Mr. E. P. Warekois for orienting all the samples by means of x-ray techniques, Mr. B. Feldman for his assistance with the experiments and Dr. J. W. Meyer for the use of and aid with his x-band paramagnetic spectrometer.

Note added in proof .-- Evidence of an additional resonance occurring above H_c^{\dagger} given by $H_0 = [(\omega/\gamma)^2 + 2H_E H_A]^{\frac{1}{2}}$ at T = 0 has

PHYSICAL REVIEW

VOLUME 107, NUMBER 3

AUGUST 1. 1957

Effect of Bleaching on the Optical Band Width of the F Center in KCl

JOHN D. KONITZER AND JORDAN J. MARKHAM Zenith Radio Corporation, Chicago, Illinois (Received April 5, 1957)

Measurements have been made of the absorption in the F region in KCl at 78°K. It has been found that the structure in this region is dependent on the presence of the M, N, R, and K bands. The broadening in the presence of small amounts of M absorption indicates that it is not simply due to the overlapping of R, M, and N bands but is caused by an additional structure. These measurements support the present interpretation of the work of Van Doorn and Haven; they can explain the difference in the measurements of Pick and Geiger as well as the difference in the half-width observed by Mollwo and more recent data.

TAN DOORN and Haven¹ investigated the dichroism of the F and M bands in additively colored KCl, and suggest that there is a band under the F band which arises from the same center which causes the M band. Petroff², working with additively colored KCl, indirectly deduced the presence of a band under the F band (the B band). We assume that bleaching should affect the optical absorption structure of the F band, and therefore carried out the following experiments.

Absorption measurements were made on additively colored KCl containing varying concentrations of Fand M bands.³ All colorations and quenches were performed in the absence of light. The quenches in oil were made as rapidly as possible (15 sec) from coloration temperature (\sim 730°C) to room temperature in order to obtain only F centers. All measurements were made at 78°K with a Beckman Model DU spectrophotometer between 1.0 ev and 3.5 ev.⁴ M and R centers were induced by bleaching at room temperature with a tungsten lamp.

The F band may be characterized by four wavelengths: the peak, ϵ_M ; the half-height to the red, ϵ_r ; the half-height to the violet, ϵ_v ; and the half-width, $\Delta \epsilon_v$ the difference between ϵ_v and ϵ_r . The ratios of the M band and the K band to the F band (M/F and K/F), respectively) are reported in terms of the maximum absorption at the peaks.

An element of uncertainty occurs due to selection of a base line. When only F bands are present, the flatness

to the red of the F band determines the line and the peak absorption with little doubt. When M, R, and Nbands are present, we selected for the base a straight line from the absorption value at 1.1 ev to the lowest value on the violet side of the F band. If there is some true absorption at either or both of these points, the half-widths reported here are too small. Our selection, therefore, indicates the minimum $\Delta \epsilon$ to be expected.

recently been observed at 35 kMc/sec in MnF. This resonance

appears to be extremely sensitive to orientation of the c axis with

furnished by Dr. E. J. Scott of the Naval Ordnance Laboratory. Resonance data at 35 kMc/sec have been obtained from 77°K

up to 325° K (T \cong 307°K) to date. The results of these experiments

Note added in proof.-Similar antiferromagnetic resonance observations have been made on a single crystal of Cr₂O₃ kindly

respect to H_0 at this frequency.

will be presented in the near future.

The facts are as follows: when a crystal exhibiting mainly an F band is bleached, the $\Delta \epsilon$ increases and M band arises. Upon further bleaching the N, R_1 , and R_2 bands appear, the M band increases, while the F band drops, its peak shifts to the violet, and $\Delta \epsilon$ further increases. From Fig. 1 we see that the increase in $\Delta \epsilon$ is not due to overlap on the red side. Subtraction of the K band still leaves a half-width wider than the value for

TABLE I. Summary of data on the F center in KCl.

Bleaching ^a	Concentration of $F^{\rm b}$	(ev)	(ev)	(ev)	Δe⁰ (ev)	% M/F	% K/F
None None None None None 10 min 5 min 5 min 30 min 30 min 30 min 31 hr X-300°K 3 hr	$\begin{array}{c} 3.67\times10^{16}\\ 4.41\times10^{16}\\ 4.62\times10^{16}\\ 4.18\times10^{16}\\ 3.92\times10^{16}\\ 4.16\times10^{16}\\ 4.57\times10^{16}\\ 4.57\times10^{16}\\ 2.78\times10^{16}\\ 2.08\times10^{16}\\ 1.87\times10^{16}\\ 1.80\times10^{16}\\ 1.80\times10^{16}\\ 1.96\times10^{16}\\ 4.30\times10^{16}\\ 4.30\times10^{$	2.303 2.304 2.304 2.304 2.308 2.308 2.308 2.308 2.300 2.304 2.302 2.302 2.310 2.310 2.310 2.312 2.312 2.304	2.409 2.410 2.411 2.411 2.411 2.411 2.415 2.413 2.415 2.431 2.439 2.445 2.432 2.445 2.445 2.445 2.445 2.445 2.445 2.454 2.454 2.454 2.457 2.410	2.216 2.215 2.215 2.215 2.214 2.214 2.214 2.214 2.213 2.206 2.210 2.206 2.210 2.206 2.210 2.205 2.218	$\begin{array}{c} 0.193\\ 0.195\\ 0.195\\ 0.196\\ 0.196\\ 0.196\\ 0.196\\ 0.205\\ 0.218\\ 0.235\\ 0.235\\ 0.236\\ 0.243\\ 0.243\\ 0.252\\ 0.192\\ \end{array}$	$\begin{array}{c} 1.2\\ 1.7\\ 0.7\\ 1.4\\ 1.6\\ 5.8\\ 1.1\\ 7.8\\ 29.4\\ 20.4\\ 29.2\\ 23.0\\ 21.6\\ 25.3\\ 24.3\\ 38.6\\ 2.2\end{array}$	4.0 3.2 3.8 3.6 4.1 4.8 3.8 4.9 8.1 18.4 16.5 20.4 16.5 20.4 16.5 20.4 16.3 25.1 4.7
A-18-K 3 hr	3.35 X10184	2.304	2.409	2.214	0.195	U	4.0

Optical bleaching (tungsten lamp) at room temperature.
b Calculated using Smakula's formula (f=0.81).
o Measured to ±0.001 ev.
d Average value. Filtered x-ray (140 kvp).

¹ C. Z. Van Doorn and Y. Haven, Phys. Rev. **100**, 753 (1955). ² St. Petroff, Z. Physik **127**, 443 (1950). ³ G. A. Noble and L. Bronstein, Bull. Am. Phys. Soc. Ser. II,

^{1, 33 (1956).} ⁴ H. N. Hersh, Phys. Rev. 105, 1158 (1957).

FIG. 1. Effect of bleaching on the absorption of the F structure. Absorption measurements at liquid nitrogen temperature.

the "pure" F band. In the small drawing of Fig. 1, note that the peak of the F band shifts and the B band appears to be somewhat resolved.

Table I shows that $\Delta \epsilon$ and the M/F and K/F ratios increase with increasing bleaching. Notice that a quantitative relationship does not exist between the \dot{F} band and the M/F and K/F ratios. The table indicates that the concentration of M centers alone does not determine $\Delta \epsilon$. It seems to increase monatomically while M rises and then falls. The x-ray data show that it is not affected greatly for an M/F ratio of 2.2%.

Similar effects are now being studied in KBr.

Undoubtedly there has been confusion in the past, for no one has been careful to distinguish between the pure F and the F composite bands. The distinction resolves some of the contradictory behavior of the F band. For example, a comparison of our data with those of Mollwo⁵ indicates that his values for KCl and KBr refer to the composite rather than the "pure" F band. Table I disagrees with values given by Russell and Klick,⁶ whose data reflect a theoretical interpretation

rather than actual experimental values. The distinction also resolves at least some of the differences between the work of Pick⁷ and Geiger.⁸ Geiger studies the quantum yield for the composite band while Pick's work refers to the true F center.

To summarize, as the F band is bleached, its halfwidth increases. This increase is due in part to some overlap of the F band with its side bands, but mainly due to the formation of another band or bands under the F which arise under the same conditions that cause the M band, namely, bleaching the F. This band, Petroff's B band, is probably the same one which gives rise to the dichroism noticed by Van Doorn and Haven.

In future work concerning the F band, we believe a careful distinction must be made as to whether one is treating the F band itself or the F composite bands. We would like to stress that at present there is no reliable information on the temperature variation of the peak and half-width or the shape of the F band.

We would like to thank Dr. H. N. Hersh and Dr. G. A. Noble for their assistance.

⁵ E. Mollwo, Z. Physik 85, 56 (1933).

⁶ G. Russell and C. Klick, Phys. Rev. 101, 1473 (1956).

⁷ H. Pick, Ann. Physik **37**, 421 (1940). ⁸ F. E. Geiger, Phys. Rev. **99**, 1075 (1955).