
PH YSI CAL REVIEW VOLUME 107, NUMBER 1 JULY 1, 1987
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The role of the subsidiary conditions in the Bohm-Pines collective description of electron interactions is
discussed in detail. The subsidiary conditions are shown to be compatible with the approximations made
in obtaining the Hamiltonian and energy of the many-electron system. Their effect on the ground-state
energy and the speci6c heat is found to be small.

I. INTRODUCTION

' 'N the development of a quantum collective descrip-
& ~ tion of electron interactions, ' we find it desirable to
introduce a set of supplementary field coordinates, E' in
number, which describe the collective motion of the
electron gas as a whole, the plasma oscillations. We deal
then with an extended system of electrons and plasma
waves, which possesses a total of 3X+1P degrees of
freedom. We guarantee that the extended system of
electrons and plasma waves has the same physical
properties as the original system of interacting electrons
by imposing a set of X' subsidiary conditions on the
eigenfunctions of the extended system. Such a guarantee
is not required for the ground state of the extended
system, provided that state is nondegenerate. For,
subject to this requirement, it can be shown that the
subsidiary conditions are automatically satisfied by the
ground-state wave function, so that the ground state
of the extended system is identical with the ground
state of the original system.

It is then feasible to solve the equations of motion of
the extended system without regard to the subsidiary
coeditioes, in order to obtain the properties of the
ground state of electrons in metals. Indeed, such a
solution may be regarded as essentially variational in
nature, and its success may be measured by the value
of the ground-state energy one obtains. For a suitable
choice of the extended-system Hamiltonian, the solution

turns out to be relatively straightforward, amounting
to a power series expansion in the weak-coupling con™
stant for the electron-plasma interaction.

Adams, ' in a brief note, has raised the question of
whether the approximations which are made in this
solution are compatible with the satisfaction of the
subsidiary conditions. He purports to prove that if one

employs wave functions which satisfy the subsidiary

conditions, then the perturbation-theoretic solutions are
meaningless. We shall show that this is not true.

*Present address: Institute for Advanced Study, Princeton,¹wJersey.' D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953), hereafter
referred to as BP.

s E. ¹ Adams, Phys. Rev. 98, 1130 (1955).

We shall discuss the logical development of the
collective description in some detail, because we believe
that the general method of the collective description
may be applied to many other problems in physics. '
In a many-body system which exhibits collective mo-
tion, one introduces new normal modes and associated
coordinates because the collective motion is diKcult
to describe in terms of individual particle coordinates.
But how can we do this without actually increasing the
number of degrees of freedom of the systems The fact
that E' independent collective modes exist must have
important consequences for the motion of the individual
particles. One of these consequences must be that, for
the X-particle system, the number of independent
particle degrees of freedom is reduced to 3E—E'. How
can we take such particle correlations into accounts
The approach adopted in the collective description
overs a practical way to do it.

We begin the present discussion by introducing the
supplementary 6eld variables in a representation in
which the role played by the subsidiary conditions is
most evident, and indeed, trivial. We then investigate
some properties of this extended system which are
invariant under canonical transformations, but which
are most easily proved in this representation. Next, we
discuss the nature and validity of the approximate
solutions we employ for the extended-system Hamil-
tonian, showing in what sense they are compatible with
the subsidiary conditions. We indicate briefly the series
of canonical transformations which lead to the final
representation utilized for the solutions in Bp, and
then discuss the role of the subsidiary conditions in the
final representation. The essential point here is that to
a well-defined order of approximation the subsidiary
conditions in the &sal representation do not involve the

plasma variables, so that the complete spectrum (ground
plus excited states) of the plasma oscillations is cor-

rectly given. The subsidiary conditions do affect the
electronic motion. Their effect on the ground-state

energy and the specific heat at low temperatures will,

3 T. Miyazima and T. Tamura, Progr. Theoret. Phys. Japan 15,
255 (1956), for example, have treated the collective surface
oscillation of a nucleus along similar lines.
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however, be small and the physical reason for that will

be discussed.
relation

g~ =g—a,

where pa represents the kth density fluctuation of the
electron gas and e=X/V, where V is the volume of
the system, taken to be unity. In this system of units,
then, e=E, pI, is given by

and

r
«p(r)e""'=Z e '""

i
(2)

sa= (e'/r)e 'a'dr=4re'/k' (3)

We know that for long wavelengths the p& very nearly
describe independent collective modes for the system-
the plasmons. ' We now introduce explicit plasmon
variables (s.a,qa) (which will later be related to the pa)

by adding certain terms to our basic Hamiltonian. 6 The
terms we choose to add are given by

H.ss(k.)=-', P' (s.a*s.a —2s.a'pa/ca),
&&ac

(4)

where the prime on the summation leaves out the term
k=0, and where k, is arbitrary. We are, therefore,
actually considering a whole family of extended Hamil-
tonians, each with diKerent degrees of freedom, de-

pending on k, . The quantities mI, commute with all
particle variables, and are defined only by the following
requirements:

(1) There must exist canonical conjugates qa, also
commuting with all particle variables, such that

$rra, qa J= s8aa'—
(2) The extended Hamiltonian must share all the

invariance properties of H under spatial translations,
rotation, etc. As a consequence, the transformation
properties of x&, ~1, are defined. For example, requiring
the extended Hamiltonian to be Hermitian yields the

4 W'e follow the notation of BP throughout this paper with the
exception that we shall employ Hermitian auxiliary variables mr„qI,
instead of the anti-Hermitian I'q, QI, of BP. Furthermore, we set
4=1.

~A plasmon is the basic quantum associated with plasma
osciHations. The term has recently been introduced because
plasma oscillations are found to be a well-de6ned elementary
excitation in nearly all solids. (See D. Pines, Revs. Modern Phys.
28, 184 (1956).g

6The procedure followed here 'is essentially that of BP. See
also D. Pines, SotÃ State Pkysks (Academic Press, Inc. , 1955),
Vol. 1, p. 373; hereafter referred to as SSP.

2. FORMULATION OF THE PROBLEM

The basic Hamiltonian for a system of electrons in

a uniform background of positive charge may be
written as4

p.s +-P (pa*pa N)ea-,
2m 2 &~

and from invariance under translation we have

U 'rraU=7rae'"' *, U 'qaU=qae '"' *, (7)

where U= U(hx) is hereby defined as the translation
operator in the extended system. Its eGect on pI, is
already known to be

U'—lp U' —
p g

—ik hx

We need hardly mention that the choice of the form
of H,zz is not unique. In choosing the particular
form (4), we are guided only by the desire to end up
with an extended Hamiltonian which has a lower
bound, and which is simple. It is clear that B,qq

fulfills those requirements because it leads to an B, ~

which is positive-definite, and it is particularly simple
because it merely completes the square of a portion
of H. Our family of extended Hamiltonians, labeled
by k„now can be written

H a(k.) =P+H, ee(k,)
= T+H, ., (k,)+-', P' $( „*—„&p *)

&&kc

where
X (s.a—eatpa) —ttsaj, (9)

sr psT=Q, H, ., = P (pa*pa —ts)va.
~~i 2' k&kc

(10)

The eigenvalue problem

H, a(k.)lt.=E„lt„,

subject to the 1P subsidiary conditions

(12)

s.aP =0, (k(k,) (13)

is trivially equivalent to the original eigenvalue problem
for all values of k,.' The subsidiary conditions ensure

~ In other words if one chooses an extended Hamiltonian which
does not have a lower bound, our central theorem regarding the
identity of the ground state of the extended system with that of
the original system cannot apply. It is then obvious that one has
to satisfy the subsidiary conditions exactly at every stage of the
calculation in order to obtain correct results. The difhculty with
non-positive-definite Hamiltonians has been independentl noted
by C. G. Kuper )Proc. Phys. Soc. (London) A69, 492 1956)g.
Kuper's conclusion, that such difficulties imply that something is
not satisfactory in our treatment of the subsidiary conditions, is
not correct since we do not propose treating the class of non-
positive-de6nite Hamiltonians with the aid of our central theorem.

It is to be noted that since according to (13) P„ is an eigen-
function of ~r„P„ is actually non-normalizable because the
operator conjugate to ml„namely qr„has a continuous spectrum
of eigenvalues from —~ to + ~, as is implied by (5). Any diK-
culties that may arise from this fact, however, are purely formal.
One can normalize P by artiQcial devices (for example by limiting
the range of ga from L to +L, and then let L—approach ~ later),
and physical quantities calculated will in no way be aGected.

H, ., is an interaction which is of shorter range than the
original interaction. Each extended Hamiltonian con-
tains 3X+W' degrees of freedom, where
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that the number of degrees of freedom we deal with is
always 3X, and (12) and (13) are compatible because
xI, commutes with H, &.

Formally, nothing has been done so far; but we have
prepared the way for the introduction of lP collective
variables as independent dynamical ones. In (9), S' of
the particle variables p~ (k(k,) have been singled out,
indeed, earmarked for liquidation. We plan that in
their place S' new independent variables will appear
after suitable canonical transformations. The whole
formalism would be superfluous if we could solve the
eigenvalue problem (12) and (13) exactly for all k,.
Then all extended Hamiltonians H «(k,) would be on
the same footing and we might just as well consider
k.=0, i.e., the original problem. Of course, we cannot
solve the eigenvalue problem (12) and (13) exactly.
What we can do is to find a value of k, for which we
can solve the eigenvalue problem approximately. That
we can do this is not surprising, because physically
there exists a "natural" set of A' collective modes of
excitation of the system which is rather well separated
from the independent-particle motion. When these
modes are properly introduced (via the set of canonical
transformations we describe later), we see that the
physical and the mathematical description of the elec-
tron system is considerably simplified.

We 6nd that we can work with a subfamily of
extended Hamiltonians, H. t(k,), which are simple in
the sense that (1) H t(k.) is of the form of a "particle"
Hamiltonian plus a "field" Hamiltonian with only weak
coupling between them, and that (2) the corresponding
subsidiary conditions restrict only the "particles, " but
place no constraint on the "6eld," to a certain well-
defined approximation. We shall discuss the exact
choice of k, later.

FIG. i. Schematic diagram
of energy levels of H,„t,.

7rIC'=PIC',

U(hx)C =aC.

We can conclude, from (14), that

U(kx)st'=nPgC'.

(14)

sent the situation by the schematic diagram in Fig. 1,
where the eigenstates of H,„t, are represented by the
diGerent levels. A cross indicates we must exclude that
state because it fails to satisfy Q~Q=0.

We can prove that in I"ig. 1, the set of crossed-out
levels contain only states degenerate with respect to
H t,. This is the equivalence theorem proved in BP,
which states thatif an eigenvalue of H, t, is nondegenerate,
then its corresponding ei genfuncli on automatically sali sees
the slbsiChury conditions. We restate the proof as
follows:

Let E be a nondegenerate eigenvalue of H,„~, and 4
its corresponding eigenstate. 4 is unique. Since xI, and
U(hx), the translation operator, ' both commute with
H ~, C is also a simultaneous eigenstate of these
operators, so that

H, ~C=EC,

3. SOME PROPERTIES OF THE EXTENDED SYSTEMS On the other hand, we also conclude, from (7), that

Before we go on with the formal development, we
shall investigate some properties of the extended
systems that remain invariant under canonical trans-
formations, but are easier to prove in the representa-
tion of (9).

We wish first to emphasize the fact that if the sub-
sidiary conditions are written Q1,/=0, then the Q&

commute with their corresponding extended Hamil-
tonian in all representations. Therefore, eigenstates of
the Hamiltonian can also be simultaneous eigenstates
of QI, . To take the subsidiary conditions into account,
we may 6rst 6nd all eigenstates of H &, and only after
this is done need we consider the subsidiary conditions.
If an eigenstate P„of H,„t, is nondegenerate, it must
also be an eigenstate of Qj„while if the states f„,f,
are degenerate we must take proper linear combinations
to form eigenstates of Q~. Let us assume that this is

done. Then the only e6ect of the subsidiary conditions
is to leave out those eigenstates of H, ~ which do not
satisfy Q&/=0. To 6x this in our minds, we shall repre-

U(hx)v-~C = Um~U 'UC'=+PI, e'~ ~*C. '

Therefore
PI Pge"~*——

Since this is true for arbitrary hx,
—=0,

which proves the theorem.
Now, if we know that the lowest state of H ~ is non-

degenerate, then the equivalence theorem tells us that
it coincides with the lowest state of H, since the
subsidiary conditions are automatically satisfied. We
may rephrase this to say that if the lowest state of H, t,is
nondegenerate, then any state of H,„q which violates the
subsidiary conditions mist lie higher in energy than the
ground state of H. This fact has obvious importance for
practical calculations, because if we can ascertain the

1'It is of course not necessary that we use the translation
operator. In its place, we may substitute any other operator that
commutes with H f, but not with mI„and which does not have the
eigenvalue zero.
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H. t,=H+ ,' Q' (Ps*Ps 2vs-iPa*ps)—,
&&&c

(15)

where the particles are coupled to the external 6elds
through Ps*ps. The ground state H,„r, would be de-

generate only if this interaction pushes some excited
states of H down to the ground state, and this appears
to be highly implausible except possibly for pathological
systems. There seems to be a general theorem in physics,
so far unproved, which states that mhee ue external

fteld is applied to a physical system, the reactionof the,
system will eever completely cancel it This theorem . has
been found to be true in practice in all fields of physics. "
The relevance of this theorem to our problem may be
seen by the following argument.

Suppose we phrase our basic problem with the
following questions: "If we look upon the P& in (15) as

"As an example, one may cite the fact that when an external
magnetic field is applied to an atomic system, the induced field
(diamagnetism) is always opposite in direction to the applied
Geld, with a magnitude less than the applied field. Even for a
superconductor, the net Geld inside the system is not zero,
although infinitesimal.

ground state of H, t, to be nondegenerate, then we can
calculate its energy (which is the ground-state energy
of H) by a variational method, employing variational
wave functions that do not have to take explicit heed
of the subsidiary conditions. As long as the wave
functions are allowed sufhcient freedom of variation,
the lowest energy obtained will lie above the true
energy by arbitrarily small amounts. This will be a
great aid to actual calculations, because the subsidiary
conditions are hard to deal with explicitly.

The significance of the equivalence theorem then
hinges upon our ability to prove that the ground state
of II, & is nondegenerate. We shall not attempt a formal
proof here. We erst remark that it is generally true that
the ground state of a physical system is nondegenerate,
or if degenerate, the degeneracy is of a trivial kind
that can be easily removed (e.g. , spin degeneracies). For
all practical purposes, then, we may assume the ground
state of H nondegenerate. To see whether the ground
state of H, ~ is then also nondegenerate requires that
we understand the effect of H, qq on H, ignoring the
subsidiary conditions. The detailed investigation of this
system is carried out in BP and is summarized in the
following sections. It is shown that H t, is "well
behaved" in the sense that it describes a reasonable

physical situation, for which we can obtain an excellent
perturbation-theoretic solution. This solution shows

that the ground state of H, ~ is not degenerate.
A physical argument for the general validity of the

assumption that the ground state of H, ~ is non-

degenerate may be constructed along the following

lines. Let us work in a representation in which all xA,.

are diagonal with eigenvalues P&. Then we may con-
sider H,„& to be the Hamiltonian for the particles in the
presence of external fLelds Ps.

fixed external parameters and express the lowest eigen-
state of (15) in terms of them, then (a) does Ps ——0
give a minimum in the energy, and (b) is it the only
minimums" We can try to answer these questions by
calculating the derivative of the energy. Let E, C be
the lowest eigenvalue and eigenfunction of H, t, .

H, ,C =EC, (16)

where both E and C depend on Pq, viewed as external
parameters. It is convenient to decompose Ps into their
real and imaginary parts:

Ps =Ra+ iIs,

where, from (6), we must require

We can then write
N

H, t ——H+ —', P' [Rs' 2vs&Rs —P cos(k r;),
0&k&ac

+Is' —2vs'*Is P sin(k r;)]. (17)

Differentiating (17) with respect to Rs, Is, and then
taking expectation values, we have

N

=Rs—v, '*(P cos(k r;)),

BE N
=I„—vs&(P sin(k r;)),

(18)

where ( ) denotes expectation value with respect to C.
When RI,=I~=0, 4 becomes the ground state of H,
which we assume to be nondegenerate, so that in this
limit the expectation values ( ) vanish, as can be easily
shown by the same invariance arguments as are em-
ployed in the proof of the eigenvalence theorem. There-
fore, RI, = I~=0 is an extremum of E. To show that it is
a minimum, and furthermore that it is the only mini-
mum, we have to show that

~
Rs

~
)vt,

'*

[ (P cos(k r,)) ~,
j'=1

~I„))vs'*~(Q sin(k r,)) ~.
7'=1

(19)

These inequalities have not been proved; but they
represent a mathematical statement of the general
theorem whose truth we conjectured earlier. .In the
appendix we give a simple example to illustrate this
point.
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where
Hex& =& ' He~et",

S=1 P vs *qkps.
&&bc

The transformed Hamiltonian is

H. t,'=Hp+Ht+Hs,

(20)

(21)

(22)
where

H p
= T+H, ., + ts g' [(7rs*7rs+co„'qs*qs) nvs, —(22a)

tie&A:c

Z N

Ht P' vsiqs —P——k. (p ——',k)e"',
m &&&c j'=1

(22b)

2' Z' (»vi)'(k 1)qsqt*»-t
2m &&kc l&t7cc

kWl

(22c)

with the "plasma frequency" co„dered by

cpv'= (nk'/ns)vs 47rne'/——rn (23)

The subsidiary conditions for the wave functions in the
new representation are

(~„yv„:p„)lt=0, (k&k.). (24)

The Hamiltonian (22) describes a collection of electrons
and plasmons of frequency ~„. The reason for the
particular choice of the additional terms (4) and the
generating function (21) is that in this representation
the long-range Coulomb interaction between the elec-
trons has been eliminated. There remains only the
relatively weak short-range electron-electron interac-
tion, H, , , and the last two terms of (22), Ht and Hs,
which describe electron-plasmon interaction.

The theory is useful only if at this point we can say
that there is a particular choice of k„or a range of k„
for which H. t(k,) really exhibits collective oscillatory
motion by virtue of the fact the coupling terms are
small. To investigate this question, we may look at
the eigenvalues of H,„~, ignoring the subsidiary condi-
tions. As we have emphasized before, the only eGect
of the subsidiary conditions is to throw away some
eigenstates of H,„» after we have diagonalized it.

We may assert that a k, has been chosen such that
the contributions of H~ and H2 to the eigenvalues of
H, ~ are small, and then proceed to verify this by
perturbation calculations. Whether or not we can do

4. INTERMEDIATE CANONICAL
TRANSFORMATION

In this section we consider the transformation which
takes us from (9) to the Hamiltonian used as a starting
point in BP. This transformation relates the m.~ to the
long-wavelength density fluctuations, pl, . For this reason,
in the new representation, the plasma oscillations which
explicitly emerge interact only weakly with the elec-
trons. The transformation carries H,„~ to

this depends very much on the speciic problem, in
particular, on the behavior of H, , (k,). It suKces to
summarize here the results in BP.

The interaction term Ht is linear in. the plasma field
coordinate qj, . It is shown in BP that for the calculation
of low-lying eigenvalues an ef'fective coupling constant
for this interaction is

g'=((k p/rntp, )'), (25)

where ( ) denotes the expectation value with respect to
a low-lying eigenstate of Hp, averaged over k (k(k.),
and p is a particle momentum (any particle). One first
assumes that g' is small and proceeds to calculate the
approximate ground-state energy of H t, and then
chooses that value of k. which makes the energy a
minimum. Substituting this value of k, back into (25),
one verifies that (25) is small. It is shown in SSP that
a reasonable choice is

k,/kf 0 35——r, '*,. (26)

where k~ is the wave vector at the Fermi level, and r, is
the average interelectronic distance in units of the
Bohr radius. "With this choice, one Rnds that g'= —,'6
for all metals, so that a perturbation expansion for the
low-lying eigenvalues of H, ~ in powers of g' is clearly
appropriate. The minimizing procedure thus singles
out a particular value k„ i.e., that given by (26), as
physically meaningful in that H,„,'(k, ) describes almost
decoupled individual-particle and collective motions.

The nonlinear coupling term H2 is shown by BP to
be even smaller than Ht. An effective coupling constant
for H2 ys

—,', (lP/31V), (27)

where E' is the number of plasma degrees of freedom
defined in (11).For most metals, this coupling constant
is found' to be only 2—10% of the magnitude of g'.
We may therefore neglect Hs entirely. This approxima-
tion is known in BP as the "random phase approxi-
mation, " for it clearly depends upon the fact that the
system under consideration contains a very large
number, X, of particles, whose correlated collective
degrees of freedom are few in number compared with
the degrees of individual-particle random motion.

"As will be discussed in more detail elsewhere by one of us,
there are two kinds of criteria for k,. One, based on plasmon
dynamics, is that k, be the maximum wave vector for which the
plasmon represents an independent elementary excitation weakly
coupled to the motion of the individual particles. Such a choice
might be defined by g02=1, where g0' is the coupling of the k,th
plasmon to the electrons at the top of the Fermi distribution which
are moving in the direction of the plasmon. From (25), we have
gps= (k,spps/m'~„') = 1, or &,=0.47r,&. This choice is equivalent to
the criterion adopted by R. A. Ferrell (to be published), that it
be energetically possible for the plasmon to give up its energy to
a single electron. The other choice is related to the system
energetics. It is the one used in BP III and SSP, that it be
energetically favorable to introduce the k.th plasmon. A slight
improvement of the calculation in SSP which led to (26) yields
the result -k, =0.40r, &. The close agreement between the two
criteria is encouraging, and in all likelihood a choice of k, between
the above values offers a happy compromise.
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(Op+Qi+ )f=0, (28)

where Qo is of zero order in g', Q~ of 6rst order in g', etc.
If we wish to calculate the eigenvalues of H ~ correct
to first order in g', we need the wave function f only
to zero order in g', and then (28) reduces to

Op/=0. (29)

In this new representation, 0 will still commute with
H, p to the order of approximation desired, and we can be
sure that the subsidiary conditions can always be
satis6ed. The explicit form of 00, Qy will be given in
the next section.

We shall now consider the point raised by Adams'
concerning the legitimacy of treating H~ and H2 as
small perturbations. Adams pointed out that the most
general wave function which satis6es the subsidiary
conditions (24) is

exp( imp&ppqp)X—(r, r~), (30)

where x is an arbitrary function of the particle coordi-
nates. He pointed out that the expectation values of
Hp, Hi, with respect to (30)

'

separately diverge. LNote,
however, that H2 does not diverge. In fact, with respect
to (30) (Hp) =0.]Since H, t,

' as a whole must have finite
eigenvalues Las it clearly does in the original representa-
tion (9)j, this means that there is a cancellation of
infinities among the terms of H,„~', if we take its expec-
tation value with respect to an exact eigenfunction

So far we have been concerned only with the calcula-
tion of the eigenvalues of H, &'. Since we believe, as
discussed previously, that the ground state of H,„~' is
nondegenerate, the calculation so far outlined will

immediately give us the ground-state energy of the
ct,"tgut' system. In order to 6nd the excited states of the
actual physical system, we have to know which eigen-
values of H t, are spurious on account of the fact that
the corresponding wave functions fail to satisfy the
subsidiary conditions (24). It is clear that we cannot
substitute the wave functions calculated by perturba-
tion theory directly into (24) and test their admissi-
bility, because, being approximate wave functions, mome

of them will satisfy (24) exactly. In order to be con-
sistent with the perturbation procedure, we have to
relax the subsidiary conditions (24), and require that
they be satisfied only approximately. It is then our
task to dehne a consistent criterion for the approXim-
tion satisfaction of the subsidiary conditions.

The detailed developments concerning the consistent
changes necessary to relax the subsidiary conditions
will be discussed in the next section; but a brief account
here is in order. The procedure adopted consists of
replacing the simple perturbation treatment of H, &' by
a canonical transformation which eliminates the inter-
action term H~ to a given order of g'. Simultaneously,
the subsidiary conditions (24) will be transformed into
the new representation and assume the form

which satisfies the subsidiary conditions. Adams, there-
fore, concludes that the split of H, &' into Ho, H~, and
Hp in (22) is artificial and meaningless.

This conclusion is incorrect. The fact which Adams
pointed out amounts only to the statement that none
of the perturbation wave functions can satisfy the
subsidiary conditions (24). This is evidently true,
because the subsidiary conditions (24) do not commute
with Ho., but this is not relevant to the present develop-
ment, because we do not require (24) to be rigorously
satisfied. The logic of the present development consists
of first justifying the use of perturbation methods in
the calculation of the eigenvalues of H, t (and we may
ignore the subsidiary conditions while doing so), and
then pointing out that in a consistent perturbation
treatment it is eecessasy to relax the subsidiary condi-
tions. If we do not relax the subsidiary conditions, the
procedure wouM be inconsistent and meaningless.

. To emphasize the logical steps in our development,
we shall recapitulate the procedure as follows:

(1) Our primary concern is to calculate the eigen-
values of the physical Hamiltonian H. To do this, we
shall first diagonalize H, t,

'. After this is done, we omit
the states of H, &' which do not satisfy the subsidiary
conditions (24).

(2) The different operators Hp, Hi, and Hp in (22)
clearly separately have 6nite eigenvalues. It has been
shown, further, that for the low-lying eigenvalues of
H. &', the contributions of H~ and H2 are small com-
pared to that of Ho. Therefore, we are justified in
treating Hi and Hp as small perturbations, insofar as
the calculation of eigenoalues are concerned.

(3) The ground-state energy of H is immediately
obtained, because it coincides with the ground-state
energy of H, t,', as we have argued in the last section.

(4) To obtain the excited energy levels of H, we
need to know which states of H, &' satisfy the subsidiary
conditions. Since the eigenfunctions of H, & are calcu-
lated only approximately, we only require that they
satisfy the subsidiary conditions approximately. It is
incorrect to require that they satisfy the subsidiary
conditions exactly. The exact subsidiary conditions are
incompatible with the approximate Hamiltonian, be-
cause they do not commute with the latter.

(5) A consistent procedure can be given in which the
subsidiary conditions are satisfied only to a given order
in the language of the perturbation theory employed.
That this is formally possible and, in fact, physically
meaningful renders the whole theory consistent, as the
next section shows.

The main emphasis of the present development is on
the calculation of the energy levels of H. The approxi-
mate wave functions calculated with the present pro-
cedure may not be good approximations at all to the
actual wave functions. It is well known that for a
many-body system, perturbation theory always yields
better energies than wave functions. In the formal
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structure of this theory, the only purpose the wave
functions serve is to provide a correct way to identify
which (approximate) eigenvalues of H,„t, are to be
retained (and are approximations to the eigenvalues
of H), by virtue of the fact that the corresponding
(approximate) wave functions satisfy the (approximate)
subsidiary conditions. The essential point is that all
the words "approximate" have the same well-defined
meaning.

5. FINAL CANONICAL TRANSFORMATION

Once we have ascertained, as in the plasmon problem,
that the residual "particles" and the oscillators can be
decoupled approximately for some choice of k„our
object at the outset has largely been won. However,
as we have discussed in the last section, the simple
perturbation calculation described in the last section is
unsatisfactory, because if we diagonalize H &' approxi-
mately in this way, we will 6nd that voce of our
approximate eigenstates satisfy the subsidiary condi-
tions; but some will satisfy them approximately. A sys-
tematic approximation procedure must therefore make
concomitant approximations in the subsidiary condi-
tions. One way to do this, as mentioned previously, is to
make a further canonical transformation to decouple
the particles and the oscillators to a given order. The
consistent changes required in the subsidiary conditions
will then be made automatically.

Again, we shall summarize briefly the results of BP.
We drop the nonlinear coupling term in (22), and
diagonalize the linear coupling term to order g' by a
standard perturbation-theoretic canonical transforma-
tion. To this order, the collective plasma oscillations
and the individual particles become completely de-
coupled. The particles acquire thereby an effective
mass m*, and the plasma oscillations a new frequency co&,

slightly. diGerent from co„. The Hamiltonian in this new
representation, neglecting terms of order higher than g',
is given by

higher order than g'. It may therefore be considered a
c number to order g'. In fact, for the value of k, given
by (26), we have'

cog 3 kg'k' k4=—+— +or„10mar „' Sm'co„'

where ky is the wave vector of the Fermi level.
The subsidiary conditions now read

[Q,(k)+n, (k)+ "5P=O, (k&k.)
where

N

Q0(k) p eik ri

(34)

gi(k) = P (k. p /mcu )'e'"'~&'

(36)

It is clear that 00 is of zero order in g', and 0~ is of 6rst
order in g', etc. Since we are solving for the energies of
the system to 6rst order in g', we need the wave func-
tions only accurate to zero order in g'. Therefore the
subsidiary conditions are

P; e'"' &=0, (k&k,). (37)

These conditions are compatible with the Hamiltonian
(31), because they commute with the latter, to zero
order in g'. We note that (35) and (37) are independent
of the plasma variables. The eigenfunctions of H, &"

are products of particle wave functions and oscillator
wave functions. The subsidiary conditions impose re-
strictions only on the particle wave functions.

To this order of approximation, then, the E' plasma
variables become truly independent variables, while the
particle degrees of freedom are reduced from 331 to
3N N' by the sub—sidiary conditions (37).The meaning
of (37) is clear. It states that the wave functions f must
vanish for configurations in which P; e'"'~'WO, but are
otherwise arbitrary. The E' conditions,

+ 2 2' [(~a*~~+~~'q~qa) —~~~5
l 2m+ k&kc

+H, ., +H, .p, , (31)

where H, .~. is a weak electron-electron interaction
arising from the exchange of virtual plasmons. The
effective mass is given by

m*/m =3N/(3N N'), (32)—

while ~& is de6ned by the dispersion relation

(k&k.). (33)
~-& [&o~—(k y,/m)5' (k/2m)'—

Although ar& as de6ned by (33) is strictly speaking an
operator involving particle variables, it has been shown
in SP that its nondiagonal matrix elements are all of

Q e'~'~=0, (k&k,)

define a 3Ã—P' dimensional subspace in the 31V-dimen-
sional configuration space. The subsidiary condition
specifies that P must vanish outside of this subspace.

No problem arises insofar as the plasma variables are
concerned. Since the plasma wave functions are not
restricted by subsidiary conditions, H, &" correctly gives
the complete spectrum of the plasma oscillations. The
lowest energy state of the system thus corresponds to
one in which no collective oscillations are excited. The
burden of satisfying the subsidiary conditions fall
entirely on the "particles, " which are actually "bare"
electrons surrounded by a cloud of plasmons.

The final variational calculation of the ground state
of H t"(k,), which determines k, by choosing that which
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yields the lowest energy, is one for which the error
incurred cannot be a priori determined —a feature of
all variational calculations. It is only when we compare
the resulting energy to experimental values that we
know how good it is; but once this is done, we have
determined X' in terms of physical variables, as given
by (26) and (11). It now has de6nite physical signi6-
cance. The ex'tended Hamiltonian 8',„~" corresponding
to E' is then completely 6xed, and acquires physical
significance, in contradistinction to all others in the
family of extended Hamiltonians. The variational
method adopted is hence not quite the usual one,
because what we do here is to compare the results from
diferent Hamiltonians with a 6xed type of perturbation
wave function, and then pick out the best Hamiltonian.
In principle, the low-lying excited states can then be
calculated with this Hamiltonian plus subsidiary condi-
tions, with the same value of k, .

With the above, we have completed the logical
development of the collective description of the elec-
tron gas.

The Hamiltonian in the representation (31) is the
one actually adopted by BP for the calculation of the
ground-state energy and the low-temperature specific
heat of electrons in metals. "2The results obtained are
in good agreement with experiments. However, the
subsidiary conditions (37) have not been taken into
account in the calculations mentioned. The particle
wave functions used consist of a Slater determinant of
plane waves, modified slightly by the short-range corre-
lations introduced by H, , and H, .~., and do not satisfy
the subsidiary conditions (37).In view of the agreement
with experiments, one must ask why', jit is that, 6rst,
the ground-state energy is so closely approximated;
and that, second, the specific heat does not contain
spurious contributions from the extra E' degrees of
freedom that are in fact quenched by the subsidiary
conditions. We shall try to answer these questions on
physical grounds.

Let us consider how the particle wave function need
be modified in order that it might satisfy the subsidiary
conditions and what the e6'ect of such modifications
might be on the energy. The desired modification
involves the introduction of rather slight and subtle
correlations in the electron positions, of just such a kind
as to bring about the reduction in the long-range
density fluctuations implied by (37). Such modi6cations
will not, however, inQuence the energy appreciably.
First of all, the potential energy (coming from H, , )
will be relatively unaGected, because II, , involves
only short-wavelength density 6uctuations (k) k,) while
the subsidiary conditions inQuence only the long-wave-

length ones (k(k,). Hence we might expect that terms

arising from H, , will be inQuenced by the subsidiary
conditions only to the extent that the long-wavelength

density Quctuations are coupled to the short-wavelength

rs D. Pines, Phys. Rev. 92, 626 (1953).

ones. This coupling proceeds via H2, and is, as we have
seen, extremely small for any realistic choice of k,.
Secondly, the kinetic energy is also relatively un-
affected because the long-range correlation implied by
(37) involves only slowly varying 6uctuations in the
particle density and hence "costs" little in kinetic
energy.

As to the specific heat at low temperatures, one
might at first think that since the number of electronic
degrees of freedom is reduced from 3X to 3N—F' by
the subsidiary conditions, the speci6c heat should also
be correspondingly reduced if one had taken the
subsidiary conditions into account; but this is not true.
The eGect of the subsidiary conditions becomes im-
portant only when we consider an excited level of the
system in which an electron has sufhcient energy to
excite a plasmon (i.e., So&„~8 ev), because it is only
then that we have to be careful about the degrees of
freedom allowed the electrons. N'ear the ground state,
and indeed for levels near the ground state up to an
energy large compared to kT, where T is room tem-
perature, no electron can have that much energy.
Consequently, calculating the specific heat with or
without the subsidiary conditions makes little di8er-
ence. To put the argument a diferent way, we may say
that the subsidiary conditions "freeze out" certain
electron excited states in which an electron has suK-
cient energy to excite a plasmon; but actually near the
ground level there are no such states. Such states, if
there were any, have already been "frozen out" by the
Pauli principle, which effectively allows not all 1V, but
only a fraction kT/Ez (Zz ——Fermi energy) of the
electrons to be free. For most metals, Eg~s ev, so that
even at room temperature,

k T'//8 p 1/200.

This is to be compared with the fraction of degrees of
freedom excluded by the subsidiary condition, namely,

1P/31V 1/50 to 1/10,

for all metals. We see that for temperatures up to room
temperature, the inhibition by the Pauli principle is
much stronger than that by the subsidiary conditions.

In this connection, it is interesting to note that
Kanazawa" has recently carried out a calculation of the
diamagnetic susceptibility by using the methods of the
collective description. In his calculation he explicitly
takes the subsidiary conditions into account. The
results he obtains differ only slightly from those found
by one of us' ignoring the inQuence of the subsidiary
conditions.

6. CONCLUSION

We have seen that the subsidiary conditions do not
cause any essential complications in the development
of our descriptiou of electron interaction. Thus we
have shown that the physical properties of the electron

"H. Kanazawa, Progr. Theoret. Phys. Japan 15, 273 (1956).
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system which we calculate ignoring the subsidiary con-
ditions are in fact rather accurate, and we have under-
stood the underlying reasons for the validity of the
"no subsidiary condition" approximation. We might
summarize these reasons in the following fashion:

(1) The ground state of the extended Hamiltonian,
if nondegenerate as it almost certainly is, agrees with
the ground state of our original Hamiltonian. This
encourages one to attempt an accurate solution for the
extended Hamiltonian ground state.

(2) We find that for a suitable choice of k„such an
accurate solution may be obtained. It is equivalent to
a perturbation theory expansion in powers of g',
where g', the plasmon-electron coupling constant, is
approximately ~'~.

(3) To terms of order g', the subsidiary conditions
can be transformed to a representation in which they do
not involve the plasmon variables. Hence the plasmons
will be completely unaGected by the subsidiary condi-
tions (up to order g'). In this representation the
subsidiary conditions do act on the electron variables.
However, we can neglect their e8ect on the ground-
state properties, to the extent that we have a good
solution for our extended Hamiltonian. Furthermore,
we have seen, on physical grounds, why the subsidiary
conditions will not markedly inRuence the ground-
state energy.

(4) Finally, we find that the subsidiary conditions do
not appreciably acct the specific heat, because the
degrees of freedom which might be "frozen out" by the
subsidiary conditions have long since been frozen out
by the Pauli principle.

We should like to remind the reader that the simple
determinantal wave function, which has frequently been

employed to calculate metallic properties on the above
model, certainly does not satisfy the subsidiary condi-
tions. (It does, of course, satisfy (ps)A, ——0.) We strongly
suspect that the true wave function, which does satisfy
the subsidiary conditions, divers drastically from simple
determinantal form, though we emphasize our belief
that all physical properties calculated with the true
wave function will closely resemble those already calcu-
lated with the simple determinantal wave function
(modified to take into account the short-range electron
correlation). How might one, however, try to get an
improved wave function? Clearly one way to do this
is to get a better solution for the Hamiltonian, H, &",

Eq. (31). As remarked in BP, the improvements must
come from taking into account the influence of H, .~. on
the system wave function, since H, .~. is the only term

in (31) capable of modifying the wave function in such

a fashion as to enable it to satisfy (35).
Unfortunately, but not surprisingly, one cannot do

this simply, i.e., by perturbation theory. If one treats

H, .~. by perturbation theory, one finds that the second-

order perturbation-theoretic contribution is of the same

size as the zero-order one. Both contributions are
extremely small compared to the kinetic energy. (They
represent corrections of less than 5'%%uz.) Thus we are in
no convergence difhculties as far as calculation of the
energy is concerned, but it is necessary that we go
beyond second-order perturbation theory in treating
this term. This we have not yet accomplished.

In conclusion we remark that there now exist two
systems for which our assertions concerning the role
played by the subsidiary conditions may be rigorously
checked. One is the free-electron gas at very high
densities (r, & 1).The energy of this system has recently
been calculated by Gell-Mann and Brueckner" by a
quite diferent method which is valid in the high-density
limit. The comparison should be between the two
diferent methods of calculating the long-wavelength
part of the Coulomb interaction (4&k,). (The calcula-
tion of the energy arising from H, , by second-order
perturbation theory is certain to be improved by the
adoption of the Gell —Mann-Brueckner techniques. ) At
this writing a detailed comparison is not possible be-
cause Brueckner and Gell-Mann omitted certain terms
(analogous to the plasmon modes) which contribute to
the correlation energy, "but a comparison in the near
future should be feasible.

The second system is the dilute hard-sphere boson
gas, which has recently been treated by using methods
identical to those discussed in the foregoing. "Again
the energy so obtained agrees with that obtained by a
quite different method by several investigators. '~

This manuscript was partially prepared, and part of
the work described therein was carried out, while two
of us (K.H. and D.P.) were summer visitors at the
Bell Telephone Laboratories, Murray Hill, New Jersey.
We should like to thank Professor John Bardeen, Pro-
fessor Francis Low, Professor Conyers Herring, Pro-
fessor Eugene Wigner, and Professor Arthur Wightman
for stimulating discussions on these and related topics.

APPENDIX

In this appendix we study a simple example of a
particle coupled to an external field via a coupling of
the type similar to that encountered in (15). The
example chosen is simple enough so that we can calcu-
late the lowest eigenvalue exactly, and see that by
increasing the external field in any manner the eigen-
value always increases.

r4 M. Cell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).
We should like to thank Dr. Gell-Mann and Dr. Brueckner for
making their manuscript available to us in advance of publication.

'5 K. Brueckner {private communication).
'e D. Pines and P. Nozieres (to be published).
'r T. D. Lee and C. N. Yang, Phys. Rev. 105, 1128 (1957);

Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957);Proceedings
of the Stevens Institute Conference on Many-Body Problems (to
be published); K. Huang and C. N. Yang, Phys. Rev. 105, 767
(1957); K. Brueckner and K. Sawada, Phys. Rev. IQ6, $117,
1128 (1957).
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FIG. 2. E as a function of
A, showing that in this one-
dimensional model, turning
on an external field (A)0)
always increases the energy.

we have
d2

Z(A, ip) = — +-,'A'+A cos(2srssps —q). (A/)
ch2

We seek the lowest eigenvalue E of H(A, p). Letting

Z= 7i NS

we find that the eigenfunctions lt satisfy Mathieu's
equation,

H =—d'/dxs. (A1)

The lowest eigenvalue is obviously zero. We can rewrite,
as an identity,

d2

+s(p.*p 1)—
tSX

where —e21I as@
Pth (A3)

n being a positive integer not zero. Assume now that
an external field C can be turned on by merely letting

pa~pm+Cp (A4)

where C is an arbitrary complex number. The Hamil-

tonian with this field turned on is then

g2

~(C) yr (CeCyC+»e~n*+. Ce e~ *) —
(Ag)

dg2

In terms of the argument and modulus of C, i.e., writing

The Hamiltonian in the absence of external field is
a very trivial one of a one-dimensional particle in a
box of unit length, with periodic boundary conditions:

d'f 1
+ [(E——',A') —A cos(2») $$=0, (A9)

d»' (srss)'

with the periodic boundary conditions that P(z) be
periodic in z with period x. The state that has the lowest
value, for any value of A, is"

f(z) =Cep(z, A), (A10)

where Cep(», A) is the Mathieu function which reduces
to unity when A =0. The corresponding eigenvalue is
well known. We shall just quote the results:

1 y 7 A'q
E=-,'( 1—', /As+

] [+O(AP)
(arm)') 2048 ( (7rm) s)

for A/[16(s I)'j«1, (A11)
and

E= -',A' —(1——,'V2)A —(-',srn)'+O(1/A)
for A/[16(rrw)']))1. (A12)

As a function of A, E shows the qualitative behavior
shown in the sketch of Fig. 2. It is clear that A =0 is a
minimum of E, yielding E=O, and that it is the only
minimum.

C=Ae'~ (A6)
"E. T. Whittaker and G. N. Watson, ilforhsre Agalysss (Cam-

bridge University Press, Cambridge, 1948), Chap. XEX.


