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Theory of High-Energy Deuteron Scattering~
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The scattering of high-energy deuterons from spin-zero targets is treated in the framework of the impulse
approximation, using the polarization formalism of Wolfenstein and Ashkin, which is here extended to the
case of spin-1 particles. The contributions of the deuteron D-state are included and are found to be im-
portant in large-angle scattering. The contributions to the deuteron scattering due to the simultaneous
scattering of both particles of the deuteron are also included. These contributions are treated by a multi-
time formalism similar to that used in the Bethe-Salpeter and Levy-Klein approach to the relativistic two-
body wave equation, but here a slightly different assumption regarding the relative time dependence is
made. It is found that these contributions are important at both large and small scattering angles, and
account for the large disparity between the experimental and theoretical values of the di6'erential cross sec-
tion obtained in previous calculations.

INTRODUCTION

'~N recent experiments the differential cross sections
and the polarization effects in the scattering of

deuterons by carbon and various other nuclei have been
measured. ' An attempt to interpret the experimental
results on the basis of an impulse approximation has
been made by Baldwin. '' For a typical case of 157-
Mev deuterons on carbon, the differential cross section
he obtains is larger than the measured value by a factor
of about 2.5 for small scattering angles, and at large
angles it becomes smaller than the measured value by
a factor of about 7. The predicted polarization reaches
a maximum of about 5'P~, whereas the experimental
value rises to about 50%%u~. It has been suggested' that
the discrepancy at large angles may be due, in part, to
the effects of the deuteron D-state contributions, which
were not considered in Baldwin's treatment. The D-
state contributions are, of course, suppressed by a
factor of the D-state amplitude, which is 20/~, but
at large angles they might be expected to become im-
portant for the following reason. A dominating factor
in the large-angle di6erential cross section predicted on
the basis of the impulse approximation is the sticking
factor. ' At large angles this factor, which is essentially
the Fourier transform of the square of the deuteron
wave function, becomes quite small when only the
S-state part of the deuteron wave function is included.
Since the D-state wave function is sharply peaked,
compared with the S-state wave function, the D-state
parts of the sticking factor might be expected to have
larger high-momentum components than the pure S-
state contribution. As high-momentum components
correspond to large scattering angles, it is possible that
at large angles the D-state parts of the sticking factor

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

Baldwin, Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis,
Phys. Rev. 105, 1502 (1956l.

John A. Baldwin, Jr., thesis, University of California Radia-
tion Laboratory Report UCRL—3412, May, 1956 (unpublished);
see also W. Lakin, reference 8.' Goeffrey F. Chew, Phys. Rev. 80, 196 (1950); 74, 809 (1948).
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may become large enough to compensate for the small
D-state amplitude.

In order to investigate this possibility, the impulse
approximation for the scattering of deuterons by carbon
has been extended to include the D-state contributions.
The calculations, which are carried out in Sec. II,
show that the D-state contributions at large angles are
almost equal in importance to the S-state contributions
but that they are not sufficiently large to produce by
themselves the large changes required to obtain agree-
ment with the experimental results.

A second process that would evidently contribute sig-
ni6cantly at large angles is the simultaneous scattering
of both particles of the deuteron. In Baldwin's treat-
ment, which includes only the effects of processes in
which a single particle of the deuteron is scattered, the
sharp decrease in the large-angle differential cross sec-
tion caused by the sticking factor rejects the large
probability that the deuteron will become disassociated
if one particle of the deuteron receives a large impulse.
However, if both particles receive large impulses of
approximately equal magnitudes this tendency to break
apart should be reduced, and at suKciently large angles
this type of contribution might be expected to pre-
dorninate over those in which only a single particle is
scattered. The theory for the simultaneous scattering
is developed in Sec. III, and it is shown that for large
scattering angles the e6ects of the simultaneous scatter-
ing indeed becomes the dominant contribution.

The eGects of the simultaneous scattering are im-
portant also in the small-angle region. In Baldwin's
treatment the particle that is not scattered remains, in
eGect, undisturbed in some plane-wave state. The fact
that Baldwin's result is too large in the small-angle
region can be explained, qualitatively, by noting that
the amplitude for the "unscattered" particle should
evidently be reduced to account for the fact that some
of these particles will be scattered and hence removed
from the unscattered beam. Simple estimates show that
Baldwin's results should be reduced to approximately
the experimental values when this eGect is considered.
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The quantitative treatment of this eGect is obtained
by considering the interference between the processes
in which a single particle and those in which both par-
ticles are scattered. The evaluation of the interference
term requires a knowledge of phase of the scattering
amplitude for the nucleon-carbon scattering. In the
forward direction this may be determined by the use
of the optical theorem. The differential cross section
obtained if one assumes this phase to persist at all
angles is in good agreement with the experimental
results for angles less than 14'. At larger angles the
predicted values become considerably too small, owing
to the large destructive interference. If, as a more
realistic approximation, the phase angle predicted by
the Fernbach-Serber-Taylor model of nucleon-nucleon
scattering is used, the interference becomes constructive
at large angles, and the theoretical and experimental
differential cross sections at all angles are brought into
reasonable agreement; for angles less than 14 the
experimental and theoretical cross sections are in vir-
tually perfect agreement, whereas at large angles the
predicted value is about 50% larger than the experi-
mental value. The model of Fernbach, Serber, and
Taylor is not a completely reliable basis for detailed
considerations at large angles because, for one thing,
polarization effects are not included. The results
demonstrate, however, the importance of the simul-

taneous scattering processes in the scattering of deu-
terons both at large and at small angles. Results
obtained by using more realistic models of the nucleon-
nucleus interaction will be discussed in a subsequent
paper. 4

I. POLARIZATION FORMALISM

In this section the general formalism for the descrip-
tion of the nonrelativistic scattering of spin-1 particles
by spin-0 targets is developed. The treatment is along
the same general lines as that used by Wolfenstein and
Ashkin' in their treatment of spin=2 particles, and is
based upon the use of the density matrix and the
M-matrix.

The M matrix that describes the scattering of a
spin-1 particle by a target of zero spin will be three by
three, and may be written in the following form:

M(8,$) =A (8,$)+B,(8,&)S,+C,;(8,&)Sg. (1)

A summation convention is to be understood, and i
and j run over x, y, and z. The 5; are the usual matrices,

while
Sg= ~ (S,S,+S;S,) 3I—8;;. (3)

a(8,y) =o(8), B,(8,y) =b(8)X;, (10)

while C;;(8,$) must be a linear combination of the terms

C~ (8) (X,lV, —-', 8;;),

C (8) (D;D; ',8,~),
—-

Cx(8) (Z,Z;——;8,;).

(11)

(12)

(13)

N=k;„yk.„„/i%;„yk.„,[,
D= k...+k;„/( k.„g+k;.[,
E=k.„—k;„/ik.„g—k; i,

(14)

(15)

(16)

where the vectors Ak;„and hk, „t, are the incident and
final momenta. Using the relation (N, N; +D~D, +;EE,)
=8... one may write the matrix C;; as

C,,=c(8) (N;1V; ,'8,,)+d(8) (D,D; —E—;E,), (17)—

These matrices, together with the unit matrix, form a
complete set in the space of three-by-three matrices.
The CC,;(8,&) are made unique by imposition of the
condition that the matrix C(8,&) with elements C,; (8,&)
by symmetric and traceless. Kith the definitions

I';(8,y) =Tr[ ',M(8,-y)M(8, y)S,)/
Tr[,'M(8, y-)M(8,y)$, (4)

r;; (8,y) = Tr[iM(8,y)M(8, y)S,;)/
»LlM(8A)M(8, e)j, (5)

P (8',y') =Tr[ ',M'(8-', y')M'(8', y')S,]/
Tr[ ',M'(8', y-')M'(8', y') j, (6)

T,,'(8',y') =Tr[ ',M—'(8',y-')M'(8', y')S,,j/
Trf ',M'(8', y-')M'(8', y') ), (7)

the differential cross section after the second scattering
of a double scattering experiment is given by'

I'(8',~') =»o'(8', ~')[l+!&.(8,~)&''(8',~')
+2'"(8A) ~"'(8'A')3, (g)

where

I,'(8',y') = ;TrM'—(8—',y') M'(8', y')

The primed quantities refer to the second scattering.
The quantities that appear on the right in Eq. (8)

may be expressed in terms of the parameters A(8,&),
8;(8,$), and C;, (8,&) which determine the M matrix.
It is convenient, however, to first reduce these pa-
rameters to the forms that are imposed upon them by
the requirements of invariance under spatial rotations
and time reversal. Arguments similar to those used by
Wolfenstein and Ashkin' show that one may write

4 W. Heckrotte and H. P. Stapp (to be published).
'L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (j.952).

Henry P. Stapp, University of California Radiation Labora-
tory Report UCRL-3657, January, 1957 (unpublished).
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Ip ac*——+P bb*+ (2/9) cc"+P dd*,

IpP; =IpP; = Pp {2Re-t'b(e+-', c)*j)$;,
(19)

(20)

IpT,,=-', {$(u+-',c)c*+(a+'pc)*c -cc*+—dd*+bb*)
X (X;X 8; )—+De+ ',c)d*-+ (u+ ',c)*dj(D-;D; E,E;)—

+2 Im(db*)(D, E,+E;D;)), (21)

IpT,;=same except for sign of last term. (22)

These equations, when substituted into Eq. (8), will

give the differential cross section after the second
scattering; this is the quantity measured in the po-
larization experiments. The result of this substitution
may be reduced to the form

I'(8',y') =I,'(8')
)&(1+-',tt'+ap(eg' —wp') c oPs'+pww' cos2&'j, (23)

where @' is the azimuthal angle for the second scattering
in the right-handed coordinate system in which the
intermediate beam moves in the s direction and the
normal to the first scattering is along the y axis. The
parameters t, e, ~, and m are functions of the scattering
angle 8, and are given in terms of the scattering pa-
rameters by the equations

Ip= aa*+ P bb*+ (2/9) cc*+'JdP'-
Ipse=2 cos8 Re[d(a+ ',c+ib tan8)*)-

—-', Re[c(a+-p'c)*]—-',dd* —-', bb*+-', cc*, (25)

Ipl =2 Re[b(a+-'pc)*$, (26)

Ipm= 2 cos8 Refd( —ib+a tan8+ pc tan8)*j, (27)

Ipw= —2 cos8 ReLd(u+-', c+ib tan8)*$
—2 Refc(a+ ', c)*j dd* -bb*+—cc* —(28).

The primed parameters are given by the same equa-
tions, but with Io and the quantities on the right re-
placed by the corresponding quantities for the second
scattering.

An expression for I'(8',g') having the same general
form as Eq (23) has . also been deduced by Lakin. ' In
Lakin's expression the parameters t, I, v, and m are
expressed as expectation values of certain spin-space

7 For a more detailed derivation see Henry P. Stapp, thesis,
University of California Radiation Laboratory Report UCRL—
3098, August, 1955 (unpublished).' W. Lakin, Phys. Rev. 98, 139 (1955). A comparison with Eq.
(23) disclosed, however, an incorrect sign in one term of Lakin's
result.

and the M matrix is reduced to the form

M(8,q) =~(8)+b(8Pr,S,
+t;c(8) (X,X, -', 8—,,)+d(8) (D,D, E—,E,)]S,, (18)

The scalar coeKcients a(8), b(8), c(8), and d(8) give a
complete description of the scattering, and the cross
section and polarizations may be expressed in terms of
them. Carrying out the required matrix multiplications,
one obtains

—2''
M'(8,4) = (kI T'Ik') =—(kI T'Ik'), (i=1,2) (29)

krA2 e,

where the m; are the masses of the two particles and the
M, (8,&) are the corresponding M matrices. The quan-
tity (k

~
T,

~

k') is the matrix element of T; between the
single-particle initial and final momentum eigenstates.
In the first Born approximation the T, may be identified
with that part of the Hamiltonian which represents the
interaction between the target nucleus and the in-
dividual particle of the deuteron. The transition matrix
T for the scattering of the entire deuteron is defined,
analogously, by

—2m
M(8A) = (KI TIK') =-(KI TIK'),

4n-A' e
(30)

where m and M(8,&) are, respectively, the mass and the
M matrix for the deuteron, and (K

~
T

~

K') is the matrix
element of T between the initial and final deuteron mo-
mentum eigenstates. The matrix element of (K~ T

~

K')
(which is a matrix in spin space) between the deuteron
states n and n' will be written (Kn~ T~ K'n'). In the
Born approximation, T becomes the sum of the two
interaction Hamiltonians,

T Tg+ Tp. (31)

The impulse approximation is obtained if Eq. (31) is
considered to be valid, not only in the Born approxima-
tion, but in general.

The momentum-space matrix elements of T; must. ,
according to invariance arguments, take the form'

(k,
~
T;~ k ) =~;[j;(ak,)+ k,Xk,'.n,g, (ab,)$,

(i=1, 2) (32)
' See reference 5. The f; and g; may, in general, depend upon

k; k;, k k, and k;.k . However, it will be assumed here that,
as in the Born approximation, the f; and g; are only functions of
the magnitude of the momentum transfer. Also the target is
temporarily assumed to be in6nitely heavy.

operators in the intermediate beam, and the t', I', e',
and m' are defined in a similar way. The expressions for
these parameters given in Eqs. (24) through (28) are
more complicated than Lakin's, but they are expressed
directly in terms of the scattering matrix amplitudes.
The latter are the quantities obtained directly from
particular models for the interaction. In the following
sections and the subsequent paper4 these expressions
are used to obtain the cross section and the asymmetry
parameters predicted on the basis of the impulse
approximation.

II. IMPULSE APPROXIMATION WITH DEUTERON
D-STATE INCLUDED

The transition matrices T~ and T2 for the individual
scatterings of the two particles of the deuteron by the
target nucleus, which is assumed to have zero spin, are
defined by
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where dk;= [k,——k [, f;(Dk,) and g, (LB,) are scalars,
and the 0; are the Pauli spin-matrix vectors for the two
particles. The normalization factor e; is included in
order that f;(DK) be the usual scattering amplitude.
Introducing the relative momentum k =

2 (k,—ks) and
the total momentum N= (ki+ks) and using Eqs. (31)
and (32), one may write the matrix element of T in the
relative-total momentum representation as

(kK[ Tl k'K') =e(kK[ f[ k'K')

+to(-,'KXK' S+2kXk' S

+2 (KXk'+kXK') (o&—os) }(kK [g[ k'K'), (33)

where S—=—,'(or+os), and where, in operator notation, "
Q]

(kK[f[k'K')—=—fr(AE)(k[e px(-', ihK x))k')

S2
+ f2(DK) (k [

e—xp( ——'26K x)
I

k'). (34)

The calculation of the matrix elements appearing
on the right in Eq. (36) may be carried out in coordinate
space. In this representation the deuteron wave func-
tion is"

(2:Ia') = (r ')I &(r)+to(r)Sr2(8) 'jI'tot'(ilA)
= (4orr') l[N(r)+w(r)Sts(8) &)X'
=—[s(r)+ d (r)Sip (8)

—~]X',
(37)

Sis——3(r—')(oi x)(os r) o,—os, (38)

and s(r) and d(r) are the radial S- and D wave fun-c-

tions. These satisfy the normalization conditions

dr s'(r) =
~

dr e2 (r)
0

= (S-state probability) —96%, (39)

where X' are the three triplet-state spin functions, S&2

is the tensor operator,

Here x is the relative coordinate xi—x2, hK=—K—K',
and AE= [6K[. T—he operator g is defined in the ex-
actly analogous way. If the deuteron state is labeled
by the symbol n and exp(rpihK x) is abbreviated by e,
the matrix element of T may be expressed as

(uK[T[n'K') = (n[k) (kK [T[k'K') (k'[n')
=to f (tDtK)(n[e[n')+n f s(D2E)(n[e '[n')
+~,g, (~E)[-',Kx K'. (~I.S l~')

+2(Q [ V X (Vc) S
[
Q') —22(Q [

c (o i—os) KXV
[
cr')

—-,'i(n[ VX K' (oi—oo)e[n')$+trog2(&E)
X[-,'KXK' (~[c 'S[~')+2(~[vX(cv ') S[n')
--'&(~l & '(or —os) Kxv I~')

—
—2,2(u[vxK' (o,—o2)e-'In')$. (35)

Since the deuteron wave functions are all states of
positive parity, a transformation x ~ —x may be per-
formed in the fs(AE) and gs(AE) terms to eliminate
e '. Then one obtains

1
-(~K

I
T

I
~'K') =f(~K) (~ I

c
I
~')

+g(AE)[-', KXK' (n[eS[n')

dr d'(r) = ' dr 202(r)
40

= (D-state probability) —4%. (40)

When Eq. (37) is substituted into Eq. (36) and the
angular integrations and matrix multiplications are
carried out, the M matrix reduces to the form

M=ap+boS;1V;+cpSoEQ;, (41)

where the unit vectors E and N are defined above Eq.
(17), S is defined above Eq. (34), and ap, bp, and co
are given by

op=f(~E)[(jo(2r~E)) +(jo(2r~E))dd j
+-', g(&K)[ 6i&K(j—i(zr&E)/r)-dd j (42)

1
ho= ,'g(AK)K2 sln8 -(jo( ',rdLK))„+ (j -(-,'rd K)), —

(7 2( r~K) )dd -', (jo(-',r~K) )dd—, (43)

—6
co=f(~K) (js(2r~K))d.+2(jo(2r&K))dd.v2

where
+2(~lvx(ve) Sl~')3, (36) jo(-'2rhE) ci

+-2'g(DE) 36iV2
Br

f(AK) = ft(AK)+ fs(DE)—, — —
n e q, (-',rsE)

72i j2 —,'rhE — 9ihE (44)
r' dd dd-

"The notation of Blat t and Weisskopf is followed here. J. Blatt
and V. Weisskopf, Theoretica/ ENdegr Physics (John Wiley and
Sons, Inc. , ¹wYork, 1952), p. 100."L. I. Schiti', QNaotam 3lechaozcs (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 77.

o rn these expressions x is actually an operator. The quantity
(k[exp(orr'hK xl [k') is, according to the normalization conven-
tions which we use, (2m)'b(h —k' —qhK).

and similarly for g(AE). The terms proportional to
(ot—os), which appear in Eq. (35), are zero in virtue

The j„(~rAEj are the usual spherical Bessel functions"of their spin-space dependence, and have been dropped
from Eq. (36).
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and, for any A, I.0

(A)a, =— dr d(r)As(r). (45) 08-

The (A)„and (A)«are de6ned analogously. When the
D-state contributions are neglected, only the terms
proportional to (jo(srhE))„remain. This factor is the
square root of the usual sticking factor.

The expression for the M matrix given in Eq. (41)
may be put in the form given in Eq. (17) by using the
identity

N, N,+D,D,+EQ, =bes.

The coeKcients a, b, c, and d appearing in Sec. I are
then expressed in terms of the coeKcients defined in
Eqs. (42) through (44) by the relations

a=ao, b=&o, c= —-', co, d= ,'co ——(46)
These relations, when used in Eqs. (23) through (28),
give the differential cross section and polarization effects
in terms of the 5 and D radial deuteron wave functions
and f(DE) and g(EE), the two parameters which de
scribe the scattering of the individual particles of the
deuteron.

In order to obtain estimates for the various expecta-
tion values appearing in Eqs. (42) through (44), some
assumption regarding the forms of the radial wave
functions must be made. The problem of determining
5- and D-state wave functions that are consistent with
the known proporties of the deuteron —in particular its
binding energy, quadrupole moment, and effective
range —has been studied by Sugawara. " He uses the
forms

N(r) =N(e "—e—e"),

m (r) =N'(1 —e &")'e-
3(1—e-&") 3(1—e

—&")'
X 1+ +

Af' («)'
(48)

If the percentage D state is taken as 4% and the deu-
teron effective range is approximated by the triplet
so-p effective range, then Sugawara finds for the pa-
rameters in Eqs. (47) and (48) the values

cr =0.23171X 10to cm ' P =5.751n, y =2.922m. (49)

Using these va1ues, one obtains for the various expecta-
tion values appearing in Eqs. (41) through (44) the
values given in Fig. 1. A second apparently reasonable
form for the deuteron wave function was a1so investi-
gated, and it gave similar results.

If the values given in Fig. 1 are used, one 6nds that
the contributions to the coeKcients co and bo in Kqs.

'o Masao Sugawara, Handbneh der Physe7e LSpringer-Verlag,
Berlin (to be published)g, Vol. 39. I wish to thank Dr. Sugawara
for advanced information concerning his results.

04-

I 1 I

QZ 04 05' 0$

(+&") x lo cm

I I I & I
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Pro. 1. Curve (1) is (jo(srrhE)), eXP, '; Curve (2) is
(jo(,'rhE))esX-Pe ',' Curve (3) is (r j'&(orrsK))eeXPe ', Curve
(4) is (j o(,'rnE-))e, X (PeP, ) '; Curve (3) is (j o(,'rnE))eeX-Pe ',
Curve (6) is (r 'jo(srbE))eeXPe ', Curve (7) is (r 'j o(-,'rrsE)&/
Br)e,X (PeP,)~. The wave functions used are those of Sugawara
that are given in Eqs. (47}, (48), and (49) of. the test. The ordinate
for Curve (3) is in units of (10"cm ') and the ordinate for Curves
(6) and (7) is in units of (10"cm ')'. P, and Pe are the deuteron
8-state and D-state probabilities, respectively.

(42) and (43) are changed by less than 35% at angles
less than 30' unless

~ s g (AE)
~

(measured in units of 10 "
cm') is larger than f(AE) In the sa. me angular range,
co—which was zero when D-state contributions were
neglected —becomesroughlyao[ —-'s+-,'ig(B,E)f '(hE)),
ao being the original ao. Equations (46) and (24) then
show that the D-state contributions may significantly
affect the differential cross section, but not to the
large extent required to fit the experimental values. For
instance, if one assumes sg(AE)=if(DE), then the
effect of the D-state contributions at DE=1.8X10"
cm-' (i.e., f) 31') is to increase a by 32%, to leave b

virtually unchanged, and to change both c and d
from zero to approximately ——',ao( —0.35+1.15i
X$sig (d,E)f '(hE) $)=0.75ao. The cross section is then
increased by about 75%. However, the increase in the
differential cross section needed to 6t the experimental
values is about ten times as large as this representative
increase due to the D-state contributions.

Although the D-state effects are evidently not pri-
marily responsible for the large differential cross sec-
tions at large angles, they must evidently be considered
in any quantitative treatment of the large-angle scat-
tering for which the contributions corresponding to the
S-state terms considered in this section are important.
In particular, since the interference between the con-
tributions considered in this section and the contribu-
tions of processes in which both particles of the deuteron
are scattered is very important at both large and small
scattering angles, the D-state contributions must be
considered in any quantitative treatment of large-angle
scattering. Detailed numerical considerations are given
in the forthcoming paper. '
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III. IMPULSE APPROXIMATION FOR THE
SIMULTANEOUS SCATTERING OF BOTH

PARTICLES OF THE DEUTERON

The contributions to the scattering calculated in
the preceding section are linear in T» and T2 and con-
tain no term proportional to T»T2. Terms of the latter
type would correspond to processes in which both
particles of the deuteron were scattered. In order to
treat processes of this nature, it is convenient to use a
time-dependent formulation of scattering theory. YVhen

one uses this formulation, the transition matrix ele-
ment 5K is"

OR=(EaI TgTsIE'n')(ib) —' (50)

where the tilde above the operators distinguishes these
time-dependent operators from the time-independent
operators used in Sec. II. The n designates the relative
coordinate part of the deuteron state and E' and E
denote the initial and 6nal energy-momentum corre-
sponding to the center-of-mass coordinate. The opera-
tors T» and T2 depend upon the free-particle energy
operators E» and E2. If in the spirit of the impulse
approximation these operators are replaced by E»' and
E~', the appropriate free-particle energies, then 1» and
T2 become the time-independent operators T» and T2.
The matrix element then reduces to the form

00
~ 00

OR= (iit)-'~ e'«-"'~ d dt(En(~, t) I T,T,
I
E'n'(~, t))j

= (ih)-'2~S(n —n') dt(Ea(0, t)
I
T,T,

I
E'n'(o, t)).

(51)

Before the integrand in the above equation for the
general case is evaluated, the special case 3=0 will be
treated. When the relative time t is zero,

I
En(0, t)) and

IE'n'(O, t)) are just the usual time-independent eigen-
vectors. "These will be denoted by I

Kn) and
I
K'a')

in accordance with the notation of earlier sections. The
calculation of (KnI T~TsI K'n') give

and with the sharpness of the peak varying inversely
as the size of the deuteron. In the limit in which the
impulse approximation becomes exact, the deuteron is
very loosely bound and very large in extent, The wave
function of the deuteron in momentum space is then
sharply peaked. For this limit T&(K—K") and
T&(K"—K') can be considered to be slowly varying
functions of K", and may be evaluated at K"
= s (K'+ K) and taken out of the integral. This gives

(nK I TiTs InK')=Ti(l&E) Ts(-;&E)

d E
(n I exp[i(K+ K' —2K") —',xj I

n')
(2s.)'

= T, (-', ZE) T, (-', SE)
I y(0) I', (53)

where AE=
I
K—K'I and p(0) is the deuteron wave

function at @=0.
In order to extend this result to the case 3/0, some

assumption regarding the relative time dependence of
the deuteron wave function must be made. This
question of the relative time dependence is a familiar
one in the history of the attempts to use multitime
wave functions in bound-state problems. Levy and
Klein" assume that during the time interval between
the two times t» and t2 the particle whose time is later
moves as a free particle. The slightly di6erent assump-
tion made here is that the second particle remains in
the deuteron state. More precisely, it will be assumed
that for a deuteron at rest the wave function is
P(x) exp[(Et~+Ets)(2iIt) '), where E is the deuteron
total energy. Over the short period of the collision the
difference between wave functions obtained by using
the two di6erent assumptions is small for high-energy
deuter ons.

The generalization of this expression for the wave
function to the case of a moving deuteron is obtained
by making the Galilean transformation x» —+ x»—vt,
x2 —+ x2—vt, where v is the velocity of the deuteron.
The relative coordinate part of the deuteron wave
function is therefore

(nK
I
TiTs I

a'K')
y(x, t) =y(x —vt), (54)

d'E"
(nIexp[i(K+K' —2K") sx7Ia')

(2m)'
X Ti(K—K")Ts(K"—K'),

where the expression (n I
exp[i(K+K' —2K") —,'x) In' )

is the Fourier component of the square of the deu-
teron wave function. If only the 5-state part of
the deuteron wave function is considered, then
(aIexp[i(K+K' —2K") -', xjIn') is a function of
I
K+K' —2K"

I
with a maximum at K"=-', (K'+K)

'4 The operators T1 and F2 operate in the full space-time co-
ordinate space and the angular bracket symbol denotes a vector
in the corresponding generalized Hilbert space. For a detailed
discussion of the formalism that is used here see reference 6.

's F.J. Dyson, Phys. Rev. 91, 1543 (1954l.

where t is the relative time t» —t2. The integral in Eq.
(51) may now be obtained from Eq. (53) by replacing
Ig(0) I' by g*(—vt)p( —v't), where v' and v are the
initial and final velocities of the deuteron. This gives

OR= (ih) '2s.8(Q —0')
f

&&T,(-,'SE)T, (-',SE) ~ dtly(et) I'. (55)

This equation expresses the fact that for the simul-
taneous-scattering process the effective transition ma-
trix is the product of the individual transition matrices

' M. Levy, Phys. Rev. 88, 72, 972 (1952); and A. Klein, Phys.
Rev. 90, 1101 (1953).
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times (i7i) ' times an average time for the collision.
Another form of the equation is

m= (ia)-'2~8(n —n') T,(-,'~K) T,(-;AK)

"dr
X2 " —l~(r) l'

2
= (N)-'2~8(n —n') T, (-,'SK)T,(raE) X (r-'), (56)

4m~

where (r ') is the expectation value of r ' for the deu-
teron. This formula for the scattering matrix element
is similar in form to, and consistent with, an expression
for the forward-scattering amplitude derived by
Glauber. ' It gives a contribution to the diGerential
cross section of

teron is very loosely bound and hence large. Although
the impulse approximation becomes valid when this
condition is satisfied, the condition is in fact not satisled
here. In particular, the deuteron is not a large object
in comparison with the scattering nucleus, and the
transition between Eq. (52) and Eq. (53) is not legiti-
mate. It is necessary, therefore, to obtain a more exact
treatment of Eq. (52).

In order to carry out explicitly the integration over
E"in Eq. (52), the form of Tr(K E")an—d Ts(K" E')—
must be prescribed. The cross-section data of Strauch
for 96-Mev protons on carbon may be represented to
an accuracy of 10%%uo in the range between 15 and 40',
and qualitatively at all angles, by a scattering ampli-
tude of the form"

f(y) = cr exp( —-', ny')+cs exp( —kPy')
+cs exp( ——,'yy'), (60)

c&——10.83)&10-"cm, +=4.68X10 "cm'

cs ——0.42X10 "cm, P=0.72X10 "cm'

c3= 0.27)&10—'~ cm, y=0.34)&10 ' cm'

where nz is the mass of the deuteron. The quantity
inside the absolute-value signs is the scattering ampli-
tude. In terms of o r(8) and o.s(8), the individual particle
cross sections, Ao (8) may be expressed as

(61)

This form will be assumed to represent the scattering
amplitude of the neutron as well as the proton. In order
to simplify the calculation, the S-state deuteron wave
function is represented by a Gaussian:

Ao (8)=o-r(8)o s(8)/o p,

where

i m2

—2m (Tr(-', AE) Ts(-', AE) ) 2
g~(8)

l

' '
lX (r—s) (57) where y=hE and the parameters are

4e E i 4v

( ') .
lEl ~,~,

(59) y (x) =X exp( —x'/2R'), (62)

Here E is the incident momentum of the deuteron.
There is, of course, also a contribution to the cross sec-
tion from the cross terms between the contributions
to the scattering amplitudes due to the G,T,+GsTs
parts of the scattering matrix and the contributions
considered in this section.

To get an idea of the order of magnitudes, some
typical values may be inserted in the above formulas.
The measurement by Strauch' of the proton-carbon
center-of-mass cross section at 84 Mev and at 27.2'
is about 50 mb. With the parameters given in Sec. II,
the value of (r ') for the deuteron S-state is 0.68X 10"
cm '. The value of E for a 157-Mev deuteron on carbon
is ~3.3&(10"cm '. This gives 0.~~1.47& 1.0 "cm' The
contribution to the cross section is therefore

with' R=2.64X10 "cm and X'=0 00973 (10+"cm ') .
The integrations may then easily be performed to give

d1(E~(0,1) l
T,T,

l
E'~'(0,1))=—X

1P (~'q )4W'q
lC"I ( )+"IQ)(—2m, i E—2m, )

+c 'I'(y)+2crcsI'(n, P)+2crcpi'(cr, y)

+2c c,r(P,y)j, (63)

where

R'
y ] R'

I'(x) =exp( —xu')
l l l l, (64)
(R'+4ai (Rs+4a sin'(8/2))

Ao (8)—(2500/14. 7) mb=170 mb. r+» I L(-y)~Pi
I'(x,y) =I' exp

2 ) (R'+2 (g+y) ) (65)Because of the diGerence in energies the corresponding
scattering angle for the deuteron scattering is about
31.5' (c.m.). There the center-of-mass cross section is Here z

l

r (I I ) l
and 8 1s the a~gle between I and

about 10 mb. I'. Equation (32) has been used to convert the ex-
This large discrePancy between exPeriment and Pressions fol ft(gK) and fs(QK) to those fol' Tt(QE)

theory is due, in part, to the assumption that the deu-

'7 R. J. Glauber, Phys. Rev. 100, 242 (1955)."K.Strauch and F. Titus, Phys. Rev. 103, 200 (1986).

' This 6t to the data was obtained by Kenneth Greider for use
in another problem.

~ T. Y. Wu and J. Ashkin, Phys. Rev. 78, 986 (1948).
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2ir (nP )~~= iX&R(~)&
)K~ Em,m, 3

(67)

where I' represents the term inside the square brackets
on the right-hand side of Eq. (63). The quantity inside
the absolute-value sign is the scattering amplitude.
The correspondence between this expression for Acr

and the earlier expression in Eq. (58) is seen if one
notes that when the wave function is given by Eq. (62)
the value of (r ') is 2slV'Rgm, and that in the limit
R —+ ~ the quantity

~

I'~ ' approaches o.io.2.

The above computations can be generalized to include
also the spin-dependent contributions. In order to
include these, the spin-dependent part of the individual-
particle transition matrices must be considered. The
general form of the single-particle transiton matrices

and T2(AE). The contribution to the cross section 60 is

/' —2m) 1
~" a~(R~(o, ~) I

T T2lz'~'(o, ~)), (66)&4a)y
which, with the aid of Eq. (63), becomes

and
f, (LB;)=sf, (Dk;),

g, (Ak~) =yf. (Ak;),

(69)

(70)

where f,(Dk,) is a real function of the form given in
Eq. (60), x is a phase factor, and y is a complex constant
which determines the phase and strength of the spin-
dependent term. The general form specified in Eqs.
(69) and (70), but with arbitrary f„is what is obtained
in the Born approximation if the real and imaginary
potentials have the same form factor and if there is a
spin-orbit potential proportional to the gradient of this
form factor."Using the forms given by Eqs. (69) and
(72), one obtains for the quantity X, defined in Eq. (63),

given in Eq. (32) is

(k, J T, (k, ') =e,Lf;(Ak,)+k;Xk .e,g, (LM;)]. (68)

These forms may be substituted into Eqs. (52) and
(53) and the calculations carried out if a sufficiently
simple form is used for g, (hk;). A not unreasonable
assumption is that g, (hk;) and f, (Ak;) may be repre-
sented by the forms

2Z'Ã'R(~)' ) 4irh' y
' ~oi+e2)

x'I+lay~ I'KXK' I'+ +y'(~i N)(~2 N
& —2m, & .

2R2

)
K ~' sin'(8/2)

X i'6 sin'8IK['F —-',
)
K(' cos'(8/2)Z —

)
K)' cos'(8/2)Z"— V+ ~ (

K )' sin'8Z'

2Z" Z
+ +—+3cos2(8/2) sin'(8/2)Z +y'(ei D)(e& D)

E2 E2

—
~

K ~' sin'(8/2) Z 2Z"
I'+—+

282 E.2 E.'
+cos'(8/2)Z'

Z . Z'
+y'(ei E) (e2. E) —P K~

' cos'(8/2)Z+ —+sin'(8/2) — . (71)
R2 R2

The unit vectors N, D, and E are defined by Eqs. (14)—(16), and the I' and Z's are defined by

I'=$c 'F(n)+c 'I'(P)+c 'F(y)+2c c2F(n P)+2cicaF(uy)+2c2c3F(Py) j,
ci'F(n) c,'F(P) c,'F(y) 2cic2F(n,P) 2c c F(o.,y) 2c c F(P,y)"

Z= + + + + +
R'+4o, R'+4P R'+4y R'+2a+2P R2+2a+2y R2+2P+2y

ci2F (n) c22F (p) c32F (y) 2cic2F (n,P)

2c2c3I'(P,y)

R'+(2a+2P) sin'(8/2) R'+ (2P+2y) sin2(8/2) ~

2cic3F (n,y)

'(n —P) ~
K~ sin(8/2) ' (n —y) )

K
~

sin(8/2) '
Z = 2cic2F (cl,P) +2ciciF (n,y)

R'+2n+2P R'+2n+2y

-(P—~) ~K~ sin(8/2) -'
+2c2c3F (P,y)

R'+2p+2y
2' F. Fermi, Nuovo cimento II, 407 {1954).

R'+4a sin'(8/2) R'+4P .sin'(8/2) R'+4y sin'(8/2) R'+ (2n+2P) sin'(8/2)
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2crcsr (n,P)crsr (n) "r(p) pr(~)

crsr (n) cssr(p) cssr (y)z—
[R'+4rr sin'(8/2) j(R'+M) [R'+4P sin'(8/2)](R'+4P) [R'+47 .sin'(8/2)) (R'+4y)

+ +
[R'+4n sin'(8/2)]' [(R'+4P sin'(8/2)g' [R'+4y sin'(8/2) j' [R'+(2n+2P) sin'(8/2)]'

2crcsr (rr,y) 2cscsr (P,p)

[R'+ (2rr+2y) sin'(8/2) j' [R'+ (2P+ 2p) sin'(8/2) )'

2crc,r (rr,p) 2crcsr (rr,y)

(p,v)
72

[R'+ (2P+2y) sin'(8/2) $(R'+2P+2y)

[R2+ (2n+2P) sins(8/2) $(Rs+2n+2P) [Rs+ (2rr+2p) sins(8/2) j(Rs+2rr+2y)

2cc F

The formulas given above were calculated with the
assumption that the phase of the scattering amplitudes
f, and g, were angle-independent. Although this is true
in the Born approximation, it is certainly not com-
pletely correct. In the limit of a large deuteron the
calculations may be carried out for arbitrary f, andg, .
For this limit the deuteron scattering amplitude at a
given scattering angle depends on the nucleon-scatter-
ing amplitudes only in the immediate neighborhood of
this same scattering angle —as may be seen, for ex-
ample, in. Eq. (57). When the deuteron is not assumed
infinitely large, a 6rst approximation for the phase
may be obtained by assuming the phase of the nucleon-
scattering amplitudes to be constant at that value
which the phase assumes at the angle for which the
deuteron-scattering amplitude is being calculated. The
same approximation can be made for the ratio of f,
and g; as a function of angle. With these approximations
Eqs. (71), (63), and (51), together with Eqs. (41)
through (46) and (23) through (28), give the differential
cross section and polarization effects in the scattering
of deuterons explicitly in terms of x and y, the pa-
rameters that give the phase and relative magnitudes

of the scattering amplitudes f, and g, ; and the function

f,(x) that determines the magnitude of the scattering
amplitudes for the scattering of the nucleons. If the
spin-dependent effects are omitted by setting y=0,
then the value of f, (x) given in Eq. (60) may be used,
and the only variable is the phase factor x. This phase
factor may be determined at small angles by use of the
optical theorem. At other angles it is necessary to use
some detailed model of the nucleon-nucleon interaction.
The results obtained by use of the model of Fernbach,
Serber, and Taylor" were described in the introductory
section. The numerical details of these results, together
with considerations of more realistic models that include
polarization effects, will be discussed in a subsequent
paper.
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