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In this paper we develop a general-relativistic theory of two-component spinors somewhat along the
lines pioneered more than twenty years ago by Weyl and by Infeld and van der Waerden. This formalism
is in some respects more natura1 than the theory of four-component spinors. We begin by introducing into
a four-dimensional manifold as our basic geometric structure a set of four 2&(2 Hermitian matrices, 0&,

and we show that these matrices by themselves define uniquely a Riemannian metric with the usual signature
of a space-time manifold. It turns out that one can describe the gravitational field and its laws very con-
veniently in this matrix formalism; at the same time the 0& enable one to construct invariant two-component
and four-component spinor wave equations. We use these formal possibilities to define local Lorentz trans-
formations and, in particular, the transformations corresponding to time reversal and to space inversion.

1. INTRODUCTION
' 'N recent months physicists have become interested
~ ~ increasingly in two-component spinors, because of
their possible bearing on the nature of neutrinos. ' It
appears worth while to review the formal relationship
of these quantities to general-relativistic theories, which
was originally examined by Infeld and van der Waerden. '
Not unnaturally, their work was concerned primarily
with Dirac theory and hence with four-component
spinors, though they developed a remarkably complete
general-relativistic two-component formalism.

In this paper we shall take a point of view somewhat
at variance with that of Infeld and van der VVaerden.
These authors started with a Riemannian manifold,
into which they placed spinor 6elds. We shall begin
with a field of spin matrices and generate from them
the Riemannian manifold. We shall take special pains
to demonstrate that the introduction of four (linearly
independent) spin matrices is completely equivalent to
the introduction of a metric tensor, in that the spin
matrices dehne the tensor uniquely, while the metric
tensor in turn defines the spin matrices, except for a
group of transformations which may be described as
local Lorentz transformations.

Aside from this diGerent point of view we shall
contribute to Infeld's and van der Waerden's work a
few additional results, and we shall examine in some
detail the role of parity and time reversal in our
formalism.

we may describe a spinor field, such as

(4'(~') l
f(x&) =

/

EP (x&))
(2.1)

We can describe the same Geld in terms of a diGerent
base system by forming the linear combination of the
two components P' and P,

(2.2)

The coeKcients of this transformation are arbitrary
complex functions of space-time but are restricted by
the requirement that their determinant be unity,

(2.3)

All relations to be set up are required to reproduce
themselves under this group of transformations as well
as under arbitrary curvilinear coordinate transforma-
tions. In what follows we shall use matrix notation
without the use of the spinor indices n, ci originally
suggested by van der Waerden. ' These indices permit,
the visual identification of certain (though not all)
types of transformation properties in spin space but
otherwise are cumbersome. Needless to say, the choice
between index notation and one like ours is a matter of
convenience and not of principle.

In addition to the transformation law (2.2), a vector
in spin space may obey any of the folio wing three
relations:

2. SPINOR ALGEBRA WITH UNIMOLECULAR
TRANSFORMATIONS X =X+

(2.4)

(2 5)
ol

We shall begin with the algebra of spinors that are
dined with respect to unimodular transformations. At
each point of physical space-time we de6ne a two-
dimensional complex linear vector space. With its help

+t—1Xt (2.6)

where a, u~, and u ' are the complex conjugate, Her-
mitian conjugate, and inverse of a, respectively. In
van der Waerden's notation the four types (2.3) through
(2.6) are written f, f', x, and x, respectively. In
spin space we do not introduce any symmetric or
Hermitian matrix that would correspond to the metric
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tensor in a Riemannian space. However, there exists transformations. Under coordinate transformations it
the Levi-Civita object e, is a contravariant tensor:

p0 ip

& —1 0)
(2.7)

—z(r"o"+r"oj') =u—"u" —(n"n"+p"p'+y"y")
(2.15)

e= GeQt, —gt—ling-1
(2 8)

where uT is the transpose of u.
Up to this point we have not introduced into our scheme

any geometric object that could serve as the carrier of
the basic geometric structure, such as the metric tensor
does in Riemannian geometry. For this purpose we shall
now postulate the existence of a Geld of four Hermitian
matrices 0.& which are to be linearly independent of each
other, i.e., the equation

apo&=0 (2 9)

(a, ordinary numbers) imphes a,=0; under coordinate
and spin transformations the rf' are assumed to trans-
form according to the law:

(Bxy )
(at 'o~a-

EBx" )
The product of two 0. matrices will not possess any
simple transformation law. However, we may construct
a second set of matrices, z&, by means of the operation

Vl'= eO.i'e. (2.11)

The transformation law

which reproduces itself under spin transformations
according to any one of the following schemes:

gtgT 6—g—1T~a,—1

This expression has all the formal properties of a
c number contravariant symmetric tensor. We shall
call it the contravariant metric tensor. By constructing
such quantities as

~jI I KjIn P 7

njI= 5 fjjII„iu"p""r, etc. )

6=b„,„iu"a'p "p",

(2.16)

uy=-', tr(oy), u,o'= 1, ry = o y —2uy. (2.19)

For comparison with the algebraic properties of Pauli's
original three 0 matrices, it is convenient to introduce
the projections of various quantities into the three-
space perpendicular to the unit vector u&. To this end
we deGne:

we can easily obtain the components of the covariant
metric tensor:

g"=u.u. (n.—n.+P.P.+v.v.) . (2 1&)

In terms of this metric, uj', n", P", and yj' are unit
vectors, the first with positive norm and the remainder
with negative norm.

It is easy to verify the following results, which are
both coordinate- and spin-covariant:

o,r'= —4, o,o'= —2,. o,dr&= —2 tr(A), (2.18)

and the following, which deal with quantities that are
coordinate-covariant but not spin-covariant:

(Bx' )
~

o,rj"at
EBx" )

(2.12)

ey =ay u'= ry+—uy,

6"—8"—uu"
gjyy= gjIy

—u~uy, etc. ,
(2.20)

)IXXI') nPPITy7

—nI(Py~i PjI~y)+PI(~ynjI ~Any)

+~I(nyPx nxPy) (2 2] )(uy+ny py zY'l—
(py+iqy, uy nyi— Here 5'"" is a tensor with respect to coordinate trans-

formations, is completely skew-symmetric, and is
orthogonal to u, . The product of two e is given by the
relatively simple expression

then the v. matrices have the components

and
is a direct consequence of the defining Eq. (2.11). If
we give the individual elements of the spin matrices
the designations

(—u'+n', p'

j p'+iy', u' ny I— — (2.14)

The variables uy, ny, Py, and yy are real. They are coor-
dinate vectors but are not covariant under spin trans-
formations. The product of a 0- matrix by a v matrix
has a simple transformation law. The combination

2(rj'o "+r"o j') in—particular is proportional to the unit
matrix and hence is invariant with respect to spin

n"n"= —g""+ii'jj'"ya» (2.22)

which incorporates both the commutator and the anti-
corn.mutator of the e matrices. Finally, for some calcu-
lations, the following formula is useful:

QIyjI —5 I(Q yg i g jI5 y)

+5 y(5OjIQ I 5OIQ jI)

+5 "(StjIS "—Sp"5 '). (2.23)
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pyP gV (3.1)

By assumption, both sets are Hermitian, and the coef-
ficients y&„accordingly real. They satisfy the rela-
tionship

3. LOCAL LORENTZ TRANSFORMATIONS

Equation (2.15), along with (2.11), demonstrates
that to any chosen field of 0& there belongs one, and
only one, Riemannian metric, which has the signature
ordinarily assumed in general relativity. Ke shall now
examine the set of 0- matrices that may be associated,
at any one world point, with a given Riemannian
metric of the same signature. Because of Eq. (2.13), the
members of this set are in a one-to-one relationship to
the set of quadruplets of mutually perpendicular unit
vectors that may be constructed at that world point.
Thus each set of four 0 matrices at a world point may
be associated uniquely with a local Lorentz frame.
Relations between two possible sets of 0. matrices com-
patible with the same metric (always at one world
point) must be representable by Lo'rentz transfor-
mations.

Given two such sets of possible spin matrices, desig-
nated by o-& and by o-&', respectively, we can always
express one set linearly in terms of the other,

two conditions
upu"y"v) 0,

&»&"7"vp &»p "7"~y &»7"7"v
Det p„o"q»„, p„p"q»„, p„q"q»„&0

7»&"'Y» i V»p"7».
~ V»V "7».

(3.7)

are satisfied. These so1utions are ambiguous, in that
with any matrix a the matrix —a is also a solution of
Eqs. (3.4) with given left-hand side. Among the proper
Lorentz transformations we shall call those rotations
for which N„N"y&„=1. The corresponding spin trans-
formation matrices are unitary. Under rotations the
trace vector Nl' is invariant.

Two sets of spin matrices o-& and o-&' that belong to
the same metric may also be related by an improper
Lorentz transformation. We shall in particular consider
the possible relationships

(3.8)

"time reversal, " and

(3.9)

"space inversion" or "parity. " The transformation T
reverses the sign of NI', whereas P leaves I& unchanged
and instead reverses the signs of n», P", and y». The
product of these two transformations, PT,

yP yP gPd' gPV (3.2) (3.10)

which is typical of the coefficients of a Lorentz trans-
formation. The two sets 0" and 0"' may (but need not)
be related to each other by a spin transformation of the
type (2.10) (without coordinate transformation). In
that event we have

p" cr"—a 0"a y" 7'"—av "a (3.3)

y» = '(at '0»a 'r„+—a-„ar»at). (3.4)

If the transformations are infinitesimal, i.e., if a divers
from the unit matrix only by an infinitesimal matrix 5a
then this relationship simplifies. H we write ba in the
form

ha= ba„ef', Sa,N&= 0, (3.3)

With the help of the relationship (2.15) we may solve
for the "Lorentz coefficients":

is also an improper Lorentz transformation. T, P, and
PT all commute with the rotations; that is to say,
because under unitary spin transformations the trans-
formation laws for 0», (2.10), and for r», (2.12), are
identical, the performance of a unitary spin trans-
formation U is equivalent to the transformations TUT,
PUP, and PTVPT.

A relationship may be considered invariant under T
or P if along with the o- and ~ matrices the remaining
variables occurring in the equations may be trans-
formed so that the equations reproduce their form. For
instance, if two spinors iP and x» are related by the
equation

(3.11)

then this relationship will reproduce itself under the
transformation T if

(the trace of Ba vanishes, because a itself is uni-
modular), then we obtain for the infinitesimal Lorentz
coefficients the expressions

by&„= 2 Re(ba, ) (Q'»u„5„»N») —2 Im(a—a.)5'"' (3.6)

x" =&x",

Under P the corresponding relationship is

x" = —~x»,

and under PT

(3.12)

(3.13)

These expressions can be readily solved for the com-
ponents of the two real vectors Re(ba»), Im(ba»). It is
well known, from the special relativistic theory of two-
component spinors, that Eqs. (3.4) possess solutions if,
and only if, the Lorentz coe%cients on the left repre-
sent a "proper" Lorentz transformation, that is, if the

x"'= —x" (3.14)

From the equivalence of spin transformations and
local proper Lorentz transformations we derive the fol-
lowing lemma oe locally geodesic frames: given an
arbitrary field of 0" matrices, 0»(x»); at any chosen
world point x' we can bring it about that the four spin
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matrices take the values of +1, +e (where o denotes
the three customary Pauli spin matrices) and that the
partial derivatives of all their components with respect
to the coordinates vanish.

For proof we remark first that the corresponding
lemma for the metric tensor is weil known (i.e., that
the components of the metric tensor assume the values
of the Minkowski metric and that all ChristofFel
symbols vanish at a chosen world point). Accordingly
we may carry out a coordinate transformation so that
the metric tensor (2.15) takes the desired form. Then
the spin matrices will diGer from the standard form
at most by a unimodular spin transformation, plus
possibly the transformation J'. , T, or PT. In all these
cases we may achieve the standard form (modulo the
two signs as indicated above) by a unimodular spin
transformation. Any remaining derivatives may be
removed by an infinitesimal spin transformation.

Accordingly we find for F, the expression

r= —-'r
r
op+p 4 p

~
p

(4.5)

7",p
7")"

(4.6)

If the covariant derivatives of the spin matrices are
to vanish, we obtain the following relationship between
the Riemannian curvature and the spin curvature:

+cLXpo Pcx 0p 0ppcK 07
'A (4.7)

As usual, we define the spin curvature by means of
the commutator of mixed covariant derivatives:

4. SPIN-AFFINE CONNECTION
and, likewise:

R,„),„r"+P.„rp+ r„p,„'=0. (4.8)
We shall deGne the spin-afFine connection as a set

of four 2&2 matrices, F„which will help us to deGne
a covariant derivative of a spinor,

With their help, we may express the two curvatures
explicitly in terms of each other. We have

kp=kp+rA' 4' p =o'p;p (4.1)
&&cccXp g (0 &7fcJ: chic a chic Op, V&MOM ccc7fc Outcr ccc&'A

=-,' trLP, .'(o.gr„—o„rg)+ (r„og—r),o„)p,„],
Under a coordinate transformation F, is a vector.
Under a spin transformation the I', change as follows: P,„=-,"~ Z.„,„, tr(p.„)=0. (4.10)

r '=(al —e )u (4.2)

e=oe8 e p=r e+per =0) r = erpe (4.3).

Hence the trace of Fp must vanish.
Next we shall require that the covariant derivatives

of 0.& and ~& vanish. That this is indeed possible follows
from the lemma on locally geodesic spin frames proved
at the end of the last section. In such a locally geodesic
spin frame we set the components of the afFine con-
nection (locally) equal to zero. In any other spin frame
r, is then determined by the transformation law (4.2).

These requirements are not only compatible with any
set of OP and their derivatives, the spin-afFine connection
is thereby uniquely determined. For proof we examine
.the weaker condition

Depending on the transformation laws of various types
of spinor GeMs, we may require also the Hermitian
adjoint, as well as the transpose and the conjugate
complex, of F,.

We shall make the covariant derivative of ~ vanish.
We have

The contracted forms of the Riemannian curvature, the
Ricci tensor and the curvature scalar, hence take the
forms

E„q——s trio qr ppp, .t pp„topr&, +—o~pp„~p opp„&„), —
4.11E=-', tr(r p.,top+opp. ,7. )

This last expression, multiplied by (—g)-**, may be
adopted as the Lagrangian of the gravitational field.

It remains to examine the transformation properties
of the affine connection and of the spin curvature under
improper Lorentz transformations. Substitution of
Eqs. (3.8) and (3.9) into the expression for the spin-
aKne connection (4.5) yields under both T and P

(4.12)
and

(4.13)

Under the transformation PT the spin-alone connection
remains unchanged. Inspection shows that such rela-
tions as Eqs. (4.7) with (4.8) and (4.11) are invariant
under time reversal and space inversion.

5. GAUGE TRANSFORMATIONS

0= Spy;p —apl o,p+ '

np

= 7'„Crf.', p

up

(4.4)

r+2 trr, t+ 4r, .

o —r top —opr)
rP P )

Weyl4 has called attention to the possibility of
enlarging the group of spin transformations (2.2) by
permitting the determinant of a to be a quantity of
mugeitlde 1. This enlargement of the transformation

' H. Weyl, Z. Physik 56, 830 (1929).
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e, ,=i',e+ el', r—s tr(I', )=0, (5.2)

and this requirement is empty. Hence one would no

longer require that the trace of I', vanish, but one may
require that tr(I', ) be imaginary, as

tr(I'p') = tr (I',)—2i8, p. (5.3)

In this slightly generalized formalism it is possible
to introduce wave-function spinors corresponding to
diGerently charged particles. Ke may introduce the
electromagnetic potentials by setting

(5.4)

where e signifies the elementary unit of charge (not
necessarily the charge of the particle whose wave
function is being considered). A spinning particle of
arbitrary electric charge and zero rest mass would then
be represented by a wave function whose transformation
law under spin transformations would include as an
extra factor an appropriate power of the determinant
of u. A neutral particle, in particular, would correspond
to the transformation law

(5.5)

The expression (4.5) for the aKne connection would be
changed by the addition of the term —(ie/Ac)p, on the
right. The value of the spin. curvature (4.6) would

be changed by the addition of the c-number term
—(ie/Ac)Q„The equali. ties (4.7), (4.8), and (4.9) would

remain unchanged, whereas Eq. (4.10) would add the
electromagnetic field tensor, —(ie/Ac)$„, on the right.

Under the improper Lorentz transformations the
values of ep, as defined by Eq. (5.4) remain unchanged.

The fusion of spin transformations and gauge trans-
formations brought about by the generalization of the
transformation group is, of course, quite superhcial.
Any nonsingular matrix may be represented as the
product of a unimodular matrix and a (complex)
number. The principal virtue of the approach sketched
here, as compared with other possibilities, is that it
leads naturally to Dirac's momentum operator.

Infeld and van der Waerden' have also considered
the further generalization of the spin transformation
that consists of permitting a matrices to have any
determinant whatsoever. In that case wave functions

group would have no eGect on the transformation law
of the spin matrices 0 & and ~& as shown by the form of
Eqs. (2.4) and (2.5). The matrix e, on the other hand,
would remain invariant only if its transformation law

were changed to

(5.1)

i.e., if its density character were explicitly recognized.
In that case the requirement that its covariant deriva-
tive vanish would reduce to

must possess two distinct densities, one with respect
to the phase of the determinant (as sketched out in this
section) and one with respect to the norm. Accordingly,
particles represented by such wave functions would
possess two scalar properties, one presumably the
electric charge and the other some other quantum
number, such as total isotopic spin, strangeness, or the
like. Such a formal possibility would have similarity
with the suggestions advanced by Yang and Mi11s,~

Bludman, ' and Utiyama. ~ The analog of the b 6eld
advanced by Yang and Mills would be the real part of
tr(1', ), which could no longer be set equal to zero and
which under T and I' would change sign, in contrast to
the imaginary part. Because the complex numbers
(multiplied by unit matrices) form part of the center
of any transformation group of matrices, this extension
of the original unimodular group also has little formal
rigidity and should not be interpreted or accepted as a
step toward a uni6ed 6eld theory.

These two wave equations go over into each other
under either I' or T. The effect of an incident electro-

. magnetic potential on the wave function and the value
of the electric charge of the particle (cVe) are included
in the form of the covariant derivative.

Let us consider the first Eq. (6.1) and attempt to
separate the individual components of this wave equa-
tion by continued diGerentiation. We form the two
equations

r o.Q, p =0, rsog, p 0, ——

and obtain the second-order wave equation,

ie

(6 3)

g P, p+ ,'r aPp . (E-1.)g p $—=—0. (—6.4)
Ac

The second term contains references both to the electro-
magnetic field and to the space-time curvature.

If we wish to introduce particles with nonvanishing
rest mass, we are led naturally to four-component
spinors. The only manner in which we can construct
first-order spin-covariant wave equations is by writing,
for instance,

aQ, p+mx=0, rl'x, p+ re=0. (6.5)

The fusion of the two two-component spinors lt and X
into one field with four components results in the

' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).' S. A. Kndman, Phys. Rev. 100, 372 (1955).' R. Utiyama, Phys. Rev. 101, 1597 (1956).

6. WAVE EQUATIONS. FOUR-COMPONENT SPINORS

The wave equation of a two-component spinning
particle would take either one or the other of the two
forms

(6.1)
or
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formation of a Dirac-type spinor. This procedure is
exactly the same that is employed in special-relativistic
treatments. The proper Lorentz transformations (L),
and the transformations T, P, and PT correspond to
4)(4 matrices having the form

(a, 0&

EO, at ')
(0 1~T=
E1 03

0 1 1 0

(—1 0) EO —1 i

(6.6)

where each symbol on the right stands itself for a 2&(2
matrix.

With these considerations in mind, we shall 6rst
construct a Lagrangian density that leads to two-
component spinor wave equations. Such a Lagrangian
takes the form

I.-= iv(4'~'4—;.+xtr'x;, ), v= (—g) ' (6 7)

With respect to coordinate transformations I.„ is
certainly a scalar density. Each term is invariant, too,
with respect to proper spin transformations as well as
with respect to the transformation PT. With respect
to the transformations P and T, there is an ambiguity
concerning the density character of the spinors with
respect to (proper) spin transformations. If P and x
have the weight —,', which corresponds to neutral
particles, then each of the two terms of L„goes over
into itself. Otherwise the density character of either
function changes under P or under T so that the original
and the transformed weight satisfy the equality

W+W'= 1. (6.8)

Hence for charged particles I.„remains invariant under
P and T only if each term is assumed to go over into
the other and if the two wave functions f and x are
given such weights that they correspond to opposite
electric charges.

V. ACTION PRINCIPLES. CONCLUSION

To be relativistically invariant a Lagrangian must
be a scalar density of weight 1 with respect to coor-

dinate transformations. With respect to proper spin
transformations the density weight should be zero (in
the formalism with gauge transformations; with respect
to strictly unimodular transformations the weight is
meaningless). Finally with respect to the improper
transformations all members of the Lagrangian density
must have the same transformation properties if the
theory is to be invariant with respect to these trans-
formations. The coordinate weight of the Lagrangian
is usually achieved by the multiplication of a scalar by
the metric density (—g) &. In terms of the spin matrices
this density is

( g) l=—i8,„),„o'r"o"r~=y

The expression on the right lacks the ambiguity of sign
of the square root. Under a coordinate transformation
it multiplies by the Jacobian of the transformation.
Under the transformations T and P it changes sign.
If we consider the gravitational and the electromag-
netic field Lagrangians to be integral parts of I., then
the transformation properties of any additional terms
are fully determined to the extent that we require
invariance of I.under these various transformations.

This situation differs from the special-relativistic
theory in that the present formalism contains the
Lorentz group as a local transformation group quite
apart from the group of (curvilinear) coordinate trans-
formations and that the forms which in the special
theory are numerics (the metric tensor, the Pauli and
Dirac spin matrices) are here Geld variables. Our for-
malism contains the additional elements required for
the representation of the gravitational field; it thereby
acquires a rigidity with respect to transformation
properties which the usual theory apparently does not
possess.

As our next step we shall attempt to develop an
algorithm for the routine derivation of transformation
properties of various physical variables under time
reversal, space inversion, and particle conjugation, par-
ticularly if the particle fields are hyperquantized.

The writer wishes to acknowledge stimulating dis-
cussions with R. Arnowitt.


