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Isotropic Rotational Brownian Motion
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The Brownian motion of the orientation of any rigid body (sphere, set of rectangular axes, etc.) is calcu-
lated for the case of individual random infinitesimal rotations whose probabilities are independent of the
direction oi the axis of rotation (isotropic case). The calculations are carried out by means of quaternions;
the more important formulas are also given in terms of the rotation angle and axis direction. The unit solu-
tion, or distribution of orientations arising from a specified initial orientation, is found as a series converging
rapidly for not-too-small times. It turns out to be expressible in terms of a theta function, and thus there is
also available a series converging rapidly for small times. The use of the unit solution as a propagation func-
tion is discussed brieQy, and is illustrated by verification of the iteration property of the unit solution.

INTRODUCTION

HE problem of isotropic rotational Brownian
motion arose in connection with work of Purcell

on spin relaxation in systems with more than two spins
in the same molecule. The solution obtained here is
used in work on spin relaxation by Purcell and Hubbard,
to be published in the near future. It may 6nd other
applications to the effect of random three-dimensional
rotations on functions of a number of coupled vectors.

The dynamics of rotational Brownian motion of a
sphere around a given axis has been discussed brieQy

by Einstein in one of his early papers. ' We have here to
consider the possibility of rotations around axes arbi-
trarily oriented in three-dimensional space, and to find
the more complicated formula that replaces the simple
Gaussian unit solution found in the cases of transla-
tional motion and of rotation around a given axis. The
complications arise from the noncommutativity of
rotations and from the finite extent of the space of
orientations.

We shall not devote space here to discussion of
possible models for the elementary disturbances causing
the rotational Brownian motion, or of possible physical
causes. ' The model used for the calculation is closely
analogous to the random-walk model. We postulate
that in the small time At there is a probability

tkt ' p(e) dedQr

for a rotation' through an angle between 2e and 2 (e+de)

' A. Einstein, Investigations on the Theory of the Bro vnian Move-
rrtertt (Dover Publications, New York, 1956), pp. 32—33. Original
in Ann. Physik 19, 371 I,'1906), pp. 379-380.' Excellent discussions for translational cases are contained in
the two review articles by S. Chandrasekhar, Revs. Modern Phys.
15, 1 (1943) and by M. C. Wang and G. E. Uhlenbeck, Revs.
Modern Phys. 17, 323 (1945). LBoth are reprinted in Poise asd
Stochastic Processes, edited by N. Wax {Dover Publications, New
York, 1954).j On the physical nature oi the Brownian motion, the
Einstein reprints (reference 1) are particularly useful.

' A physically more realistic postulate would involve changes of
angular velocity rather than of orientation itself. We assume that
the present simpler procedure gives correct results. This is known
to be true in analogous translational cases, and the precise
analogy of the result for short times, Eq. (3), with the transla-
tional case indicates that it is true for the present case provided
the angle traversed during the relaxat;ion time for loss of angular
velocity is sag, ll.

around an axis with direction falling in the element of
solid angle dQr. The integral of p(e)dedQr is taken to be
finite, so that for small enough b, t the probability of a
rotation is small, and that of more than one rotation
in Dt can be neglected. Appreciable values of p(e)
occur only for e so small that its powers beyond the
second can be neglected.

As in the translational case, the probable e6'ect of
the random disturbances during a time in which many
of them occur can be described in terms of a diffusion
coe%cient, which we here define by

(2)

For sufficiently small time the angle of rotation remains
small, and sects of noncommutativity and periodicity
are negligible. The analogy to the translational case is
then complete, and the probability for the resultant
angle of rotation to fall between p and y+drp has the
Gaussian form

Ii(y)dy= (4orDt) 'exp( —vo'/4Dt) —4sr(p'dy, Dt&(1. (3)

Section I is devoted to a statement of the geometrical
descriptions of rotations that will be used. Section II
contains a straightforward derivation of the diGusion

equation from an integro-diGerential equation of the
Boltzmann type. The unit solution is constructed in
Sec. III; its use as a Green's function (propagation
function) is described in Sec. IV, and is illustrated by
showing that it generates the unit solution for t+ts
from those for t and to. An appendix describes the iso-
morphism of quaternion rotation operators with the
rotation operators for Pauli spin furictions, which are
more generally familiar to present-day theoretical
physicists.

I. DESCRIPTIONS OF ROTATIONS

Perhaps the simplest geometrical representation of
the possible rots, tions (orientations) of a rigid body is
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that given by Wigner in his book on group theory. 4

Each rotation is represented by a point inside, or on the
surface of, a sphere of unit radius. The distance from
the origin to the point is io/w; y(s being the angle of
rotation from the standard or initial orientation. The
direction of the vector from origin to representative
point gives the direction of the axis of rotation, the
sense of the vector being chosen by the right-hand-
screw rule. Surface points at opposite ends of a diameter
represent the same rotation (change of orientation),
since' rotations through x and —x give the same result.

When we consider the Brownian motion of the ori-
entation of the body, this question arises: What dis-
tribution of probability for the representative point
corresponds to random orientation, which will be
reached for t —+ ~, and which must give a stationary
distributions In other words, what is the statistical
weight distribution in the "Kigner sphere" P The
answer is'

(weight in d ydQ) o: -', (1—cosy)dq dQ
~-,'sin'(q/2)dqdQ. (4)

s= sin(y/2), c=cos(q/2) = (1—s')&. (6)

The resultant of two rotations is represented by the

quaternion that is the product of those corresponding

to the individual rotations; multiplication is associative

The statistical weight per unit volume in the sphere is
thus proportional to [sin(q/2)$'/y'. This result will be
rederived in a very simple way as we proceed.

Of the various ways to calculate the resultant of a
series of successive rotations, by far the most convenient
for the present purpose is the use of quaternions. If
the student of today encounters quaternions at all, it
-is almost certain to be in a discussion of their remark-
able properties as an algebraic system, and without
regard to their kinematical use. The writer knows of
one published explanation' in which the nature of
quaternions as rotation operators is made clear in a
brief discussion taking full advantage of a previous
knowledge of ordinary vector algebra. An even more
rapid approach for physicists is now the isomorphism
between quaternions and the Pauli matrices; the way
in which this leads to the rotation operators is indicated
in the Appendix.

The operation of turning through the angle q ((w)
around the axis with direction cosines l, ns, n, corre-
sponds to the quaternion

c+Ni+ej +wk= c+s(li+mj+Nk),
with

and distributive, and

i =j =k =—
1& ij= —ji=P etc.

The left-hand factor represents the rotation performed
last.

The standard or initial orientation can be taken to
correspond to 1=1+Oi+Oj+Ok, and then the quater-
nion (5) represents both a rotation operation and the
orientation it produces from the initial orientation.
Each orientation can be represented by a point with
rectangular coordinates I, v, m. This point is inside or
on the surface of a unit sphere. The direction from the
origin to the point gives the direction of the axis of the
rotation that produces the given orientation; the dis-
tance from the origin is s= sin(y/2). As for the Wigner
sphere, surface points at opposite ends of a diameter of
the "quaternion sphere" are identical in meaning.

From d&p=2Lcos(p/2)$ 'd sin(y/2), we see that the
weight-distribution (4) in the Wigner sphere corre-
sponds to the distribution

(weight in ds, dQ) ee Leos(p/2)g
—'s'dsilQ

~ c 's'dsdQ

in the quaternion sphere. The proportionality factors
are the same in Eqs. (4) and (8).

II. DERIVATION OF THE DIFFUSION EQUATION

We define the distribution function f so that

f(g,e,w; 1)dtid vdw= probability that orientation
is in dudedw at I, e, w at time l. (9)

The in6nitesimal rotation by angle 2e around the axis
with direction cosines li, mi, tsi, is represented (to
second order in e) by the quaternion

1 ', e'+ e(lii+——mj+nik)

To get the new position of the representative point
that was at I, n, w, we multiply the quaternion (5) by
the quaternion (10); the result is a quaternion with the
coeKcients

c =c(1 se )+e( li—g vmrs—iw), — —
zb =N(1 se )+e(lic—Nis+miw)
e'= e(1——,'e')+e(m, c—l, +w, ts),I

w'= w(1—-', e')+ e (tsic—miN+lie).

The reciprocal of the quaternion (10) is (to order e'):

1 ', e' e(l&i+m—&j—+e—ik). (12)
4 E. %'igner, Grlppentheorie Nnd ihre Anmendlng usaf die

QNuntenmechunik der Atomspektren (Friedrich Vieweg und Sohn,
Braunschweig, 1931),p. 99.' Reference 4, pp. 162-163.

G. Kowalewski, EinfNhrung in die Theoric der Xontinlierlichen
Gtgppel (Chelsea Publishing Company, New York, 1950), pp.
21-24.

Operating on the quaternion with coeKcients (11), this
gives back our original quaternion (5); (12) represents
the operation inverse to that represented by (10).
/heir probabilities are equal.
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The change of f in the short time ht is then

{f(u, v,w; t+ht) f—(u,v,w; t) }dudvdw

Dtf(—u'v, w; t)dudvdw i p(e)d'dQg

+At) p(c)dedQg f( u', v', w', t)du'dv'dw' (.13)

which must appear when we integrate over dQ~. The
Gnal result is proportional to the diGusion coeKcient
D delned in Eq. (2); we obtain

(Bf/Bt) = 'DL-(1 —u') (8'f/Bu')+ (1 v)—(8'f/Bv')
+ (1 w'—) (8'f/Bw') 2u—v(8'f/BuBv) 2v—w
X (8'f/BuBw) 2wu—(8'f/BwBu) Su(8—f/Bu)

Sv—(8f/Bv) 5w—(8f/Bw) 3f—]. (19)

By using the identity

u(8/Bu)+v(8/Bv)+w(8/Bw) =s(8/Bs),This is just analogous to Boltzmann's equation in
kinetic theory. The first term on the right gives the
probability that the representative point has been
removed from dude+ in the time ht; the second gives
the probability that the point has been sent into
dud~de by an operation inverse to one of those that
might remove it.

Owing to the postulated properties of the funda-
mental probability distribution (1), we can readily
obtain from Eq. (13), for ~t ~ 0, a simple differential
equation. %e make the substitution.

we can write Eq. (19) in the form

(Bf/») = lD(~'f (8/8 —)r '(Bf/8 )]
3s(8—f/Bs) 3f}—. (20)

Here the Laplacian operator V' acts in the u, e, m space.
Instead of the distribution function f, which is the

probability per unit volume with the volume element
given by dudvdm, we can introduce a function g that
gives the probability per unit weight, with the weight
element given by c 'dude'. Ke have

du'dv'dw'= dudvdw 8(u', v',w')/8(u, v,w). (14)
(21)

Straightforward computation of the determinant from
Eqs. (11) gives

8(u', v', w')/8 (u, v, w) =c'/c

and the diffusion equation for g is found to be

(15) (Bg/Bt) = 'D(V'g (8-/Bs) I:~'—(8glBs)] s(Bg/Bs) }—. (22)

By dividing Eq. (13) by At dudvdw and letting LU —+ 0
we now obtain the equation

(Bf/Bt)=c ' P(e)dedQi(c'f(u', v', w') cf(u, v,w)}.—(16)

A proof of the weight distribution (8) or (4) is con
tained essentially in Eq. (15), which relates the volume
elements occupied by the same element of probability-
or the same set of systems of an ensemble —before and
after a given rotation. The truth of Eqs. (8), (4) is
particularly evident from Eq. (16), which shows that
the distribution that makes cf(u, v,w)=const is sta-
tionary. By a procedure precisely analogous to the
proof of Boltzmann's H theorem, one readily shows
that the quantity

~1

I=) (h/c) 4vs'ds=1.
0

(24)

Multiplying Eq. (23) by (4rs'/c)ds and integrating, we
have

0= (dI/dt)
pl

This equation again makes obvious the fact that cf= g= const is a stationary distribution.
If we denote by h a spherically symmetric solution of

Eq. (22), then

(Bh/Bt)
= ~D{(s—'—1)(8/Bs) [s'(Bh/Bs)] s(Bh/Bs—)}. (23)

As (tt/c) 4v s'ds is an element of probability, normaliza
tion requires that

H= '

fin(cf) dudvdw (17) =v D (c(8/Bs)fs'(Bh/Bs)] s'c '(Bh—/Bs)} (25).
0

has negative or zero time-derivative, and is stationary
only for cf=const, f~c '.

The reduction of Eq. (16) to a diGerential equation
is accomplished by using Taylor's series to express the
integrand to order c' in terms of derivatives of f and
the differences c'—c, u' —u, v' —~, m' —m given by Eqs.
(11).The resulting expressions 'are enormously simpli-
6ed by replacing the direction cosines l~, nz~, m& and
their products by their average values

The integrand is an exact derivative, and we obtain

That is,
v D[s'c(Bh/Bs)]0'=0.

s'(Bh/Bs) -+ 0, s ~ 0

c(Bh/Bs) -+ 0, s-+ 1

(26)

(27)

are the boundary conditions that assure that there is
no creation of probability at the origin and no Bux of
probability through the surface of the sphere. The
erst condition is automatically satis6ed if h is non-
singular at s=0. If we change to the variable y (or
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p/z, the radial coordinate in the Wigner sphere), we In terms of the variables y and q, the boundary condi-
have, by Eqs. (6) and (27), tions (27) become

(Bh/B y) —+ 0, (q/z. ) —& 1 (2g)

at the surface of the Wigner sphere. On the other hand,
keeping the variable s but setting h=cf, we see that
this boundary condition can also be written

f=g=h=b(N)5(i)8(w), t=0 (37)

y—2 sin(y/2)(By/Bq) ~0, p~0,
ycos(q/2) 2(B—y/Bp) ~0, p —+z. (36)

We wish to find the solution that takes the form

(29)c'(Bf/Bs) sf~—0, s ~ 1.
at the initial instant of time. In terms of the variable q,
the element of weight has the form given by Eq. (4).
Our unit solution must be such that

Here the first term must be retained, because f is ordi-
narily singular on the surface of the quaternion sphere.

The boundary condition can be fixed for the general
case, in which the distribution is not spherically sym-
metric, by using the general expression for the Aux of
probability. Equation (19) can be put in the form

y —+0 for p&0, t —+ 0,

f 8

2z.
~

y sin(p/2)dp=1, t) 0.
'

0

(39)

(Bf/Bt) = —(BJ /BN) —(BJ,/Bv) —(BJ„/Bw), (30)
The reason for the factor 2m rather than kr in Kq.

(39) can be seen by comparing Eqs. (4) and (8).
J = —(D/4) {(1—e') (Bf/BN) The required solution can be obtained as a linear

combination of solutions having exponential time-
dependences. Ke set

etc. This is the only expression linear in f and its
derivatives that can be written to make the right-hand
member of Eq. (19) a negative divergence. This ex-

pression for the Aux of probability can be derived
directly from kinematical considerations. The argument,
which is rather more involved than that used above to
derive Eq. (19), will not be presented here.

From Eq. (31) we have for the radial component
of the Aux:

r= &-r-(~) exp(-7-Dt) (40)

Then, if we assume uniform convergence, which will be
verified later, y will satisfy Eq. (35) provided that the
y„(y) satisfy

(d'y. /dz')+ (v-+4)y-= o

Then the y„are sinusoidal functions, and will indi-
vidually satisfy the boundary conditions (36) if

J,= (eJ +zJ„+wJ) /=s',D{c'(Bf/Bs—) -sf). (32)— y (0)=0, y.'(z)=0.

Equations (41), (42) are satisfied by

(42)

Now, if a rotation sends the representative point out
of the sphere at one end of a diameter, it sends the
point into the sphere at the other end of that diameter.
Accordingly, the general boundary condition is that
the values of J, at the two ends of any diameter are
equal and opposite. For a spherically symmetric dis-
tribution this gives (29).

y =A sin(e+-,')p, e=0, 1, 2,

y.=e(e+1).
(43)

(44)

The coeKcients A„will be found to be algebraic func-
tions of e, so that the series (40) converges uniformly
for all t&0. The convergence fails, of course, for t=0,
as the function y takes on the singular behavior specified
in Eqs. (37)—(39).

The coeflicients in. the expansion of a function z(q),
for 0&ad&x, in terms of the orthogonal functions
sin(e+-,') q,

III. CONSTRUCTION OF THE UNIT SOLUTION

If, in Eq. (23), we introduce the independent variable

q by Eq. (6), we obtain

(Bh/Bt) =D{(B'h/B v')+cot(~/2) (Bh/Bv)) (33)
z(q) =Q B„sin( +e-', ) q

n=o

a.= (2/~) z(P) sin(e+-,')~d„. (46)

Although the function defined by (38) and (39) for
t=o is highly singular, and the possibility of expanding
it might be seriously doubted u priori, we proceed to
evaluate the coefficients A„, and the resulting function

(35) y will be found to be just what is required. By Eqs.

h= Lsin(p/2) j 'y,

(By/Bt) = D{ (B'r/B&)+'r)
we have

If h takes appreciable values only for p so small that
cot(p/2) can be replaced by 2/&p, Eq. (33) becomes the»e g»en by

ordinary diffusion equation for a spherically-symmetric
case.

We now eliminate the first-derivative term by a
change of the dependent variable. With
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(38)—(40), (43), (45), and (46), we have

A „=(2/m) y sin(is+-', ) q d q, (47)

then obtain

h= —$m'Dt sin'(q/2)g le 'l'(8/Bpp)

Xexp) —q '/(4Dt) $84[im. q/(2Dt),
exp( —ir /Dt) $ (54)

with the whole contribution coming from an in6nitesi-
mal neighborhood of the point @=0.Here we can re-
place sin(so+-,')op by (2si+1) sin(op/2), and then by
Eq. (39) we get

A„= (2m+1)v. '. (48)

&y Eqs. (34), (40), (43), (44), and (48), we now have

This is the unit solution expressed as a probability
density in terms of an element of statistical weight;
( hdudvdw) /c is the probability that the representative
point, which was at the origin for t=0, is in dgdedm.
The probability that the resultant angle of rotation
from the initial orientation is between q and q+dq is

F (qp)d q =h(4sss'/c)ds = h 2ir sin'(q/2)dq

= (2/ir) sin(q/2) P (2n+1) sin(si+o') q
n=p

This can also be written
Xexp) —n(n+1)Dt). (50)

h=(mo sin(q/2)) ' P (2m+1) sin(n+~p) q
n=o

XexpL —I(so+1)Dtf. (49)

with the expansion

h= [4r'D't' sin'(pp/2)g ' expL(Dt/4) —op'/(4Dt))

X(qL1—2exp( —v'/Dt) cosh(irq/Dt)+
—kn. Lexp (—ir'/Dt) sinh (V.q /Dt)

—2 exp( 4r—o/Dt) sinh(2irq/Dt)+ )). (55)

The corresponding expansion for the distribution func-
tion F(qp)d8 is obtained by multiplying by

2n. sin'(qp/2) d q.

For Dt«1, only very small values of p give appreciable
values, and the expression reduces to that given in Kq.
(3). This is obviously in accordance with the require-
ment (38).

IV. USE OF THE UNIT SOLUTION
AS A GREEN'S FUNCTION

In order to keep the intuitive meaning of the ex-
pressions as clear as possible, it is advisable to work
with the functions g(u, v,w; t) that give the probability
per unit statistical weight. The spherically-symmetric
unit solution h is a special case of such a function.

The solution of the rotational diffusion problem in
terms of a propagation function is

g (u', v', w', to+t) = G(u', v',w'; t; uo, vp, wo)

For t —+ ~ we get the equilibrium distribution

F(rp)dy=ir (1—cospp)dy, (52)

which, of course, is just the distribution of statistical
weight LEq. (4)j.

The expressions (49)—(51) are easy to evaluate when
Dt is not too small, and, for t&0, clearly correspond to
a function y that satisfies Eqs. (35) and (39). For pur-
poses of evaluation when Dt is small, and to verify
that the behavior as t —+0 is in accordance with Eq.
(38), a different sort of expansion is needed. This is
provided by the fact that our solution can be written
in terms of a@ function.

Kith the notation of Khittaker and Katson, ~ we have

h= —LV' sin(q/2) j 'eD'~'(cl/8q)go(q/2, e D'). (53)

F(qp)dq=v ' P (2si+1)Lcoseop —cos(m+1)opj
n=p

XexpL —n(m+1)Dt). (51)

Xg(uo)vo, ~o, to)cp 'duodvodvvp. (56)

From the intuitive meanings of the g's and of our unit
solution h, it is clear that the Green's function 6 should
be just such a function h, but "centered" on the ori-
entation No, eo, mo rather than on 0, 0, 0.

Indeed,

G(u', v', w', t; up, vp, wp) =h(u, v,u; t) =h(q, t), (57)

where the rotation I, v, m, with rotation angle q, is
dehned as the rotation that takes the orientation
No, vo, mo over into the orientation I', e', m'. Then

c'+u'i+ vj'+ui'k
= (c+ui+vj +vek) (cp+upi+vpj+wpk). (58)

The quaternion c+ui+jn+wk can be found explicitly
by multiplying Eq. (58) from the right by cp—upi—

Spy
—mok. Ke require only the angle p, which is thus

found to be given by

By the functional relationss between 8 functions, we or
c=c cp+u uo+v vp+w wp (59)

' E. T. Whtttok«»d G. N. W«ooii, Made n Analysis {Cam- cos(y/2) =cos(y~/2) cos
bridge University Press, New York, 1927), p. 464.

Reference 7, pp. 475—476. +sin(pp'/2) sin(q o/2) cosO~, (60)
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where 0' is the angle between the axes of the rotations
I', e', w' and No, eo, no. This description of the com-
position of rotations in terms of a spherical triangle
whose sides are the half-angles has a simple geometrical
interpretation. '

The function h(op, t) used here is that given by Eqs.
(49) and (55), but op= 0 is not at the center of the sphere
over which the integration in Eq. (56) is taken. Thus,
values of p larger than x are involved. This is perfectly
legitimate; the series still converge uniformly and
satisfy the dif'ferential equation, and at the surface of
the up, vp, wp sphere the function f=cp 'h(op, t) satisfies
the general boundary condition stated at the end of
Sec. II; this last fact can be veri6ed explicitly by a
little trigonometric calculation, which we omit here.
Note that [sin(y/2)1 ' sin(e+o) op is an even function
of cos(p/2), so that [from Eq. (49)j:

A term of the last integral contains the factor

I+
[2 cos (~+.)op)

~ „
=4 sin[(N+ oi) op') sin[(e+-', )yp$. (64)

The integration over d yo now involves products of
orthogonal functions, so that the only nonvanishing
contributions are from eo= n, and the result is

g(N', ~',w', tp+t)
= [n' sin(y'/2)] ' P„(2m+1) sin(e+~o) &p

Xexp[—~(~+1)D(to+t)3= h(p', t,+t), (65)

as expected.

APPENDIX. SPINNING ELECTRON AND
QUATERNION ROTATION OPERATORS

h(q ) =h(2or —y). (61) The Pauli matrices satisfy
In making any calculation with Eqs. (56) and (57),

the value of q has to be taken from Eq. (60). Sometimes
the most convenient way to bring this relation in is to
introduce as variables of integration the angles yo and

and the azimuthal angle C between the plane con-
taining the axes of the y' and yo rotations and a 6xed
plane (for given I', e', w') containing the axis of the q

'

rotation. We have

or

Also

or

0,0„=Zo„etc.,

( io.)—( .io „)—= ( ia,)—, etc.

o~ =op =0'g2 2 — 2

(—io )'= (—iop)'= (—io )'= —1.

(A1)

(A2)

(A3)

(A4)

&o zdlod&odmo

co 'so2dsodQo

= sin'(q p/2) d(q p/2) d(cos0) dC

= sin'(yo/2) ~8 p/8(cos8)
~

'd(qo/2)dqd4

=[sin(q'/2)$ ' sin(y/2) sin(qp/2)
Xd (happ/2) d (op/2) dC. (62)

In the last step, use was made of Eq. (60). This change
of variables makes the function 6 very simple to handle,
but may bring in new difhculties in connection with the
function g(No, vp, wp) and the ranges of integration.

As an example that works out very simply, we take
the case g(pto, &p,wp; to) = h(po, to) Equation (56) then
merely describes the further propagation of this unit
solution, and it is obvious that the result must be just
h(oo', tp+t). We substitute Eq. (62) in Eq. (56). The
integrand does not involve C, and we get a factor 2&

from J'dC. The integration over dy will be performed
next; the limits are

~

op' —yo( [0=0 in Eq. (60)j and
q'+qp(0'=m. ). Then we have

g(pt', ~',w', to+t) = [2 sin(y'/2)g 'or '

1—bop (i/A)(n M) (A6)

act on the wave function g. Here M is the angular
momentum operator. A part of M is the orbital angular
momentum

L= (l't/i) rX &.

Application of the part of the operator (A6) containing
L to f (r) accomplishes the change in the coordinates r
required by the rotation; for a particle without spin
this is the whole transformation. For spin —,',

. Comparing with the quaternion relations, Eq. (7), we
see the well-known isomorphism between the Pauli
matrices and quaternions,

( io,)~i—, ( io „)&—j&, (—io,)~—l'p (A. 5)

The Pauli matrices provide a matrix representation of
the quaternion algebra.

In the quantum mechanics of a particle, an in-
finitesimal rotation by an angle 6 q around an axis in
the direction given by the unit vector n is described by
letting the operator

M= L+ S, S=-',ho, (AS)

P (2~,+1) sin[(e, +-', ) op,)
p Ap

+0'0

.exp[ —eo(&o+1)Dto)dopo Q~(2e+1)
~

i ~'-~0(

Xsin[(e+-,') q&$ exp[—e(I+1)Dt)dp. (63)

L and S commute, and the infinitesimal operator (A6)
can be regarded as the product of a factor obtained by
replacing M by L and one with M replaced by S. The
factor with S accomplishes the change in the relative
values of the two components of P as required by the
rotation of the spin. Either factor by itself has all the
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algebraic (commutation) properties needed to give a
representation of rotations.

The spin factor is, by Eqs. (A6) and (AS),

1+-,'5yfl( io—.)+ ttt( io—„)+rt( ~tr—,)j, (A9)

where l, m, n are the components of the unit vector n.
The square of the quantity in square brackets is —1.
As is well known, iteration of the operator (A9) by

raising it to the power y/(by), with 5y ~0, gives for
rotation through the angle y the operator

cos (y/2)+ sin(y/2)
X[1(—ia,)+ttt(—ia„)+n(—ia,)j. (A10)

With the isomorphism (A5), this gives the quaternion
operator of Eq. (5).
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A measurement of the energy losses of monoenergetic neutrons scattered from liquid He II would permit
a determination of the energy-eersns-momentum relation for the elementary excitations (phonons and
rotons) in the liquid. A major part of the scattering at a 6xed angle arises from production or annihilation of a
single excitation and appears as sharp lines in the energy spectrum. From the position of these lines the
energy-versus-momentum relation of the excitations can be inferred. Other processes, such as production
or annihilation of multiple excitations, contribute a continuous background, and occur at a negligible rate
ii the incident neutrons are slow (X&4A) and the helium cold (T&2'K). The total cross-section data can
be accounted for by production of single excitations; the theoretical cross section, computed from a wave
function previously proposed to represent excitations, agrees with experiment over the entire energy range,
within 30%. Line widths in the discrete spectrum are negligible at 1'K because of the long lifetime of
phonons and rotons.

I. INTRODUCTION

HE possibility of a direct experimental determina-
tion of the energy-versls-momentum relation for

phonons in a solid was pointed out by Placzek and
Van Hove. ' They proposed to study the energy distribu-
tion of very slow neutrons scattered. inelastically and
coherently from the solid; if the incident neutron beam
is monochromatic and if the scattering process involves
only the production or annihilation of a single phonon,
energy and momentum conservation imply that the
neutrons emerging at a given angle can have only
certain discrete energies. The energy-momentum rela-
tion for the phonons can be inferred from the angular
variation of this discrete spectrum. Other processes,
such as multiple phonon production or annihilation,
contribute a continuous background above which the

.discrete spectrum is still observable.
The purpose of the present paper is to suggest that

the same technique be used to determine directly the
energy-et. rsls-momentum curve for the excitations in
liquid helium, and to predict some details of the
experiment. A direct measurement of this curve would
be of considerable interest, since the shape of the curve
has already been predicted in some detail by indirect

*Richard C. Tolman Fellow.
' G. Placsek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

%e have recently learned that some of the ideas in the present
paper have been discussed by V. V, Tolmachev, Repts. Acad.
Sci. U.S.S.R. 101, No. 6 (1955).

methods. Landau' argued on theoretical grounds that
the energy E(k) of an excitation momentum hk should
rise linearly with slope kc for small k(c= speed of sound
=240 m/sec), pass through a maximum, drop to a
local minimum at some value ko, and rise again when
k&ko. For small k, the excitations are called phonons
and may be thought of as quantized sound waves;
the excitations with k ko are called rotons, and seem
to be the quantum-mechanical analog of smoke rings."
At low temperatures, only the linear portion of the curve
and the portion near the minimum are excited; if the
curve is represented near the minimum by E(k) =5
+ttt'(k —ko)'/2tt, the specific heat and second. sound.
data can be 6tted best with the values'

6/tt=9. 6'K, ko=2 302 ', tt=0.40 tttH. ,

and almost as well with the values'

&/tc=9 6'K, ko=.1.95 A—', tt=0.77 ntH. .

A Landau-type curve has recently been obtained
from 6rst principles by the substitution of a trial
function into a variational principle for the energy. '4
The resulting curve is an upper limit to the true
spectrum, and gives 6/tt= 11.5'K, ko ——1.SS A ', tt 0.20

s L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941);ll, 91 (1947).
s R. P. Feynman, Phys. Rev. 94, 262 (1954).
4 R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).' deKlerk, Hudson, and Pellam, Phys. Rev. 93, 28 (1954),


