two experiments may be used advan-
tageously for a determination of the coupling constants.
Especially it should be possible to determine the relative
sign of the scalar and tensor interaction constants.

The reality of the coupling constants, which is sug-
gested by the requirement of time-reversal invariance,
may be studied in these experiments as well as in
ordinary P-y angular-correlation measurements. The
imaginary parts of the coupling constants enter in these
cases through the interference of diferent partial waves
of the electron in the Coulomb 6eld of the nucleus. '

Previous interpretation' of p-decay experiments
indicated that the P-decay law contains only scalar (S),
tensor (T), and perhaps pseudoscalar (P) interactions.
Although these arguments are now somewhat weakened
by the introduction of parity-nonconserving terms,
explicit results are given in this paper for S, T, and P
interactions only. A discussion of this point will be
given in Sec. III.

Section II contains formulas appropriate for the
analysis of the experiments on the electron distribution
from oriented nuclei, P-y polarization correlation, and

S EVERAL recent experiments' ' have con6rmed the
suggestion by Yang and Lee4 that parity is not

conserved in weak interactions. These observations
require a generalization of the P decay Hamiltonian
through the addition of pseudoscalar terms. Thereby,
the most general p interaction consistent with the
requirement of invariance under proper Lorentz trans-
formations will contain ten, in general complex, coupling
constants.

Some information on these new coupling constants
can be derived from the study of the angular distri-
bution of the electrons emitted from polarized nuclei. '
Since at the present time, however, only a few nuclei
can be polarized, it may be interesting to study the
effect of nonconservation of parity in other experi-
mental situations, which do not require the polarization
technique.

The correlation between the electron direction and
orientation of the nucleus implies that the daughter
nucleus in the decay of unoriented nuclei will be partly
polarized along the electron direction. If the P decay is
followed by a p transition, this polarization can be
studied by means of the P-p angular correlation when
at the same time the circular polarization of the y
quantum is detected. Such an experiment gives exactly
the same information about the coupling constants as
do the experiments with oriented initial nuclear states.

Similar considerations suggest that also the electron
itself will be polarized. %hen the electron is emitted
from unoriented nuclei, the polarization vector will be
parallel to the electron momentum. The magnitude of
the electron polarization depends on other combinations
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electron polarization, The expressions include the
eBect of the Coulomb interaction and are given for
allowed and first-forbidden transitions. The formulas
also apply for ordinary P-p correlations with complex
fl-decay coupling constants. Details of the derivation
of the formulas are contained in the appendix.

In Sec. III a discussion of the results is given.

II. FORMULAS AND RESULTS

The general P interaction containing pseudoscalar
terms has the following form4:

Hp= (P,lt „)(Csev+Cs'eysv)

+Kg(y„vga„) (Cvsvxv+Cv'svnsv)

+P&,(tP„i7nsg ) (C~eiynsv+C~'etyzv)

+ (P„yean„) (Cveysv+Cv'ev)+Herm conj. .

The wave functions f„and fv represent the initial and.
6nal state of the nucleus in a P decay. The p matrices
are de6ned in the usual way: ys=t'Pctt„&4=P, os=
—ysns, where 4=1, 2, 3, and ys y,y~yqy4. f is an-—
abbreviation for Pty4. The electron and neutrino wave
functions are denoted by e and v, respectively.

The angular correlations and polarizations presented
in this section have been obtained by expanding the
Hamiltonian (1) in multipole components. The results
have been classiied according to forbiddenness and are
given in a tabular form convenient for comparison with
experiments. I'"or a derivation of the formulas the reader
is referred to the Appendix. The results throughout this
section are given for P decays. In order to obtain the
corresponding results for P+ decays, the following formal
substitution should be performed, Z—+—Z, C8—&—CB*,
Cg'—&Ca'*, Cg —+Cz*, Cy'~ —Cp'*, Cg —+—C *, and
Cg

'—~C~'*.

(a) Electron Distribution from Oriented Nuclei

For P particles emitted from oriented nuclei, the
angular distribution with respect to the orientation is
found to be

W(8)dQ, = Q ht, (I;,M,)Fs(L,L',II,I,)(—1) +~'+s

Xbs(L,L')Fs(cos8)dQ, . (2)

In this formula the spins of the initial and final nuclei
are denoted by I; and If, respectively. The initial
nucleus is assumed to be in a definite substate with
magnetic quantum number M;; i.e., the axis of polari-
zation is along the s axis. The dependence on 3f; appears
in the geometrical factor hs(I;,M,). In practice an
appropriate weighted average over hA, with respect to
M; must be performed. ~ P& is the usual i,egendre poly-

7 This weighted average is often denoted by (2I;+1)&F&(I;);
see, e.g., S. R. de Groot and H. A. Tolhoek, in Beta- und Gammu-

nomial of order k, depending on the angle 0 between
the axes of polarization and the electron direction. The
F coefficient is the familiar geometrical coeKcient which
appears in the theory of angular correlations. It depends
on the multipole orders I. and L' of the P radiation. ' '
The function hs is de6ned in the Appendix [Eq. (A9)]

' and is given for k=0, 1, 2, and 3 in Table I. Since the
coefficients F&(L,L',II,I;) have previously been tabu-
lated for even k only, we have also included a table of
these coeKcients for low spins and multipole orders and
for k=0, 1, 2, and 3 (Table II). The quantity bs(L,L')
is the characteristic parameter for the P process in
question and is independent of the spins involved. The
expression for bs(L,L ) is derived in the Appendix )see
Eq. (A11))and is given explicitly for allowed transitions
in Table III and for first-forbidden transitions in Table
IV."The exact expression for b in terms of Coulomb
wave functions is rather involved and the results are
therefore presented in the approximation" (nZ)'«1,
a being the fine-structure constant.

The absolute transition rate $(E,8) is obtained from
Eq. (2) by the relation

PtI (E8)dPdQ, = W(8)Fs(Z, E)PsqsdPdQ„
2vr4

where E is the energy of the electron including the rest
mass. The electron and neutrino momenta are denoted
by p and q, respectively. Fs(Z,E) is the Fermi function,
as de6ned in reference 11.We use throughout the paper
the units usual in P-decay theory: ttt=c=rrt = 1.

As an illustration we give the important example of
an allowed transition, where Eq. (2) reduces to"

ll'(8) =-;LI fPI'(IC ls'+ lcs'ls)

+ I
f&~I'(I Cr I'+

I
Cr'I')3

M;
+—cos8

E 2LI, (I,+1)]'
X«(CsCr'*+Cs'Cr*)

M;ttI, (I;+1) II(II+1)+2j-If@~I'
SI,(I;+1)

X (CrCr'*+Cr'C, *) . (4)

Roy Spectroscopy, edited by K. Siegbahn (North Holland Pub-
lishing Company, Amsterdam, 1955), Chap. 19.

'L. C. Siedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1933).

1' M. Ferentz and N. Rosenzweig, Argonne National Laboratory
Report ANL-5324 (unpublished). These references contain tables
of PI, for even k.

"For even k, the parameters bs(I,I') are identical with those
given in reference 8."Even for heavy nuclei the general behavior of the b's is well
described by this approximation. See E. Konopinski, in Beta- and
Gamma-Ray Spectroscopy, edited by K. Siegbahn (North Holland
Publishing Company, Amsterdam, 1955), Chap. 10."For transitions with spin change this formula has been given
in reference 4.
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TABLE II. Numerical table of the P coefBcients. Separate tables axe given for k= 1, 2, and 3. The values for k=2 are taken from
reference 9. The coeKcient Pz(L,L',Iq, Iq) is symmetric in the multipole orders L and L, which are listed at the top of each column.
The first two columns give the values of Iq and Iq. For k=0, one has Fo(L,L',I,I)=Ss,r~.
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0
0
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0
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0
0
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0
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0
0
0.612—0.353—1.000
0
0
0
0.'?08

—0.250—0.968
0
0
0
0.750—0.194—0.948
0
0.774

0 0
0 —0.707
0 0
0.612 —0.612
0.473 —0.589
0 —0.667
0 0
0.822 —0.204
0.725 —0.354
0.548 —0.500
0 —0.645
0 0
0 0.408
0.'?75 0
0.750 -0.250
0.581 —0.452
0 —0.632
0 0
0 0.4'?1
0.750 0.083
0.760 —0.194
0.600 —0.422
0 0.500
0.735 0.129

0
0
0
0
0.421
0.356
0
0.730
0.6j6
0.585
0.436
0
0.873
0.828
0.756
0.647
0.478
0
0.797
0.836
0.786
0.680
0.756
0.832

Imp

i/2
3/2
5/2
'//2
1/2
3/2
5/2
'//2
9/2
2/2
3/2
5/2
2/2
9/2
1/2
3/2
5/2
7/2
9/2
3/2
5/2
2/2
9/2

LL' = 01

1.732.
0
0
0
0
1.732»
0
0
0
0
0
i.j32'
0
0
0
0
0
1.732
0
0
0
0
1.732»

11 12

—1.000 0—1.118 0.387
0 0
0 0
0.500 0.866—0.447 0.693—1.025 0.520
0 0
0 0
0 0
0.671 0.794—0.293 0.'?41

—0.982 0.567
0 0
0 0
0 0
0.732 0.761—0.218 0.873—0.957 0.592
0 0
0 0
0.609 0.742—0.174 0.763

22

0—0.671—0.683
0—0.500—0.447—0.537—0.654
0
0.333—0.075—0.293—0.473—0.638
0
0.447
0.049—0.218—0.435
0
0.488
0.087—0.174

23

0
0
0.138
0
0
0.566
0.528
0.404
0
0.943
0.806
0.727
0.622
0.460
0
0.828
0.835
0.774
0.666
0
0.774
0.835
0.794

(c) Fg(L,L'Ida) for integral spins

Ig+LL' ~ 11 12 22 23

1
2
3
1

3

2
3

5

0.707
0
0—0.354
0.418
0
0
0.071—0.418
0.346
0
0

0
0
0—1.061—0.935
0
0
0.474—0.612—0.949
0
0

0—0.598
0—0.354—0.299—0.495
0
0.354
0.128-0.124—0.448
0

0
0
0
0—0.535—0.463
0-0.632—0.571—0.592—0.530
0

(b) Fi(L,L'III2) for half-integral spins
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0
0—0.500
0—0.472—0.458—0.484—0.408—0.354—0.375—0.420—0.474—0.102—0.177—0.250—0.323—0.395
0.306
0.059—0.083—0.194—0.290
0.125—O.Q32

33

0
0—0.488—0.490
0—0.447—0.415—0.436—0.479—0.333—0.261—0.293—0.346—0.406
0.250
0—0.098—0.218—0.305
0.335
0.098—0.044—0.174

33

0
0-0.866
0—0.717—0.650—0.783—0.424—0.179—0.2 j4—0.470-0.736
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3
3
3
3
3

4
4

4
5
5
5
5
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5/2
5/2
5/2
5/2
'//2
//2
2/2
7/2
//2
9/2
9/2
9/2
9/2
9/2

ii/2
11/2
11/2
11/2
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0
0

1

2
2
2
2
3
3
3
3
4
4
4

5
5
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1
2
3
4
5
1
2
3

5
2
3

5

0
0.120-0.433
0.313
0
0
0
0.144—0.439
0.294
0
0
0.160—0.442

12

0
0.655—0.433—0.940
0
0
0
0.722—0.335-0.931
0
0
0.757—0.274

22

—0.101
0.341
0.227—0.045—0.421
0—0.171
0.309
0.265
0
0—0.206
0.285
0.283

23

0.378—0.175—0.436—0.571—0.556
0
0.505
0—0.347—0.548
0
0.546
0.092—0.286

I'LL' = 11

3/2 0.500
5/2 0
7/2 0
3/2 —0.400
5/2 0.374
7/2 0
9/2 0
3/2 0.100
5/2 —0.428
7/2 0.327
9/2 0

i1/2 0
3/2 0
5/2 0.134
'//2 —0.436
9/2 0303

1I/2 0
3/2 0
5/2 0
2/2 0.153
9/2 —0.440

11/2 0.288
5/2 0
7/2 0
9/2 0.165

il/2 —0.442

—0.866
0
0—0.775—0.949
0
0
0.592-0.507—0.945
0
0
0
0.694—0.378—0.935
0
0
0
0.742—0.302—0.927
0
0
0.769—0.251

22

—0.500—0.535
0
0—0.191—0.468
0
0.357
0.191—0.078—0.433
0—0.143
0.325
0.249-0.020—0.411
0—0.191
0.296
0.275
0.016
0—0.218
0.275
0.289

23

0—0.378
0—0.632—0.587—0.505
0—0.338—0.498—0.583—0.546
0

+0.463—0.071—0.387—0.559—0.564
0
0.530
0.052—0.314—0.537
0
0.556
0.123—0.263

(e) F3(L,L',IiIg) for integral spins

I'LL' =

2
3
2
3
4.
2
3
4
5
2
3
4
5
2
3
4
5
2
3

12

0
0
0.632
0
0—0.414
0.507
0
0
0.111—0.463
0.449
0
0
0.154—0.481
0.416
0
0
0.181

22

1.414
0
0
0.926
0—0.808—0.463
0.749
0
0.505—0.617—0.599
0.658—0.101
0.617—0.490—0.658
0—0.154
0.667

23

0
0—0.316—0.289
0—0.084—0.211—0.295
0
0.242
0.068—0.139—0.290—0.100
0.226
0.126—0.095
0—0.136
0.205

(d) F2(L,L'III2) for half-integral spins

33

0.530
0.329
0.144—0.085—0.368—0.177
0.448
0.433
0.269
0.017—0.299
0.361
0.453
0.328

0—0.8{)2—0.818—0.600—0.441—0.546—0.757
0.150
0.027—0.164—0.413—0.719
0.500
{).4{)1
0.218—0.028—0.332—0.250
0.401
0.447
0.303
0.052—0.334
0.327
0.454
0.348

33

0
1,080
0.707
0.540
0.874
0.354—0.180
0.175
0.768—0.471—0.540—0.397
0
0.471—0.180—0.493—0.473—0.118
0.540—0.016

& The F-codBcient actua11& vanishes for I.=O. The definitions of Fis and bP have therefore been modified, so that the Product 4FI is correct.
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TAsLE II—Coetieled

(f) &I(L,L'Ids) for half-integral spins

II I'LL' ~

1/2 3/2
1/2 5/2
1/2 7/2
3/2 3/2
3/2 5/2
3/2 7/2
3/2 9/2
5/2 3/2
5/2 5/2
5/2 7/2
5/2 9/2
7/2 3/2
7/2 5/2
7/2 7/2
7/2 9/2
9/2 3/2
9/2 5/2
9/2 7/2
9/2 9/2

|2
0.775
0
0—0.346
0.555
0
0
0.076—0.445
0.474
0
0
0.136—0.474
0.431
0
0
0.169—0.486

22

1.414
1.095
0—0.894—0.313
0.821
0
0.383—0.704—0.547
0.697—0.064
0.574—0.547—0.634
0—0.130
0.647
0 AHA

23

0—0.258
0—0.283—0.262—0.295
0
0.227
0.013—0.171—0.293—0.069
0.236
0.103—0.115
0—0.121
0.215
0.143

0
0.913
0.957
0.447
0.091
0.319
0.814—0.671—0.517—0.319
0.074
0.226—0.304—0.551—0.441—0.075
0.517—0.147—0.492

In this equation
I
J'pl and

I
J'pal denote the usual

Fermi- and Gamow-Teller matrix elements. For the
delnition of the sign of these matrix elements, which is
important for the interference term, the reader is
referred to the appendix.

The angular distribution (4) is given in the (nZ)'«1
approximation. A more exact formula is obtained from
(4) by multiplying the .isotropic term with (fis+g is)

and replacing the factor p/E in the angular-dependent
term by $1+(Zn/P)s) &2g if, The func.tions fi and g i
are the usual Coulomb wave functions" of the electron
(or positron) taken at the nuclear surface. It turns out,
however, that this change of Eq. (4) is quite unim-

portant, even for high Z.
For 6rst-forbidden transitions, the angular distribu-

tion can be obtained by means of Tables I, II, and IV.
We have neglected the interference terms with 8;;which
are usually an order of magnitude smaller than the
terms evaluated.

As an illustration, the angular distributions for the
unique transitions (L=2) will be given. One finds from
Eq. (2) and Table IV:

1
~(8)=

I
J'&'/I' (I crl '+

I
cr'I') (p'+q')—

48
—(CrCr'*+Cr'Cr*) h, (I,,M;)F&(2)2,I/, Ig)

p 1 1
X——p'+—q' Pi(cos8)

80 . 48

+(ICr I'+ Icr'I')hs(I' Mi)Fs(2 2 If Ir)

7
X p Ps(cosH)

240
—(CrCr'*+ Cr'Cr*) hs(I;,M;)Fs(2,2)I/, Ig)

p 1
X——, p'Ps(cos8)

E80
~ See, e.g., reference 11.

Although forbidden transitions in general contain
several unknown matrix elements, the degree of asym-
metry is not necessarily smaller than for allowed
transitions.

+r cosH——Q b),bi, Fi(X,X',I//, I/) j
E 24

I/(I/+ 1) I;(I;+1)+2—
x IJ pal'

I I/(I/+1)j'
X (CrCr'*+Cr'Cr*)

4l J'p
I I fpr/I Re(csCr'*+cs'cr*) ' (7)

TAnLE III. Particle parameters bs(L,L') for allowed transi-
tjons. & The parameter bs(L,L') for given L and L' is the produc't
of the matrix element given in the second column and the factor
SI, given in the third column. The electron energy and momentum
are denoted by E and f, respectively. For L rsL', the quantity
listed is actually b&(L,L )+bs(L',L).

L L'

0 0

Matrix element

I
J'pl'

I J'arrl'

I JPl I
JPrrl''

Sh

s.=-, » Icsl*+ Ic.'I )

So= l {I Cr I'+
I
cr'I'),

Si= ', {CrCr"+Cr*Cr') (p/E-)

Sp=O
Si= l Re{cscr'~+Cs'Cr~) (p/E)

The bh t see Eq. (A11)j is actually infinite for L =0. The definition has
therefore been modified so that the product M'js is eorre:t (see Table II)~

'4 The t'erm right-handed is here used for a y quantum hav'tng
its spin in the dir'ection of th'e momentum.

(b) g-y Polarization Correlation

A y quantum following a p transition will in general
be circularly polarized if it is measured in coincidence
with the p particle. The polarization correlation has the
form

W(H, r) = Q (—r)sbiby Fs(X,X',I//, I/)
k X X/ L.I/

XFs(L,L',I;,I/)bs(L, L')Ps(cosH), (6)

where 8 measures the angle between the directions of
p ray and electron. The p polarization is indicated by
the quantum number r, which takes on the values
r=+1 and r= —1 for right- and left-hand circular
polarization, respectively. "The p ray will in general be
a mixture of diGerent multipoles X and t' with inten-
sities Ibql' and lb&, 'I'. The factors Fs are the F coef-
ficients given in Table II. The initial and final states
in the P transition have the spins I; and I/, while the
spin of the final state after the y transition is denoted
by I//. The parameters b&(L,L') characteristic for the
p processes are the same as those occurring in the
previous section.

For allowed transitions, one finds from Eq. (6) and
Table III:
l{'(H,r)=s Z~lb~l'll J'pl'(lcsl'+les'I')

+ I J'pal'(I cr I'+
I
cr'I') 3
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TAnzz IV. Particle parameters bs(L, L') for first-forbidden transitions. The parameter bs(L, L') for given L and L' is the sum of the
products of the matrix elements given in the second column and the corresponding shape-factors SI, given in the third column. The
quantity f is equal to nZ/2E, where R is the nuclear radius. The electron energy and momentum are denoted by E and p, respectively,
while q is the neutrino momentum. The nuclear charge number is equal to Z, and a is the fine-structure constant. For I.&L' the
quantity listed is actually bI, (L,L')+bs(L', L).

P 1

Matrix element

I fpv. l'

If (1/')P~ rl'

IfPY~I X I (1/s)f prr r'l

I fspr I X I (1/f)f'p& r
I

So=4(IC 'rI'+ICr'I')
1 2p'q 2

S,=-,'{
I C, ls+

I
C,'Is) -(Ps+qs) ——+-bl —q+—I+@

9 9E 3 ( E)
p2

So--', Re {CzCr*+Cz'Cr'*) ———q+ b
3E 3

p 1 1 4 2
S& ———-', Re(CsCr'*+Cs'Cr*) Ps+ q—s —Eq+ —f(—q—+2E)—+f—s

E 3 g g 3

1 Zo(——Im(CsCr'*+Cs'Cr*) [Ep' qE'—&iq+f—(3E +—1)j
36 E

p
IfpeXrl Xl(1/s)fprr rl Si= ——,'(CrCr'*+Cr*Cr') ——-q'+ qE+ Ef+fs— —

IfpolXI(1/f)fprr rl

I fsPrlXIfPv I5

If ~pXlrxli'P75l

I fp~l x I fp~s I

, p,
S& —— ', (CrCr'*+C—r—*Cr') P,'E ,'q+Q— -——

E

1 1
ZA'

S,= —-', Re(CsCz'*+Cs'Cz*) —LE—sq+$j —6 Im{CsCr'"+Cs'Cr*(—L2+~sEsj
E

~ . p ZA
Si= ——,

' Re(CrCr' +Cr'Cz*) P ssE+ ', q+Q—+—
6 Im(C-rCr' +Cr'Cz ) P 6+%j———

E
p

S,= ——,
' Re{CrCr"+Cr'Cr') X—

1 1
I
ffprl'

1 2 P'q 2 (Ps
So= :& I

Csl'-+
I
Cs'I') (p'+q') + bl

-—
q i—+b'—-

3 9E 3 (E
pSi = 6 {CsCs'*+Cs"Cs')—L

—aqua+ fsl

p2

s( I Cs I'+ I Cs'I') —-q——f
E 3 2

1 2 p'q 2 (p'
So=-.'&IC.I'+IC.'I') (p'+q')+ + -8i —+q I-+—8-

6 9E 3 (E )
1Si= ', (CrCr'*+Cr~Cr') pp'+-(1/12)q'+&iqE+f(—E+aq)+fsj

Ifp~l'

If@rlXIf'prrXrl

p'
Ss= s ( I Cr I'+

I
Cr'I') —C(q/3)+ lE+fj

E
So=-:(

I Cr I*+
I
Cr'I')

Sr = ,' (CrCr'*+Cr'Cr') p/E—

2 p'
So——$ Re(CsCr'+Cs'Cr' ) ——b+f'

S,=-', Re{CsCr'*+Cs'Cr*) E 6q' —6qE+ssfE+P3 —6 Im—{C—sCr' +Cs'Cr*)
E

Ze 3 (E 1
x—-p'l —+-q+8 (+(—sq+8)E4 (3 9 )
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TAsx,E IV—Continued

L I' Matrix element

I
J'oPr

I && I
J'Pot

I

lg
p2

So= —-', Re(CsCr*+Cs'Cr'*}—p',E+q+-q j o Im f—CsCr*+Cs'Cr' }Znp —+—q+$
E 3E 9

—
p2

So ———,
' Ref CsCr*+Cs'Cr'*} ———q+P

3E 3

~ . p ZA
S,= —,

' Re fCsCr'*+Cs'Cr*) P oq+—t)———Im fCsCr'*+Cs'Cr*} p'—
8 12 8

[J'~ && l&&IJ'~ I

2 2 [ J'o73;;a['

~ ..p',
So= ——', Re (CsCr +Cs'Cr'*) -', Im—(—Cs Cr*+Cs'Cr'*)Znp

8
1 ( p')l

So=sf fCrl'+[Cr'[') -[ q+—I+i
3g Ei

to)o olo ISr = l (CrCr'*+Cr*Cr') P,'E+ oq+—gg-

So=-:f [Cr[o+ [Cr [o)P'/E

S,= (I C, [o+
I Cr'Io} C(1/48) (Po+qo) j

Sr = fCrCr'*+Cr*Cr') p(1/48)qo+ (1/80) p'jp/E
So= ( I Cr I'+

I
Cr'I') (7/240) p'

So——(CrCr'"+ Cr*Cr') (1/80) p'/E

The polarization correlation for 6rst-forbidden transi-
tions can be obtained from Eq. (6) and the Tables II
and IV.

(c) Electron Polarization

The nonconservation of parity gives rise to a polari-
zation of the p particles emitted from unoriented nuclei.
The polarization is described by a polarization vector P,
which is de6ned as twice the mean value of the spin
vector. It is given by the following expression:

g C(L)/P &o(I.,L).
[p[ I, z,

The coefficients C(i) are calculated in the Appendix
and can be found in Table V for allowed and all 6rst-
forbidden transitions.

As an example, we give the formula for allowed tran-
sitions. In this case Eq. (8) reduces to

[
J"p

I
'(cscs'*+Cs'Cs*)

P + I Jp~l'(c, c,'*+c,'c,*)

z [apl'(Icsl + Ic,'I')
+ I

J'pal'(I cr I'+
I
cr'I')

As can be seen from Tables IV and V, the degree of
polarization in forbidden transitions is not necessarily
smaller than in allowed transitions.

III. DISCUSSION

In the tables given in this paper, we have omitted
the vector (V) and axial-vector (A) couplings. With

the generalized p interaction, which includes parity-
nonconserving terms, the absence of the Fierz inter-
ference terms in the p spectra is no more sufEcient
to exclude these couplings. The Fierz terms have now
the form:

1
Re{cscv*+Cs'Cv'*)—and Re{crc&*+Cr'C~'*}

E E

These quantities can be made small or zero in many
ways by a suitable choice of the constants. From the
electron-neutrino angular-correlation measurements"
one may, however, still obtain the unambiguous limits

[c.[s+ Ics'[' Icvl'+ Ic,'I'
&0.2 and &0.5. (10)

I
Cr['+

I
Cr'

I

'
I Cs I

'+
I
Cs'

I

'

The present evidence for ruling out the vector and
axial-vector couplings is therefore very weak. It might
however be supported by theoretical arguments: when
time-reversal invariance is fuKlled for the p interaction,
all the coupling constants are necessarily real. If in
addition the neutrino field is strictly massless, so that
the interaction is invariant under the replacement of v

by p&v, then the relation C= —C' holds for all inter-
actions. "The latter statement is equivalent to the two-
component theory of the neutrino. ""These arguments

"J. S. Allen and W. K. Jentschke, Phys. Rev. 89, 902(A)
(1953);B.M. Rustad and S. L. Ruby, Phys. Rev. 97, 991 (1955);
Maxon, Allen, and Jentschke, Phys. Rev. 97, 109 (1955); W. P.
Alford and D. R. Hamilton, Phys. Rev. 95, 1351 (1954).

"The recent e'xperiments on the angular distribution of elec-
trons from oriented nuclei have excluded the possibility C=+C'.

~' T. D. Lee and C. ¹ Yang, Phys. Rev. 105, 1671 (1957)."L.Landau (to be published).
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TAnLE V. Parameters C(L) for allowed and first-forbidden transitions. For a given L, C(L) is found as the sum of the products of the
matrix elements given in the second column and the corresponding energy-dependent factor given in the third column. The quantity $
is equal to nZ/2E, where R is the nuclear radius. The electron energy and momentum are denoted by E and p, respectively, while q is
the neutrino momentum. The nuclear charge number is equal to Z, and o. is the fine-structure constant.

Matrix element

Ifpl'

I f Pearl'

IfPvsl'

I f'(1/s)prr rl'

I fPv I.
I f(tls)p&. rl

I f'~pr I'

Ifpexrl'

If Prrl'

If'perl If'PrrXrl

I fsprI X I fp&Xrl

i (CsCs'*+Cs~Cs') p/E

i(CrCr'*+Cr*Cr') p/E

Allowed transitions

First forbidden transitions
~4 (CpCp'*+ Cp*Cp') p/E

'4(CrCr'*+ Cr'Cr') (p/E) [$(p'+ q') —(2/9) qE+;$ ( q+E)—+p]

I p iZA
s Re(CvCr'*+Cv'Cr*) [', ( q+—E)+-Q— -'r Im(CvC—r'*+Cv'Cr )

E3 p

;(CsCs'*—+Cs*Cs')(p/E) L~a(p'+q') —(2/9) qE+ ,'6( q-+E—)+Pj
k(CrCr'*+Cr*Cr') (p/E) [s(p'+q')+ (2/9) qE+ 36(q+E)+8' j
', (CrCr'*+-Cr*Cr') p/E

s(CrCr'*+Cr'Cr') (p/E) [3(E+q)+g j
, .p, p 2 ZR

j Re(Cs Cr'*+Cs'Cr*) [3E$+P]—+s Im(CsCr'*+ Cs'C r*) q-—
jV9 p

If'Prl X Ifp~l

I fsE'Pl'

I p 1ZA
2 Re(CsCr'*+Cs'Cr*) [3( q+E—)+$g—+ ', Im(CsCr' -+Cs'Cr*)

E3 p

4' (CrCr'*+Cr*Cr') (p/E) [1/12 (p'+q') j

imply that no cancellations occur in the Fierz terms and
therefore lower limits than those given in Eq. (10) can
be set on the vector and axial-vector couplings. "For
these reasons, only a general scalar-tensor-pseudoscalar
coupling has been treated explicitly.

The effects of nonconservation of parity given in the
previous sections are all approximately proportional to
v/c, where v is the velocity of the electron. They attain
their maximum values if the parity-nonconserving
coupling constants are equal in magnitude to the
parity-conserving constants. Indeed, when v=c, the
two component theory of the neutrino predicts a com-
plete polarization of the electron for any STP combina-
tion even in forbidden transitions.

In the electron polarization experiment, choosing a
zero-zero transition, the scalar coupling constants can be
studied separately. In the same way, a P transition
with 6j=1(no) or LLj=2(yes) in any of the discussed
experiments will give information about the tensor
couplings. A study of a transition where scalar and
tensor couplings interfere Lsee, e.g. , Eq. (7)j may then
6nally be used to determine the relative sign of the
scalar and'the tensor coupling constants. In forbidden
transitions the formulas also contain terms which
depend on the imaginary parts of the coupling con-

~ On arguments for the STE interaction, see B.Stech and J.H.
D. Jensen, Physiir 141, 175 (1955).

stants. As can be seen from Table IV, these terms also
appear in the expressions for ordinary p-p correlations
(k=2). They may in principle be studied by precise
measurements of the energy dependence, and one could
thus obtain information about the time-reversal
invariance.

We wish to express our sincere gratitude to the
California Institute of Technology for its kind hospi-
tality. One of us (B. S.) wishes to thank the Deutsche
Forschungsgemeinschaft for a grant.

IV. APPENDIX

For calculations of angular correlations in p decay it
is convenient to expand the p interaction in multipole
components. " The Hamiltonian, Eq. (1), then takes
the form

oo L L+1 8

2 ( 1)~"+""(O'O4—-' %-)
LM M L k=L—1 a=1

XLC.etOs, ~ v+C~'e'Os, g . v] (A1)

The indices A. and n refer to the different types of inter-
action, while L and M indicate the multipolarity. The
operators Os ~~ and the signs (—1)v'~& are given in
Table VI.

~ See, e.g., M. E. Rose and L. C. Biedenharn, reference 8.
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TABLE VI. Multipole operators for scalar, vector, tensor, axial vector, and pseudoscalar p interactions. The first five columns contain
the quantities entering in Eq. (A1). The vector spherical harmonics e)zs~ are defined in reference 8. Column seven gives the Cartesian
notation of the operators for typical values of multipole order L and interaction type h., 0.. The relation between the matrix elements of
these operators, which are used in Tables III-V, and the reduced matrix elements of the multipole operators is given in Eq. (A12).

(—I)v(») Ca

Cs

Oh L

1 PYLM4L

Ca'

Cs'

Oc~e

(1/4 )tP
(3/4)r) &fPr/r

Cz

Cx

Cz

Cg

Cz

~LM~hL

~hPe+LhM

~hg +LhM

jh~~o +LhM

i Py e@LhM

& V6~LM~hL

& PVS~LM~hL

Cy'

Cz'

Cg'

Cy'

Cr'

Cx'

Cg'

0 0

0 1
1 0
1 1
1 2

0 1

0 1

0 1

0 0

0 0

(1/4)r) &1

(1/kr) &p(r

(1/4)r) &(1/s) pa r/r
(3/8)r) &PrrX r/r
(3/16)r) t»B;)~/r

(1/4».)&e

—(1/4)r) &e

—(1/4)r) &P e

(1/4»)&y»

(1/4» )&Pv»

with
xD„,.)(x~p) I xm), (A3)

( g»X»

I am) =i""'I
«f,x ."~

We have used the same notation as that used in
reference 8 except that the two upper components of
the wave functions are here the large ones. The Coulomb
phase shift h(x) is given by

x+ize/' p—t

A(.)=-: »gl I

—argr(&+izez/p)
«p+i ZeE/p &

+-,')rLl( —x)—yj, (A4)
where

~= Lx' —(«)'1'
The rotation matrix D depends on the Eulerian angles
describing the rotation from a fixed coordinate system
(indicated by z) to a system where the z axis is along
the momentum p.22

The diferent experiments discussed in Sec. II are all
described by the general density matrix

p=p, (&popo I
IP

I
I M;v)(IrMf'po'I IIsl I M,v)e. (A2)

In this expression the electron is described by its
momentum y and spin component 0 along p. The sum-
mation is extended over the states of the unobserved
neutrino. The wave function of the electron, which at
large distances behaves as a distorted plane wave with
momentum p plus an incoming spherical wave, is
expanded in partial waves according to the relation"

I p~) = (4 )1 ZL2i(x)+1)l(l-,'O~ IP)e-" "

When one introduces the quantum numbers j„, ~„,
and m„ for the neutrino, and performs the summation
over the magnetic quantum numbers m„ the density
matrix (A2) may be expressed in the form

vK)K,KIr)k»$»lz

(2&+1)(2l+1)&(2l'+1)&

(2j+1)$(2j +)1)$( 1))'+i+3)r» +It+It

p I, L Ir
~ p I; L,' Iq p

(—M; M My) I —M; M' My')

xl r L L' kgb' j lyf -', j' l'&

( —M M' pJ E —o o. Oi & —a' )r' 0&

*(z~p)e)(a(») ~(» ) l

s&

X B)).)» (K)K»)Bs~)»~ (x )xr). (AS)
j j&

Bs (K K„)= (—1)"( )(Iyllos III;)

X ((: (&II«, II& )+C '(&llo~. s- II& )) (A6)

In this formula the following abbreviation has been
introduced:

' Rose, Biedenharn, and Arfken, Phys. Rev. SS, 5 (1952) The Wigner notation for the vector-addition coefficients~ See, e.g., A. R. Edmonds, CERN Report 55-26, 195S (un-
published) . and Racah coefIicients has been used." The reduced
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matrix elements are de6ned by

(.m~o, ~~~,„~„)
( ~ L= (—1))-"I l(.llo,.'ll.,). (A7)
E —mm~i

to the average value, S, of W(y, z) over all 3f;:
S=(2I,+1) ' g p b~r))rf b,.

. MzMfMf'oo'

= ir
—'Pbo(L, L). (A13)

By the present de6nition of 0& ~M the reduced matrix
elements ()(~[o& ~~[)(,) are real; similarly the matrix ele-
ments (Ir~[o)( ~[[I;) are real by an appropriate choice
of the phases of the nuclear wave functions. The
electron distribution from oriented nuclei is given by
the trace of p with regard to Sf' and 0 and is found to be

W(p, z) = Q p h))rf~) b,~
MfMf'o o'

h), (I;,M,)P).(L,L',Ir,I,) (—1)~+i'+'

In order to evaluate the P-y correlation, we define a
"density matrix" p~ for the p transition, I~Iff'.

Mff

X(q)l&)If fuff ~ » ~
If~f ) & (A14)

where q is the wave vector for the p-quantum and
7.=+1 stands for right- and left-circular polarization
respectively. By performing the summations over the
magnetic quantum-numbers, one obtains

Xb), (I.,L')Pi(cose). (A8)
pv= 2 (2k+1)«(r)"(—1)™P~(~,~ I«,I))

We have here introduced the following abbreviations:

h), (I;,M,) = (2k+1)«(2I;+1)'* ( Ir
X (2I)+1)-«i ~8),b), D„,o~*(z—&q). (A15)

« 3' M)—' p,)

P),(L)L',Ir)I;) = (—1)r~+r' '(2k+1)«(2I;+1)"

tI; kq
X(—1)r' ~'~

~, (A9) The quantity 8), is the usual transition amplitude for
Em, —m, 0)' the 2"-pole radiation (see reference 8). The P-y corre-

lation formula may now be written

and

X (2I+1)'(2I.'+ 1)'*

)L L' kq L I.' k
X

~ ~, (A10)
(1 —1 0) I; I; If

W(p, q, r) = Q (2I~+1) 'p p, 5,.
M&Mf Mf 'ao'

2I,+1
( r)'8)b);-

2If+1 ), ),i, r,, r,

pL L' kg -'
b'(L, L') =4)r'( ( P (2I;+1)-'

(1 1 0) K,K,Kp,

X(2I+1) «(2L'+1) «(2j+1)'(2j+1)*

X(2i+1)«(2V+ 1)«(—1) +'+ -'
I. I.' k l l' k~t l l' ki

X j —', I &0 0 0)
Xg'( ( )— ( ' )g~ ()(~K„)g~,~. '*(& ))(~). (A1])

XF),(X,X',Iyy, lf)F),(L,L',I;,If)

Xbq(L, L')P), (cos9), (A16)

where t) is the angle between the P particle and the y
quantum.

The polarization vector P of the electrons is defined
as the trace of the product of p with the Pauli spin-
vector matrix (0'~(r

~

a.) divided by the trace of p. For
unoriented initial states, one 6nds

p(0'~ v~0)b~psr'(2I, +1) '

These functions are given for some cases of interest in
the Tables I—IV. The b), (L,L') are given there in terms
of the nuclear matrix elements in the usual Cartesian
notation

~
J'P(r~, etc. The exact definition of these

matrix elements including their signs in terms of the
reduced matrix elements of Eq. (A6) is given by

where

p&C(L)/p& bo(L,L),

C(L) = —47r' Q (2L+1)—'(2I~+1)—'

(A17)

J~oo ~ = (2I'+1) '(If BIO)( IlI') (A12)

KK.Ky
I

X~i[6(a)—k(c')]g r (g ~ )

X&~ ~ "()(',)(,)b;,'5))~i. (A18, )
where O~„& is obtained from the last column of Table VI.

The integrated transition probability is proportional The parameters bo(L,L) are defined in Eq (A11). .


