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CONCLUSIONS

Measurements of lifetime in plastically deformed
p-type germanium yield an electron capture radius of
3.4X1078(300/T)® cm. The room-temperature lifetime
is given by

7=0.7XNi ©)
This suggests that the lifetime in high-purity p-type
crystals may be limited by the dislocations introduced
in the crystal-growing. Measurements on #n-type ger-
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manium indicate that, at room temperature,

r=2.5Ni (6)
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It is shown that for an electron moving in a periodic potential perturbed by a weak electric field the
“physical energy bands” differ from the energy bands in the absence of the perturbing field. By means
of a wave-packet treatment it is shown that for very weak fields the modified bands are those suggested
earlier by Wannier and by Adams and Argyres. In stronger fields, no such treatment can be given, and
the functions defined by Wannier for that case do not represent “physical energy bands” in the same sense.

INTRODUCTION

T is well known that the energy levels of an electron

in a perfectly periodic potential group themselves
into “bands,” which are sometimes separated by
“forbidden bands.” The modern theory of solids pre-
dicts that an electron in one of these energy bands,
when perturbed by certain kinds of weak perturbing
field, accelerates under the perturbing force in somewhat
the same manner as would a free particle of rather
peculiar inertial properties. It is an outstanding success
of the modern theory of solids that it can account
quantitatively for many otherwise puzzling phenomena
by recourse to the expected properties of these “effective
free electrons.”

The theory of electronic transport properties in
metals and semiconductors assumes that the chief effect
of a very weak and slowly varying perturbing field is
to accelerate the effective electron about in its allowed
energy band. This assumption is used in both semi-
classical treatments of electronic motion and quantum-
mechanical treatments of the electronic energy levels in
a perturbed periodic potential, and with considerable
success.

In order to understand the ordinary “effective
electron” treatment of the effect of perturbing fields it
is necessary to answer a perplexing question of a
fundamental nature, viz., what is the status of the
energy-band concept in the presence of an external
perturbation that destroys the crystalline periodicity.
As far as this writer is aware, there has nowhere been
given a systematic discussion of how this question is to

be answered in principle. However, various authors,
when addressing themselves to specific problems,
have assumed an answer to the question sufficient for
their immediate purposes.

Recently Wannier* and Adams and Argyres® have
discussed this problem of definition of the bands in the
presence of an external field. They have given definitions
of field-dependent Bloch functions which seem to have
some of the properties that we might expect for the
energy states in the presence of the field. However,
their discussions are not complete in that they do not
show in what way the functions they construct corre-
spond to a physical definition of the “energy bands in
the presence of the field.”

In the first section we will show that the case of a
weak electric field, the field-dependent Bloch functions
defined by Wannier and by Adams and Argyres corre-
spond to the physical energy states of an electron
accelerating slowly in the electric field. The method of
attack is to find the motion of a narrow wave packet,
initially in a single energy band, as an electric field is
slowly turned on. We find that the wave packet always
behaves as though it consisted of a packet of functions
from a single energy band of the field-dependent sort.
Our results show that the motion of such a packet takes
place without any transitions between bands only if
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the force field is sufficiently weak as to satisfy an
adiabatic condition.

In the second section we discuss the situation with
regard to other perturbations. We conclude that it is
possible to construct “energy bands in the presence of
the field” for other perturbations, in particular that of
a magnetic field. However, we believe that Wannier’s
construction is incorrect for that problem.

I. MOTION OF A WAVE PACKET IN A WEAK
ELECTRIC FIELD

We shall study the motion of a wave packet in the
presence of a weak electric field. For simplicity we
consider a hypothetical one-dimensional material of
lattice spacing @, and in it an energy band of width Ep.
We expand the wave function ¥ of interest in the wave
functions ¥« of the unperturbed lattice. Thus

v=(a/2m)} f kS on(B) (L.1)

The crystal momentum representation of the perturbed
Schrsdinger problem takes the form®

i) i)
[En(k)—iF——i—]san—Z F() X nw (k) pur=0. (1.2)
ok ot n’

In (1.2) the field F(¥) is allowed to depend on time.

In the presence of a field F, the energy bands are
tilted as shown in Fig. 1. Every electron energy thus
occurs in each energy band. The energy level E in the
nth band (of width E,g) will be associated with a wave
function spread over a certain space interval of width
(EnB/ F )'

We shall define the physical energy band in terms of
the motion of an electron wave packet satisfying these
conditions.

(1) The packet has a momentum spread small com-
pared to the Brillouin zone width 7%/a.

(2) The packet has a well-defined energy with an
energy spread small compared to the band width E,p.

(3) The packet has a space spread small compared
to the width of the region (E.p/F), and its mean
position is such that its mean energy lies within the
nth energy band.

We shall show that such a packet can be constructed.
We wish to find out just what wave functions should be
used to construct it.

We shall study the time development of a packet,
initially in the n#th band, as the field is slowly raised to
its final value F. The requirement of slowness merely
means that the time required to turn the field on is
long compared to that associated with any of the
interband frequencies. Our treatment shall also assume
that F is weak, i.e., that FX,, is small compared to
any of the interband energies.

6 E. N. Adams, J. Chem. Phys. 21,2013 (1953).
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Fic. 1. Energy bands in presence of electric field.
It is convenient in some of what follows to set =1
and measure energies in frequency units. We begin by

transforming the Hamiltonian with two unitary trans-
formations. The first transformation is

d
ulzexp(fth——).
ok
Then '
d
u Huy =E(k+det)—FX(k+det)=i-a—. (1.4)
t

Next we transform with the unitary operator us:

t
u2=exp['if dt’E(k-l—det') ]
0

Writing w, for (E./%), we have

t
[uzulHuﬁu{f],./n=—exp[i f dt’wn:,.(k—l— f th’)]
0

XE@)Xwn( B+ f th). (1.6)

(1.3)

(1.5)

Equation (1.6) gives the Hamiltonian in an “inter-
action representation” with the —FX perturbation as
interaction. We shall use (1.6) to study the growth of
the component £, of the wave function. The quantity
£, belongs to some other band than the original and is
small if F is small. It will be a good approximation to
assume that £, is constant in time, therefore, provided
we work always to the first order in F. Integrating
(1.6) in time, we obtain

T t
Ewr=i f dt exp[i f dt’w,,'n(k-}— f th')]
1] 0

X X1 [ th)z,,(k). (L.7)

We shall evaluate the integral (1.7) by breaking it
up into integrals over the individual cycles of the
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exponential factor. If the field is sufficiently weak, the
functions F(f), wna(k+SFdt), and Xp.(k+ S Fdi)
will remain almost constant during one cycle of the
exponential factor, and the time derivative of each will
be effectively constant. We can then perform the
integration over the single cycle by the following device.

Define
t
()= f dt’wn'n(k—i— f th'). (1.8)
0
The integral to be evaluated is therefore given by
otor
f B[ FX ynfonrn]. (1.9)
¢

In the integrand, #'=#(¢). Integrating (1.9) by parts,

we get
FXpn d fFX i\ 10
AC) 2"
iwn’n d¢ iwn’n ¢

When we put in the limits the last term gives zero, and
the first gives

+7

¢
FU)Xn( 2+ f th’)

l iwnrn(k-l— f th')
¢
with 7 the period of the cycle. Summing over all of the

cycles and putting the result back into the Eq. (1.7),
we obtain

Enf(T)=eXP[i j; Tw,un(k—l- f th)dt]

FXn'n(k+ f FdT)
X En(R).

l Wn(k+ f FdT)

It remains to write the solution function in the
original crystal momentum representation. Using the
inverses of the transformations #; and u,, we find

¢n(k,T)=exp[—i j; Tdtwn(k—l- f Fit
X f FdT)]g,,(k—- f FdT),
¢n'(k,T)=exp[—i j; Tdtw,.(k—l— f Fdt

- FdT) ][Fxn,ﬂ(kwww(k)]

xgn(k— f EdT).

£io(®

. (1.11)

(1.12)

(1.13)
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It is to be noted that the time dependence of the wave
function ¢, (k,T) is characteristic of the »th band.
We shall examine the motion of an initially well-
defined packet as described at the beginning of the
section. If the packet is made up initially of wave
functions belonging to the #th band, then the condition
that its energy and momentum both be well-defined is
satisfied if the spread 6p of the packet satisfies

pL(%/a). (1.14)

The width éx of the packet can be taken to be of the
order of #%/8p, so the condition that the packet lie in
the proper space interval requires that

(#/8p)K (Enp/F). (1.15)

Combining (1.14) and (1.15), we obtain the condi-
tions on the width of the packet to be

(F/wnp)<KLp<(t/a).

These conditions are not very restrictive and can easily
be satisfied simultaneously by taking F sufficiently
weak.

The wave function for the packet may now be
written down for an arbitrary time after the field has
been turned on. It is

Y()= f dk exp[—i J; tdt’wn(k-i- f Fdi— f F{iT)]

X2 Y (FXwn(R)/fronn(k)) ]

an(k—det). (1.17)
We shall define

Yk P =Y it 2w Yt [FX wn(B) /Fona(R)].  (1.18)

Equation (1.17) shows that even after a long time, ¢ (¢)
consists of a packet of functions ¥, belonging to a
single “band.” The envelope £,(k— /" Fdf) of the packet
is exactly the same as the envelope £,(k) of the original
packet except that it is displaced in momentum space
by the integrated momentum transfer  Fdi. This
displacement corresponds, of course, to the classical
acceleration of the packet under the force field. The
time-dependent exponential factor describes the time
advance of phase that would be expected for a particle
in the original nth field-free band averaged over the
momentum states that the particle has occupied. The
structure of this factor is entirely analogous to that for
the wave function of a free electron accelerating in a
force field F, if the kinetic energy of the electron is
taken to be E.(p).

Equation (1.17) shows that in the presence of the
weak force field F, the electron accelerates as though
it were “a free particle” accelerating in a momentum
space exactly like that of the original energy band. In
the adiabatic approximation the packet remains com-

(1.16)



ENERGY BANDS IN PRESENCE OF EXTERNAL FORCE FIELD

pletely within the original band. However, in the
presence of the field F, the function space of the nth
band is spanned by the functions y,+¥ rather than by
the functions Y.

It is perhaps worth while to remark that there is an
ambiguity in determining the potential arising from a
homogeneous electric field that is slowly switched on.
In our treatment we have assumed that our packet is
situated near the zero of the electric potential. Other-
wise there would be an additional time dependence of
the phase arising from the potential energy in the
electric field.

II. ENERGY BANDS IN THE PRESENCE
OF THE FIELD

We have seen that in a weak electric field the energy
bands are modified by the field, so that the basic
eigenfunctions of the nth band are the ¥, rather
than the Y. These field-dependent functions are the
functions recently studied by Adams and Argyres® and
conjectured by them to be the basic eigenfunctions for
the “nth band in the presence of the field.”

The results of Adams and Argyres were given only
to the first order in F. However, Wannier had earlier
considered a more general definition of the Bloch-like
functions in the presence of the field in which he
proposed to modify the bands to all orders in the field.
We shall denote Wannier’s modified functions as ¥,
They were required to diagonalize the partial Hamil-
tonian

H®"=E—FX. (2.1)

Wannier originally believed* that the .. so defined
would have the property that in the presence of the
electric field they would correspond to electron acceler-
ation within the individual bands just as the Y.,
above. However, it can be shown that the ¥, do
not merely accelerate except in the adiabatic approxi-
mation, which holds only for sufficiently small F.
Furthermore, Wannier’s modified Bloch functions
satisfy the wrong equation if quantities of order F? or
higher must be considered.f Thus Wannier’s ;)
represent the correct energy bands only in the weak-
field approximation for which they are the same as the
Yar™. In fact, this is the only case of interest, since
whenever the adiabatic approximation is invalid,
transitions between bands will occur of the sort en-
visaged by Zener as possibly accounting for dielectric
breakdown.

Wannier has also considered the construction of
functions that correspond to electron acceleration
without interband transitions in the presence of a
magnetic field.* He proposed that the desired functions
are those that diagonalize the Hamiltonian

H® = (1/2m)[P— (e/2c)XXH P+ U.
T See appendix.
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We do not find the functions that diagonalize (2.2)
to have the desired property, even in the adiabatic
limit. We shall not here construct the functions that
would really be of interest, although they can be
constructed by means of the unitary transformations
which have been given in connection with studies of
magnetic susceptibility.:>7 The trouble with Wannier’s
prescription (2.2) is that it does not account for the
fact that in the magnetic Hamiltonian there are terms
bilinear in 7(9/dk) and P and terms bilinear in ¢(9/9k)
and X. These terms make the problem more difficult
and less vulnerable to a straightforward formal treat-
ment such as has been made above. In addition, the
“force’ is not clearly defined in the magnetic problem.

The best approach to the physical energy bands in
the presence of a magnetic field is to examine the
energy-level structure. For very weak magnetic fields
the energy levels are grouped into bands that coincide
with the field-independent bands as H—0. Then it is
natural to define the physical energy bands as those
bands for which the energy eigenfunctions are linear
combinations of wave functions of different wave
numbers but a single band index. These bands are the
ones reached by the progressive ‘“decoupling of bands,”
as carried out first by Wilson. These are just the bands
that it has been necessary to construct in studying the
magnetic susceptibility of solids."»?7 A superposition of
these states can be shown to satisfy an analog of the
““acceleration” equation.®

The problem of defining the energy bands arises in a
number of problems involving weak perturbations, such
as problems having to do with the presence of impurity
atoms, acoustic distortion, etc. Whether it is important
to consider such questions as we have been concerned
with here depends on the extent to which one must
calculate from first principles. It can be asserted that
in general it will be necessary to consider such questions
in order to deduce from first principles the “effective
perturbation potential” acting on a carrier that is
thought of as moving always in a single band.

APPENDIX

Wannier’s functions diagonalize the partial Hamil-
tonian
Hw=E(p)—FX(p). (A1)

Let O(F,p) be an operator that diagonalizes Hy in the
bands, and let Ew(p) be the diagonalized form. Then

a0+

0H0+=Ew(p)—F,—iﬁFo—a—. (A.2)
I3

The matrix 0(80%/dp) is not diagonal in bands. Its
diagonal matrix elements are easily shown to be of
order F? as stated in the text.

7W. Kohn and T. Kjeldaas, Phys. Rev. 105, 806 (1957).



